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Abstract： 24 

The hydrodynamics of karst terrain are highly complex due to the diverse 25 

fractures and reservoirs within limestone formations. The time delay between rainfall 26 

events and subsequent flow into reservoirs exhibits significant variability. However, 27 

these hydrological processes are not easily visualized in karst topography. Subsurface 28 

geophysics, specifically 2D time-lapse electrical resistivity tomography (ERT), 29 

provides an effective method for studying the relationships between hydrological and 30 

geophysical features. In our research, we adopted ERT in the Karst Critical Zone 31 

(KCZ) to visualize specific karstic zones, including cave galleries, water storage 32 

reservoirs, wetting fronts, soil layers, and potential preferential flow paths down to a 33 

depth of 20 meters. To capture spatial and seasonal variations in resistivity, we 34 

presented a comprehensive approach by combining sixteen inversion models obtained 35 

between February 2020 and September 2022 above the Villars Cave in SW-France—a 36 

well-known prehistoric cave. We used a multi-dimensional statistical technique called 37 

Hierarchical Agglomerative Clustering (HAC) to create a composite model that 38 

divided the synthetic ERT image into eight clusters representing different karst critical 39 

zones. The ERT image clearly visualized the cave gallery  with high resistivity values 40 

that remained consistent throughout the seasons. Our analysis revealed a close 41 

seasonal relationship between water excess and resistivity variations in most 42 

infiltration zones, with time delays increasing with depth. The karst reservoirs, located 43 

at significant depths compared to other clusters, displayed sensitivity to changes in 44 

water excess but were primarily affected by fluctuations in water conductivity, 45 

particularly during summer or dry periods. These findings have significant 46 

implications for predicting rainwater infiltration pathways into caves, thereby 47 

assisting in the conservation and preservation of prehistoric caves and their cultural 48 

heritage.  49 

 50 

Keywords: Electrical resistivity tomography; Karst reservoirs; Drip rate; Hierarchical 51 

agglomerative clustering; Infiltration 52 
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Main manuscript content 53 

1. Introduction 54 

 The main formation process of karst landscapes is the dissolution of carbonate 55 

rocks, resulting in various types of pores, including compact and porous rock, joints, 56 

fractures, and fluid conduits (Ford and Williams, 2007). Karst groundwater is one of 57 

the most critical water resources worldwide, providing drinking water for 58 

approximately a quarter of the world’s population (Ford and Williams, 2007). 59 

Improving our understanding of the complex hydrogeology of karst aquifers is of 60 

considerable importance regarding the protection of drinking water resources (White, 61 

2002). However, karst aquifers, like “black boxes”, are typically characterized by 62 

features of fracture-permeable network transport with geometric uncertainty, posing 63 

observational challenges for aquifer characterizations (Vacher and Mylroie, 2002; 64 

Hartmann and Baker, 2017). 65 

The application of 2D time-lapse electrical resistivity tomography (ERT) has the 66 

major advantage of being non-destructive and minimum-invasive when measuring the 67 

electrical resistivity targeting the air/soil/rock-filled volumes and water-filled voids in 68 

highly heterogeneous aquifers to analyze changes in groundwater characteristics 69 

(Samouëlian et al., 2005; Vanderborght et al., 2005; Al Hagrey, 2007; Brunet et al., 70 

2010; Binley et al., 2015; Watlet et al., 2018). Several parameters contribute to 71 

variations in ERT measurements, including subsurface composition, moisture content, 72 

temperature, porosity, permeability, mineralization, instrumentation, noise, and survey 73 

configuration (Telford et al., 1990). ERT monitoring is an extremely efficient method 74 

for some hydro-geophysics studies (Kuras et al., 2009; Coscia et al., 2012; Revil et 75 

al., 2012; Uhlemann et al., 2016; 2017), including investigations of heterogeneous 76 

aquifers (Chen et al., 2018; Torrese et al., 2020; Yan et al., 2023), characterization of 77 

water storage zones (Pope et al., 2023; Delgado-Gonzalez et al., 2023; Kadam et al., 78 

2023), and preferential flow studies (De-Carlo et al., 2021; Song et al., 2023).  79 

More specifically, researchers have used ERT on karst landforms to identify 80 
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subsurface features, sinkholes, caves, and reservoir dynamics (Gautam et al., 2000 ; 81 

Zhou et al., 2002 ; Valois et al., 2010 ; Chalikakis et al., 2011 ; Robert et al., 2011; 82 

Carrière et al., 2013; Sirieix et al., 2014; Xu et al., 2017; Verdet et al., 2020; Leopold 83 

et al., 2021). For example, ERT measurements have been utilized to visualize 84 

resistivity variations in karst-unsaturated conduits, in order to assess the mingling of 85 

surface water and matrix water within the upper Floridan karst aquifer in the USA 86 

(Meyerhof et al., 2012). Moreover, ERT and magnetic resonance sounding (MRS) 87 

were employed to investigate the influence of porous matrices in controlling the water 88 

infiltration in apparent karst structures in southern France (Carrière et al., 2016). 89 

Regarding the link between resistivity changes and flow rate variations, Xu et al. 90 

(2017) revealed a close link between some cluster zones and measured underground 91 

flows in the Lascaux Cave, SW-France. More recently, Watlet et al. (2018) used long-92 

term permanent electrical resistivity tomography (ERT) monitoring to investigate the 93 

complex karst vadose areas in Belgium. This study revealed the recharge processes 94 

with different hydro-dynamics, resulting in the clustering of different areas with a 95 

contrasting evolution during the different hydrological cycles (Watlet et al., 2018). 96 

Taken together, these studies have demonstrated the applicability of the ERT method 97 

to karst hydrological research. 98 

The Villars Cave is a typical shallow cave that developed in Jurassic limestone, 99 

characterized by the presence of thin sandy clay Quaternary sediments at the surface, 100 

together with weathered limestone areas that likely alter the drip flow rate and 101 

geophysical signals, providing a specific geological site for geophysical research. 102 

Previous work in the Villars Cave has provided isotopic insight into the seasonality of 103 

infiltration (Genty et al., 2014; Zhang et al., 2020). However, important questions 104 

remain regarding karst reservoir dynamics and geometry, such as the size, number, 105 

and shape of karst unsaturated reservoirs and their dynamics (Genty et al., 2014).  In 106 

this study, the 2D TL-ERT method was utilized to investigate and continuously 107 

monitor the subsurface geological features above the shallow Villars Cave over a 108 

monitoring period of 2.5 years. To gain a comprehensive understanding, the 2D ERT 109 

measurements were combined with soil borehole observations and hydrology 110 
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monitoring at three cave dripping sites. The purpose of the study is summarized as 111 

follows: firstly, we visualize and precisely located various water reservoirs, wetting 112 

fronts, soil layers, and cave galleries within the subsurface. This also include 113 

documenting their seasonal variations in resistivity to shed light on the dynamic 114 

behavior of these features. Secondly, the study seeks to explore the relationship 115 

between resistivity measurements and hydrological changes in the seepage zone 116 

above the cave galleries. By analyzing resistivity variations, we attempt to gain 117 

insights into the intricate interplay between subsurface water flow and resistivity 118 

distribution. Lastly, the study aims to identify preferential paths of water flow within 119 

the unsaturated zone above the Villars Cave. By visualizing the flow pathway 120 

patterns, we hope to reveal the complex hydrological dynamics occurring within the 121 

cave’s surroundings. By addressing these objectives, the visualization for water 122 

infiltration pathways could be helpful in making strategies for the effective 123 

conservation and management of cave paintings. In fact, water infiltration could 124 

dissolve the paintings or, on the contrary, encourage the deposit of calcite veil that 125 

covers the rock paintings.  On the other hand, modeling the vadose zone in karst 126 

hydrology presents challenges. This research has the potential to enhance our 127 

understanding of its behavior and improve modeling accuracy for karst hydrology. 128 

Understanding the reservoir and flux circulation is vital for potentially safeguarding 129 

the site spatially, such as from pollution or water-related issues, thereby contributing 130 

to cave protection. Ultimately, the research aims to improve water management 131 

practices, ensure the sustainable utilization and conservation of essential water 132 

resources, and evaluate and mitigate natural hazards linked to karst formations.  133 

2. Studied area and cave monitoring sites 134 

The Villars Cave (45°26′18″N, 0°47′2″E; Figure 1A; 1B) is located in the north 135 

of the Dordogne department, SW-France. The cave developed in a Middle Jurassic 136 

(Bajocian and Bathonian) limestone formation (Figure 1D). A complex geological 137 

network, over 10 km long, with orientation governed by tectonics (SE-NW), such as 138 
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the St. Pardoux fault, formed in the boundary between limestone and schist a few 139 

kilometers north of Villars (Supplementary Figure 1A). The hills, covered with oak 140 

and hornbeam, are about 50 m high (about 200 m NGF, Figure 1D), and are much less 141 

steep than in the surrounding Vézère valley, creating a smoother landscape (Genty, 142 

2008; Zhang et al., 2020). The Villars Cave site, monitored since 1996, has led to the 143 

production of many paleo-climatological records from the study of its speleothems 144 

above the cave itself (Genty et al., 2003, 2006, 2010; Wainer et al., 2009; 2011; 2013). 145 

In addition to analyzing the stalagmites, several other factors have also been 146 

monitored, including cave temperature, pCO2, hydrologic changes, and isotopic 147 

changes in order to better interpret the stable isotope signal within the cave. The 148 

overarching goals of this comprehensive monitoring effort were to provide a deeper 149 

understanding of the stable isotope signal within the cave environment and its 150 

implications for paleoclimate and hydrological processes (Genty et al., 2008; 2014; 151 

Zhang et al., 2020). 152 

The Villars Cave is located in a maritime climate region with mild winters and 153 

warm summers (Figure 1A). During part of the monitoring period (2007-2022), the 154 

total annual precipitation (P) over the Villars Cave was 1052 mm (standard deviation: 155 

SD=124 mm) (Genty, 2008; Genty et al., 2014; Zhang et al., 2020). In contrast to 156 

local precipitation, which is more or less distributed throughout the year, there is a 157 

considerable seasonal variation in local air temperature, which leads to a significant 158 

seasonal variation in water-excess, and consequently to cave stalactite dripping 159 

(Genty et al., 2014). The surface layer above the Villars Cave consists of brown soil, 160 

which is unevenly distributed and of varying thickness. Some areas have thin layers of 161 

soil that are only 0-20 cm thick, while other areas have soil layers that are over 50 cm 162 

thick. In addition, in certain areas, tree roots can be seen penetrating through 163 

limestone fractures to reach the ceiling of the Villars Cave, which is about 10 meters 164 

below the surface (Genty, 2008). 165 
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3. Measurement and data processing 166 

3.1 Meteorological data and drip discharge rate monitoring 167 

From 2020 to 2022, outside meteorological air temperature and precipitation 168 

were collected from a weather station above the Villars Cave. The ETP (potential 169 

evapotranspiration) and excess water (also known as effective rainfall) data come 170 

from the nearby Meteo-France weather station (Saint-Martin de Freissengeas, 4.8 km 171 

East). The ETP of each grid point is calculated by the Penman-Monteith method.  172 

Drip water monitoring sites were set at different levels in the Villars Cave to 173 

detect potential differences in the recharge of the karst aquifer (Figure 1D; Genty, 174 

2008; Genty et al., 2014). Vil-#10A is located at the upper level of the cave, and the 175 

drip points Vil-#1B and Vil-#3 (100 m away from Vil-#10A) are about 5 m apart, 176 

located on the lower level of the cave (Supplementary Table 1; Figure 1D).  The drip 177 

rate sensor (acoustic STALAGMATE sensor) recorded the drip rate frequency at 15-178 

minute intervals from 10/2019 to 09/2022 from the surface of the sealed box equipped 179 

with the acoustic sensor. 180 

3.2 Determination of depth and location of dripping stations by magnetic field 181 

angle method 182 

The Magnetic Field Angle (MFA) method was used to determine the depth of 183 

the dripping stations in the Villars Cave (Supplementary Figure 2; Supplementary 184 

method). This method involves moving away from a reference point called Ground 185 

Zero (GZ) along a predetermined line with the help of a receiver loop. When the 186 

magnetic field is parallel with the ground surface, a null signal is obtained, and this 187 

point is used to measure the depth. 188 

In the study, the depth of the Vil-#10A station in the upper cave gallery was 189 

calculated to be 14 meters below the surface. The depth of the Vil-#1B and Vil-#3 190 

stations in the lower cave gallery was determined to be 36 meters below the surface 191 

(Figures 1C & 1D, Supplementary Table 1).  Specifically, the Vil-#10A station is 192 
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located 4.3 meters away from the profile of ERT profile (Figures 1C & 1D). On the 193 

other hand, the positions of Vil-#1B and Vil-#3 are stated to be approximately 100 194 

meters away from the ERT profile shown in Figure 1C. 195 

3.3 ERT measurements 196 

ERT monitoring (Figure 1C) was established to characterize the temporal and 197 

spatial variation of the unsaturated area above and near the Villars Cave. From 198 

February 2020 to September 2022, we acquired 16 ERT profiles at a frequency of 1 to 199 

2 months (Supplementary Table 2). After several field tests in February 2020, we 200 

decided to use three different electrical arrays, including the pole-dipole array with 201 

both forward and reverse measurements and an injection pulse duration of 500 ms, 202 

and the gradient array with an injection pulse duration of 250 ms. The three electrical 203 

arrays were concatenated before inversion. During the initial test survey, we verified 204 

the repeatability of the measurements using the method proposed by Peter-Borie et al. 205 

(2011). Measurements were made using a SYSCAL Pro resistivity meter with 72 206 

stainless steel electrodes spaced 1 m apart making a 71 m long profile line (Figure 207 

1C). The use of various permanent markers facilitated the precise relocation of the 208 

survey lines. Each electrode’s position was determined using a Leica® laser 209 

theodolite. It is worth noting that from one survey to the next, the previous electrode 210 

holes can still be identified. Therefore, the accuracy of these locations is within a 211 

margin of less than 1 cm. In parallel, we also tested a 1.5 m electrode spacing to 212 

obtain a greater investigation depth (106.5 m long). An inversion resistivity model 213 

was calculated using the Res2Dinv® software, applying the L1 norm to the data and a 214 

model associated with the refinement of the mesh model (Loke, 2004) to account for 215 

large contrasts in resistivity. We performed seven iterations on each survey data set, 216 

after which the absolute error stabilized. After seven iterations, the inversion model 217 

misfit ranged from 0.83% to 1.7% for all 16 inversion models. 218 
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3.3.1 Temperature correction 219 

The electrical resistivity measurement depends on the rock temperature, which 220 

varies with time. We thus have corrected the ERT measurements for temperature 221 

(Hayley et al., 2007; Genelle et al., 2012; Hermans et al., 2014). This correction 222 

requires the knowledge of the temperature in the rock mass at any given time (Salmon 223 

et al., 2023). The heat equation governing thermal diffusion therefore must be 224 

reconsidered in terms of temperature. However, this equation requires the rock’s 225 

thermal diffusivity, which is unknown. We, therefore, adjusted the thermal diffusivity 226 

for the calculated temperature to match in situ measurements (Salmon et al., 2023). To 227 

do this, we placed three thermocouple sensors at 0.1 m, 0.5 m, and 1 m below the 228 

surface above the cave, close to the ERT profile location (about 3 m), and measured 229 

the air temperature both inside and outside the caves. 230 

Using the estimated diffusivity, the heat equation was calculated in the rock mass 231 

to determine the temperature at each point within the massif over time. This 232 

temperature calculation is performed in conjunction with the time series data. 233 

Furthermore, a temperature correction was applied to the inversion resistivity data 234 

using a ratio model (equation (1)), which is commonly used to correct resistivity data 235 

with the corresponding reference temperature (Ma et al., 2011; Xu et al., 2015; 2017; 236 

Supplementary Figure 3): 237 

 238 

�� = �� × �1 + 	 × 
�� − �ref ��  Eq. (1) 239 

Where ρc stands for resistivity after temperature correction, ρi is interpreted as 240 

resistivity after inversion, and Tc represents temperature during the ERT survey. δ is 241 

the temperature slope compensation value, which is set at 0.025 by most geophysicists 242 

(Keller and Frischknecht, 1966; Besson et al., 2008). Consequently, we selected Tref 243 

as the reference temperature of 12.55℃, which is the average annual temperature 244 

recorded in the cave during the entire monitoring year (Supplementary Figure 3).  245 
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3.3.2 Hierarchical Agglomerative Clustering (HAC)  246 

In addition, in order to characterize the differences in resistivity between 247 

seasons, we need to interpret the variability observed in the different zones of ERT 248 

images. The researchers utilized a classical unsupervised classification method called 249 

Hierarchical Agglomerative Clustering (HAC) to analyze the data. HAC follows a 250 

bottom-up algorithm, as described by Saporta, 1990. This algorithm helps to create an 251 

ordering of blocks, resulting in a single image where distinct zones can be 252 

differentiated based on their seasonality. In the present study, the HAC method 253 

enables whose electrical resistivity changes in a similar manner over the years to be 254 

grouped together. 255 

HAC is a commonly used technique in various contexts to identify heterogeneity, 256 

particularly in geotechnical studies. For example, Genelle et al. (2012) used HAC to 257 

identify geotechnical heterogeneity in a landfill cover. The method was also applied to 258 

a cave study, the prehistoric Lascaux Cave in SW-France, which allowed us to 259 

recognize the reliability of the method (Xu et al., 2015; 2017). Later, Lharti et al. 260 

(2023) compared the HAC and K-means methods in the Lascaux Cave, noting that the 261 

HAC method was particularly effective in identifying areas already known to be 262 

waterlogged or clayey. 263 

The HAC classification was finalized using 16 ERT images captured between 264 

February 2020 and September 2022. These resistivity values after temperature 265 

corrected are logarithmized and  standardized  according to the following equation 266 

(Xu et al., 2015; 2017; Equation 2):       267 

                               [���10
������� =
��� ��
� �!"������
� ��

#������
� ��
          Eq. (2) 268 

����10
������� is the standardized center resistivity (DCR); �� is the resistivity after 269 

corrected temperature; $����10
���� is the average of the log10 
���  resistivity; % 270 

[���10 (��)] is the standard deviation of the log10 
��� resistivity.   271 

 To perform HAC, the resistivity data assigned to the blocks are arranged in a 272 

matrix with the number of rows equal to the number of blocks and the number of 273 



11 

 

columns equal to the number of surveys. The results are generally summarized in a 274 

dendrogram, where the number of clusters needed to retain the 275 

����10
������� resistivity measurements can be selected. We choose the Euclidean 276 

distance and the Ward linkage criterion for the HAC analysis methods, which allow 277 

clusters to be formed such that the sum of squares of pooling within clusters is 278 

minimized. Users then choose the number of clusters according to knowledge of the 279 

research sites and objectives. 280 

4. Results 281 

4.1. ERT measurements 282 

The main measurement results were gathered in 16 ERT images made from 283 

February 2020 to September 2022 (Supplementary Figure 4). The ERT profile, from 284 

northeast (NE) to southwest (SW) on a 71 m-long profile, covers the Bajocian and 285 

Bathonian limestone formations (Supplementary Figure 1). Here, strong resistivity 286 

contrasts were observed, giving a broad picture of the cave galleries and karst 287 

reservoirs, which are more or less saturated.  288 

The distribution of relative frequency based on 16 ERT measurements suggests 289 

that the resistivity data are mainly concentrated between 245 Ω·m and 9772 Ω·m. The 290 

highest values (165–178 m NGF) correspond to the caves, while the lower values 291 

(<245 Ω·m) correspond to the top soil. According to the frequency analysis of 292 

resistivity, the median resistivity of the limestone in the Villars Cave is 1521 Ω·m, 293 

which is higher than the resistivity of the nearby well-investigated geophysical site 294 

(Lascaux Cave) with a median of 556 Ω·m (Coniacian limestone) (Xu et al., 2016; 295 

Verdet et al., 2020). This difference suggests that the limestone in the Villars Cave has 296 

undergone less weathering compared to the limestone in the Lascaux Cave. 297 



12 

 

4.2 HAC method applied to ERT image classifications 298 

       We applied the HAC method using Minitab® version 19. This method relies on a 299 

correlation matrix derived from the normalized and standardized resistivity data. The 300 

resistivity similarity of blocks between different clusters decreases with time as the 301 

distance at which they merge increases. Conversely, blocks belonging to clusters are 302 

merged at very low distances, exhibiting similar resistivity behaviors (also see 303 

Method section). The statistical parameters for each cluster are summarized in Figure 304 

2A. Here, the classification line corresponding to the greatest distance is selected to 305 

highlight the main characteristic research zones of stratigraphic structures. The 306 

dendrogram shows three distinct primary clusters (clusters A, B, and C) (Figure 2A). 307 

Clusters A, B, and C display median resistivity in all the ERT measurements ranging 308 

from 2321 Ω·m to 100054 Ω·m, 80 Ω·m to 1277 Ω·m, and 493 Ω·m to 2635 Ω·m, 309 

respectively. They may be composed of karst structural systems with completely 310 

different geological characteristics (Figure 2A). 311 

To get as much detail as possible to highlight potential sub-regions, we decided 312 

to make more cutoffs (classification lines), grouped into eight clusters (see dashed 313 

lines in Figure 2A) as follows:  314 

Cluster A, consisting of clusters 1, 7, and 8, shows the highest median value for 315 

electrical resistivity (Figure 2B). Block areas with the largest resistivity values were 316 

grouped together in cluster A (clusters 7 and 8, altitude: 165-178 m) (Figure 2B), with 317 

the high median values, ranging from 5001 to 8245 Ω·m and from 3471 Ω·m to 318 

100054 Ω·m, respectively (Table 1). However, compared to clusters 7 and 8, cluster 1 319 

with a slightly lower median value, ranging from 2321 Ω·m to 4957 Ω·m (Table 1), is 320 

distributed around clusters 7 and 8 (Figure 2B).  321 

Cluster B, consisting of clusters 2 and 4, shows the lowest median values, 322 

ranging from 261 Ω·m to 1277 Ω·m and 80 Ω·m to 534 Ω·m, respectively, with most 323 

conductive areas distributed mainly on the soil surface and probably in weathered 324 

limestone zones (from NE to SW direction) at 50–60 m of the ERT profile (Table 1; 325 
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Figures 2 and 2B).  326 

Cluster C, including clusters 3, 5, and 6, with median values ranging from 775 327 

Ω·m to 1763 Ω·m, 1432 Ω·m to 2635 Ω·m, and 493 Ω·m to 1133 Ω·m, respectively 328 

(Table 1), is located in the middle zone between 177 m and 165 m NGF (clusters 3 329 

and 5) and lower zones deeper than 165 m NGF (cluster 6) of the ERT profile (Figure 330 

2B).  331 

4.3 Rainfall amount, evapotranspiration, and drip rate 332 

The daily hydroclimatic parameters of the Villars Cave are presented in Figure 333 

5, including rainfall (R) and rainfall minus evapotranspiration (R-ETP), which is 334 

considered effective rainfall or water-excess when it is greater than 0. We observed 335 

that the change in water-excess is seasonal, with a maximum in winter and a 336 

minimum in summer-autumn. The total annual value of the water-excess was 477 mm 337 

in 2020 and 508 mm in 2021, respectively (Figure 3A). During the year 2022, R-ETP 338 

remained below 0 from May to October, indicating that potential evapotranspiration 339 

was higher than the precipitation during this period. This anomaly is attributed to an 340 

unusually dry year, as shown in Figure 3A. 341 

To characterize the variability of cave dripping water, we monitored the drip-342 

rate monitoring between September 2019 and September 2022 (Table 2), by using 343 

STALAGMATE drip counters under three drip stations located at different depths, as 344 

described in section 3.2. The discharges from the three drip water sites (Vil-#10A: 345 

depth 14m, Vil-#1B, and Vil-#3: depth 36 m) ranged from 0.60 to 180.67 (SD: 37.43) 346 

drips/min (Vil-#10A), 1.6 to 61.1 (SD: 15.29) drips/min (Vil-#1B), and 0 to 44.4 (SD: 347 

6.96) drips/min (Vil-#3). We also noted that the drip rate of Vil-#10A and Vil-#3 348 

stations’ drip rate was more variable than that of Vil-#1B (Figure 3). 349 

During the first cycle of 2019-2020, water-excess rose to be significantly 350 

above 0 from mid-September 2019 (Figure 3A). It took about 45 days for infiltration 351 

to be filled the reservoirs and reach the percolation threshold, allowing the water to 352 

move down into the cave (Figure 3A). As a result, there was an increase in the 353 
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dripping rate in November 2019 in stations Vil-#10A and Vil-#3, and in December in 354 

station Vil-#1B (Figures 3B and 3C). Drip rates remained high until approximately 355 

May 2020 with a general decrease until December 2020. During the humid period, 356 

there was a systematic link between the water-excess and the drip rate variations in 357 

Vil-#10A, with a time delay of several days as we depicted in Figure 3A. During the 358 

2020-2021, the hydrological cycle of Vil-#10A and Vil-#3 dripping stations began to 359 

increase in December 2020, lasting until approximately August 2021 (Figures 3A and 360 

3B).  The fact that the beginning of the cycle at the Vil-#1B dripping station occurred 361 

later than Vil-#10A and Vil-#3, close to January or February, implies that there are 362 

distinct pathways and reservoirs involved in the infiltration process across the 363 

different sites (Figures 3A, 3B and 3C).  364 

Once the percolation threshold was reached for the reservoirs to fill up with 365 

water, we conducted a cross-correlation analysis of the three monitoring sites, Vil-366 

#10A, Vil-#3, and Vil-#1B, in order to quantify the time delay between water excess 367 

and drip rates. The mean lag time have been determined in the interval of 5-9 days for 368 

Vil-#10A station, 56-94 days for Vil-#1B station, and 4-11 days for Vil-#3 station 369 

(Supplementary Figure 5).  370 

These results show the following: (1) Vil-#10A and Vil-#3 have a similar 371 

water-excess/dripping time delay even though they are located at different levels (14m 372 

deep for Vil-#10A and 36 m deep for Vil-#3). (2) According to the time series, the Vil-373 

#3 station has a much more dampened dripping amplitude despite a similar time delay 374 

with the Vil-#10A station. (3) At the dripping point of the Vil-#1B station, located in 375 

the lower gallery, we observe a much longer time lag and lower mean drip rate 376 

compared to Vil-#10A.  377 

4.4 Recognition of soil layers and cave zones from ERT images 378 

The superficial part of the ERT images shows low resistivity values 379 

corresponding to clusters 2 and 4 (Figure 2B). Cluster 4 has a median value of 106 380 

Ω·m, with a range between 80 Ω·m to 534 Ω·m (Table 1) at 5-13 m and 52-71 m on 381 
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the ERT profile (from NE to SW), characterized by a highly variable resistivity with 382 

the HAC method (Figure 2B). The specific resistivity values were observed at these 383 

locations on the ERT profile, as evidenced by the results of our soil drillings, which 384 

can be identified by the nature of the soil (clay and organic matter) (Supplementary 385 

Figure 6, Figure 2B). The soil’s upper layer of consists of extremely weathered 386 

limestone, with thicknesses exceeding 0.6 m, 0.75 m, and 0.45 m at the respective 387 

locations of 9.5 m, 56 m, and 60.5 m (Figure 2B and Supplementary Figures 6 and 7). 388 

Cluster 2 has a median resistivity value of 351 Ω·m, ranging from 261 Ω·m to 389 

1277 Ω·m (Figure 2B; Table 1). It is situated on the surface, specifically between 15 390 

m and 50 m on the profile line (from NE to SW), as well as in a deeper zone (altitude: 391 

172 to 177 m, NGF) that can be seen between 50 m and 60 m on the ERT profile 392 

(Figure 2B). We further divide cluster 2 into two distinct sub-clusters, namely clusters 393 

2.1 and 2.2 (Figure 4A): 394 

(1) Cluster 2.2, located in the superficial part of the ERT profile (Figure 4A), 395 

shows a median electrical resistivity value of 219 Ω·m, with a range from 396 

160 Ω·m to 1047 Ω·m (Figure 4B). The median resistivity value of cluster 397 

2.2 is slightly higher but comparable to the median resistivity value of 398 

cluster 4 (106 Ω·m, top-soil). Cluster 2.2 displays seasonal variations, 399 

which are commonly linked to water excess (Figures 4A and 4B). The 400 

surface in cluster 2.2 is confirmed to be the top soil that is about 0.2 m 401 

thick, as observed at two locations situated at 24 m and 38 m on the ERT 402 

profile (Figure 4B).  403 

(2) The median resistivity of cluster 2.1 is 403 Ω·m, ranging from 304 Ω·m to 404 

2029 Ω·m, which is higher than cluster 2.2 (Figure 4B). Cluster 2.1 is 405 

associated with the soil layer situated below the layer of cluster 2.2, as well 406 

as in the deeper section between 50 m to 60 m of the ERT profile (altitude: 407 

172 m to 177 m, NGF) (Figure 4A). Cluster 2.1 exhibits the seasonal 408 

fluctuations that are associated with the water excess (Figures 4A and 4B). 409 

In particular, after digging the soil, the limestone areas were observed to be 410 

undergone weathering (small limestone blocks mixed with sandy soil) 411 
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between depths of 0.4 m and over 0.75 m (56 m on the ERT profile in 412 

Figure 4B). Hence, it is possible that cluster 2.1 could represent a mixture of 413 

weathered limestone with sandy soils with high porosity. However, due to 414 

the limitations of the manual auger, it was not possible to excavate deeper to 415 

determine the exact boundary (>0.75 m) (Supplementary Figure 6 and 7).  416 

        Clusters 7 and 8 exhibit a consistently high median resistivity (7168 Ω·m) 417 

(Figure 2B), without showing seasonal variations over time (Figures 5A and 5H). The 418 

comparison of the location of these clusters with the cave plan map allowed us to 419 

attribute these zones to the cave galleries (Figures 1C and 2B), showing that: (1) 420 

Cluster 7 (Figure 2B) has high resistivity zones located on the ERT profile at 6-22 m 421 

(Zone A, Figure 1C) and 40-54 m (Zone B, Figure 1C). (2) Cluster 8 (Figure 2B), 422 

located at a vertical altitude of 168 m-178 m NGF, displays a high resistivity signal 423 

observed at 60-71 m (Zone C, Figure 1C), indicating the presence of an undiscovered 424 

cave gallery or a sinkhole collapse. 425 

5. Discussion 426 

5.1. Clustering resistivity variabilities with local water excess in the 427 

different ERT zones 428 

According to Archie’s law (Archie, 1942), if the electrical resistivity of a rock 429 

formation varies with time, it implies that the degree of saturation (Sw) or the 430 

resistivity of water (�&) is changing with time, as the porosity (φ) is assumed to be 431 

constant. Therefore, changes in the electrical resistivity of the rock over time can 432 

reflect changes in the rock’s water content, responding to local water-excess (Xu et 433 

al., 2017).  434 

As observed in Figure 5, there is a strong correlation between water-excess 435 

(blue part in Figure 5A) and resistivity over time. Resistivity decreases sharply 436 

following an increase in water excess as there is more water in the limestone. Here 437 

roughly, we observe a well-marked seasonality over time, with the resistivity in 438 
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clusters 1 to 5 increasing in summer and autumn, and decreasing in winter and spring 439 

(Figures 5B-5F). Furthermore, it is worth noting that each cluster displays a distinct 440 

range of resistivity values, despite some seasonal similarities exist between them 441 

(Figures 5B-5F). 442 

To facilitate a point-to-point comparison of water excess and resistivity 443 

variability, we plotted them on the same graph for each cluster (Figures 6 and 7). The 444 

superficial part of the ERT images (essentially cluster 4 and cluster 2) displays 445 

obvious seasonal changes and represent a relatively quasi-synchronous response to the 446 

local water-excess (Figure 6A). We also noted a high variability in resistivity where 447 

the highest median value is 534 Ω·m, and the lowest median value is 80 Ω·m (cluster 448 

4, Figure 6A). It is assumed that the resistivity of water (�&) remained constant within 449 

the rock mass and assuming the porosity (φ) remained constant over time (Genty et 450 

al., 2001), we can estimate that the top soil water saturation (S) in cluster 4 varied 451 

approximately within the range of Smin to Smax, where Smax is approximately 2.6 times 452 

for Smin. In addition, the surface soil layers responded to the local drought periods of 453 

July 2020 and July-September 2022 (Rainfall-ETP<0), since high resistivity values 454 

were observed (Figure 6A). In more detail, we observed a minimum water-excess of 455 

46.30 mm in June and July 2020 (Table 2 and Figure 6A). As a result, the relative 456 

frequency distribution of resistivity observed in the top-soil layer does not show some 457 

values less than 245 Ω·m compared to the other months (Supplementary Figure 8B). 458 

Similarly, from May 2022 to September 2022, the water-excess fell to 96.2 mm (Table 459 

2 and Figure 6A). As a result, there was a shift in the frequency distribution of relative 460 

resistivity towards higher values, reaching peaks as high as 2563 Ω·m for the median 461 

value, and resistivity values below 245 Ω·m were no longer present (Supplementary 462 

Figure 8H). In detail, the resistivity of cluster 2.1 which is the deeper part of cluster 2 463 

varies with the seasons. This means it could act as the role of a pathway between the 464 

superficial top-soil and the deeper part of the limestone. 465 

Cluster 5 is also sensitive to water-excess presenting with a median resistivity 466 

of 1649 Ω·m, with a range between 1432 Ω·m to 2635 Ω·m (Figure 6B). The time lag 467 

between cluster 5 and water-excess appears slightly higher than for sub-surface 468 
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clusters 2 and 4 (Figures 6A and 6B). However, the variability of water saturation in 469 

cluster 3 over time is basically the same in cluster 5 (Figure 6B). We suggest that 470 

cluster 5 likely corresponds to the Bajocian and Bathonian limestone, where seasonal 471 

variation may be due to water filling or draining of the fissure network. 472 

Cluster 3, with a median resistivity value of 941 Ω·m, ranging from 775 Ω·m to 473 

1763 Ω·m, is located at the same altitude (165-178 m, NGF) as cluster 5 (Figures 6B 474 

& 2B). Similarly, cluster 3 also experiences only a few days or one month of time 475 

delay with water-excess (Figure 6B). One observation worth mentioning is that cluster 476 

3 has a lower median resistivity value than cluster 5, indicating a comparatively 477 

higher porosity (Figure 6B). Moreover, the drilling was carried out above the cluster 3 478 

(at 9.5 m on the profile sees Figure 2B), showing a weathered limestone (blocks of 479 

limestone). Based on the above observation, we can conclude that cluster 3 acts as a 480 

preferred water pathway due to its higher porosity, functioning as a transmission belt 481 

(located on the right side of Figure 2B), which supplies water to deeper zones linked 482 

to cluster 6. 483 

Cluster 1 has a median resistivity value of 3040 Ω·m, ranging from 2321 Ω·m 484 

to 4957 Ω·m (Figure 7A), a higher resistivity value than cluster 5 (1649 Ω·m). Cluster 485 

1 is mainly distributed around the cave gallery and along the 10-50 m section of the 486 

ERT profile (at an altitude of 176 m-178 m, NGF) (Figure 2B). Cluster 1 resistivity 487 

increases in summer/autumn and decreases in winter/spring, basically in the same 488 

pattern or ahead of the cave dripping rate (Vil-#10A) (Figure 3A). We observed a time 489 

delay of about 1-2 months for cluster 1 in response to local water-excess (Figure 7A). 490 

This delay may be associated with the percolation threshold between water-excess 491 

and drip rate as described in section 4.3 (Figure 3; Figure 7A). Bulk resistivity is 492 

directly inversely proportional to the conductivity of the water based on Archie’s law, 493 

called the “water conductivity effect” (Archie, 1942). However, the field monitoring 494 

conducted in earlier research between 1996 and 1997 shows that the electrical 495 

conductivity of the water varied slightly, and was around 356 µS/cm (summer 496 

months) and 372 µS/cm (winter months) at station Vil-#10A (cluster 1) in the upper 497 

gallery (Baker et al., 2000; Genty et al., 2001). Consequently, based on the 498 



19 

 

observations and results obtained in Vil-#10A, it can be concluded that the upper 499 

gallery does not exhibit any significant “water conductivity effect”, as water 500 

conductivity of the water in this zone remains stable and does not change with time. 501 

Cluster 6, located at the lowest altitudes of the ERT profiles, has a median 502 

resistivity value of 808 Ω·m, ranging from 493 Ω·m to 1133 Ω·m. Resistivity values 503 

in cluster 6 are lower than in cluster 5 (1649 Ω·m) (Figure 7B), suggesting higher 504 

water content. In wet periods, cluster 6 median resistivity displayed seasonal 505 

variability linked to water excess, but it appeared to be far more time delayed to 506 

water-excess than other clusters (Figure 7B). However, there were two long-term 507 

inconsistent excursions with water-excess in the dry periods (May-October 2020 and 508 

April-October, 2022), especially in summer (Figure 7B). Unlike cluster 1, the 509 

resistivity of cluster 6, situated in the deeper sections of the profiles (below 165 m 510 

NGF), appeared to be predominantly influenced by the “water conductivity effect” in 511 

the dry/summer periods (Archie, 1942). Water conductivity in the lower gallery 512 

station Vil-#1B, which is situated close to the altitude of cluster 6, is higher and 513 

varied seasonally from 600 µS/cm (summer months) to 460 µS/cm (winter months) 514 

(Baker et al., 2000; Genty et al., 2001). The resistivity variability in cluster 6 is 515 

interpreted as the outcome of a “piston flow” infiltration system, wherein the 516 

infiltration water conductivity increased significantly during summer/dry periods due 517 

to its prolonged residence time, resulting in intensified mineralization within fissures 518 

and micro-fissures. 519 

By comparing the ERT’s seasonal signal changes with rainfall data (input) and 520 

drip rate data (output), we estimated the inertia of the reservoir inertia and identified 521 

the fast-response zones in clusters 2-4 and the delay times in cluster 1 (1-2 month). 522 

We also confirmed that clusters 3 and 2.1 are pathway of water flux pathways. ERT 523 

images were used to determine changes in the reservoirs (number, location, depth, 524 

size) and their water saturation, which can be linked to cave hydrological signatures 525 

(drip rate changes).  526 
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5.2. Schematic diagram of the unsaturated karst zone around Villars 527 

Cave 528 

       In view of the geophysical analysis and hydrological knowledge of the studied 529 

region, we developed a schematic geo-electrical synthetic model (Figure 8). The 530 

boundaries in the geo-electrical structure’s boundaries are inferred from the HAC 531 

method (Figure 2B). The model delineates the limestone, top-soil, weathered 532 

limestone, privileged feeding zone, and storage zones based on their resistivity values 533 

and temporal resistivity variations linked to cave water drip rate (Figures 5, 6, and 7)  534 

From this synthetic image, it is possible to draw a schematic diagram of the 535 

groundwater movement pathways in the critical karstic zone (KCZ) above the Villars 536 

Cave (Figure 8). We can speculate that the most of the water flow originates from the 537 

soil layers and inter-connected epikarst reservoirs, and subsequently, it moves deeper 538 

into the porous limestone zone (cluster 3). However, precipitation can also infiltrate 539 

vertically through fracture networks in the Bajocian and Bathonian limestone (cluster 540 

5, Figure 4). The rapid water circulation observed in cluster 2 is highly sensitive to 541 

local rainfall, which is compounded with the superficial top soil and weathered 542 

limestone areas mixed with sand at the surface and between 50-60 m (altitude: 172 m 543 

to 177 m, NGF) of the ERT profile (Figure 8).  544 

Regarding storage zones in Villars, cluster 6 is able to act as a water reservoir 545 

from a fast fissure network transport of water in cluster 5 and the transport of water 546 

from cluster 3 and cluster 2.1 (Figure 8). Similarly, it appears that cluster 1 also acts 547 

as a storage zone with a hydrological behavior closely linked to the dripping rate in 548 

the upper gallery (Vil-#10A) (Figure 7A). Cluster 1 stores local rainwater and regulate 549 

its release over time, with potentially significant implications for feeding upper 550 

gallery stalagmites in the Villars Cave. 551 

To summarize, the cluster characteristics and behaviors are not randomly 552 

distributed but they highlight the structures of the infiltration zone which can be 553 

interpreted as reservoirs, or preferential rapid or slow infiltration zones. By testing 554 
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and validating ERT and hydrology methods at a specific site (Villars Cave) developed 555 

in a vadose zone, we can deepen our understanding of the site and its hydrological 556 

behavior, which may be similar to other caves in the region. This can give us more 557 

insights into the hydrogeological and hydrological processes in the karst environment 558 

and improve our ability to manage and protect these sensitive karst environments.    559 

6. Conclusions  560 

Long-term monitoring of the karst vadose zone above the Villars Cave in SW-561 

France, involving 2.5 years of ERT data combined with drip rate measurements inside 562 

the cave, has provided valuable insights into the geometry and dynamics of aquifer 563 

recharge processes. By employing the Hierarchical Agglomerative Clustering (HAC) 564 

method on ERT images, distinct clusters (clusters 1 to 8) were identified, exhibiting 565 

different resistivity zones linked to dripping water sources within the Villars Cave. 566 

Below are the main conclusions drawn from the study: 567 

(1) Clusters 2 and 4, located in the superficial layer of ERT profiles, correspond 568 

to the top soil (clusters 4 and 2.2) and slightly deeper weathered limestone 569 

(cluster 2.1). Resistivity variations in these clusters directly relate to 570 

changes in water-excess and local drought period. 571 

(2) Cluster 5, situated in the middle layers of the ERT images, exhibits 572 

pronounced seasonal resistivity changes. The cluster presents short delay 573 

with water-excess variations, likely attributed to the filling or draining of 574 

fissures and micro-fissures. 575 

(3) Cluster 3, predominantly located on the right side of the ERT images and 576 

characterized by slightly lower resistivity, appears to act as a preferential 577 

infiltration pathway moving to deeper reservoirs. Like cluster 5, cluster 3 578 

also demonstrates a delay of a few days or one month after water-excess. 579 

(4) Cluster 6, located in the deeper part of the ERT profile, displays seasonal 580 

variability in resistivity during wet periods but exhibits low resistivity 581 

values during summer or dry periods. This behavior is likely due to the 582 
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presence of mineralized infiltration waters. 583 

(5) Cluster 1, distributed around the cave galleries, consists of high-resistivity 584 

limestone and is connected to the cave dripping hydrology. This cluster 585 

exhibits a delay of 1-2 months with respect to water excess, suggesting the 586 

presence of a percolation threshold that supplies water to the cave 587 

stalagmites in Villars. 588 

(6) Clusters 7 and 8 exhibit extremely high resistivity values without any 589 

seasonal changes. These areas coincide with the cave galleries or sinkhole 590 

collapses. 591 

By conducting a comprehensive analysis that combines ERT results and drip 592 

water measurements, we can effectively characterize the origins of drip rate signals in 593 

cave systems. This integrated approach provides valuable insights into the 594 

hydrodynamic behavior of water flow and the lithological/geological constraints 595 

present in the karst subsurface. Establishing direct links between changes in 596 

subsurface resistivity and dynamic water percolation processes within the cave 597 

environment, our in-depth understanding of the hydrogeological processes contributes 598 

significantly to the management and conservation of water resources in karst regions, 599 

helping to develop sustainable water use and environmental protection. The approach 600 

not only provides a novel and promising method for studying different flow types and 601 

their origins in caves but also enhances our understanding of karst aquifer recharge 602 

processes, which is vital for cave and paleoclimate studies.  603 
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Caption 849 

 

Figure 1. (A) Location of the Villars Cave. (B) A 3D structural cave diagram and the 850 

distribution of monitoring sites (red circles): Vil-#3, Vil-#1B, Vil-#10A. The reader is 851 

referred to (Genty, 2008 and Genty et al., 2014) for detailed site descriptions and 852 

maps. (C) Localization of ERT profiles above the Villars Cave map. The red line 853 

indicates the ERT profile we monitored for 2.5 years. The dotted circles Zone A-C 854 

correspond to the ERT image identified three cave galleries in Figure 3B.855 

(D) A structural diagram and the distribution of surveillance sites of the Villars Cave 856 

(Vil-#1B, Vil-#10A, and Vil-3#). The red square shows the profile of ERT. The drip 857 

points Vil-#1B and Vil-#3 are about 5 m apart, located on the lower level of the cave 858 

while the drip points Vil-#10A are located on the upper level of the cave. This section 859 

clearly shows that Stations Vil-#1B and Vil-#3 are at the same altitude as the Trincou 860 

stream.861 
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 862 

Figure 2. Results of the Hierarchical Agglomerative Classing (HAC) for all 863 

monitoring periods for the profile (71m) above the Villars Cave. (A) Dendrogram to 864 

create three and eight clusters. (B) Distribution of blocks considering their clusters. 865 

Clusters 7 and 8 correspond to the high-resistivity zones identified on the Zone A-C in 866 

cave plan map in Figure 1C. 867 

 868 

Figure 3. Comparison of the variability of daily R-ETP (rainfall minus 869 

evapotranspiration) and drip-water rates (Vil-#3, Vil-#1B, Vil-#10A) during 870 

September/2019- September/2022. Water-excess (rainfall-evapotranspiration > 0).871 
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 872 

Figure 4. (A) Cluster 2 is divided into clusters 2.1 and 2.2 blocks, (B) Comparisons 873 

between median resistivity variations for clusters 2.1 and 2.2 and water excess. 874 

 875 

Figure 5. Evolutions of the median resistivity of clusters 1-8 with local water-excess. 876 

The individual blocks from the synthetic model were associated with a similar 877 

seasonal resistivity variability gathered into 6 clusters (1-6). However, clusters 7 and 878 

8 only exhibit a high resistivity without an obvious seasonal variability. The arrows 879 

indicated the decrease in resistivity in cluster 6 in the dry/summer periods.  880 

 881 

Figure 6. (A) Evolutions of the median resistivity of clusters 2 and 4 with local water 882 

-excess (B) Evolutions of the median resistivity of clusters 3 and 5 with local water-883 

excess. A similar seasonally variable resistivity was found in 4 clusters (2-5) with no 884 

or few days of delay with local water excess.  885 

 886 

Figure 7. (A) Evolutions of the median resistivity of cluster 1. (B) Evolutions of the 887 

median resistivity of cluster 6. Dashed lines indicate the point at which resistivity and 888 

water excess and drip rate begin to increase in response to a delay in the percolation 889 

threshold. The red dotted area is affected by water conductivity. 890 

 891 

Figure 8. Schematic geo-electrical model of the ERT survey line. The wiggle arrows 892 

represent preferential flow, and the straight arrows represent vertical flow in the pipe 893 

and fissure.  894 

 895 
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Table 1 Statistical parameters: for the resistivity of each cluster (Median and Standard Deviation (SD), Average value) 1 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7&8 

 median SD average median SD average median SD average median SD average median SD average median SD average median SD average 

2020/2/18 2592  1199  2871  289  119  299  803  262  788  94  30  90  1442  455  1565  781  194  831  8521  38310  28029  

2020/7/2 2821  1481  3217  626  292  722  1277  684  1434  297  110  310  2079  666  2059  493  175  526  4610  2012  4922  

2020/10/9 4249  2582  5007  342  219  390  1051  967  1405  94  35  98  1801  1087  2126  1133  343  1198  7762  36587  26594  

2020/11/18 3557  1472  3596  274  195  337  979  572  1066  89  34  90  1571  767  1841  1028  682  1145  6505  29441  20534  

2021/1/7 2321  988  2502  296  121  304  841  242  802  88  31  92  1440  522  1579  815  188  808  7331  13138  13553  

2021/4/15 2763  1053  2874  306  115  313  840  254  841  97  34  99  1539  435  1619  848  209  860  7137  35945  25528  

2021/5/20 2713  1388  2928  270  124  287  775  196  749  82  27  84  1447  481  1540  792  255  835  7797  36811  26502  

2021/7/5 3212  1811  3483  331  158  354  955  597  1069  113  45  114  1571  556  1691  877  181  902  8706  27297  22180  

2021/9/24 3461  1816  3839  399  271  456  998  834  1275  119  49  119  1841  641  1892  989  387  1073  7397  40900  29570  

2021/11/10 3395  1355  3629  339  154  351  975  368  1057  106  32  97  1758  460  1807  1018  315  1056  7723  23464  19976  

2021/12/9 2765  1022  2773  261  113  279  796  266  813  80  25  79  1501  502  1580  851  221  871  7252  23548  18736  

2022/1/27 2527  1596  2863  295  143  320  802  241  768  90  30  90  1524  524  1597  750  255  801  8357  24816  20659  

2022/3/16 2753  1093  2906  263  114  277  779  224  778  83  26  82  1432  387  1543  860  231  868  7047  25115  19151  

2022/5/11 2454  1223  2877  408  160  444  876  307  883  144  61  160  1605  578  1663  633  169  666  9420  3960  9914  

2022/6/23 3394  2112  3867  703  445  828  1318  683  1448  300  88  277  2110  633  2174  541  362  610  5620  3460  6981  

2022/9/16 4957  3813  6208  1277  1168  1764  1763  2744  2707  534  181  551  2635  973  2621  531  230  583  5055  3118  5981  

Median 3040  1997  3465  351  507  483  941  969  1118  106  139  152  1649  697  1806  808  356  852  7168  27673  18676  

Maximum 4957  3813  6208  1277  1168  1764  1763  2744  2707  534  181  551  2635  1087  2621  1133  682  1198  9420  40900  29570  



2 

 

Minimum 2321  988  2502  261  113  277  775  196  749  80  25  79  1432  387  1540  493  169  526  4610  2012  4922  

 2 

Table 2 Calculate the monthly average drip rate. 3 

 4 

Date 
VIL-1B (Average 

Monthly drips/min) 

VIL-10A (Average 

Monthly drips/min) 

VIL-#3 (Average 

Monthly drips/min) 

October-2019 8.71 2.41 0.09 

November-2019 8.11 80.65 13.16 

December-2019 28.52 120.85 18.41 

January-2020 46.87 40.12 3.51 

February-2020 51.69 62.73 9.28 

March-2020 51.70 89.83 15.52 

April-2020 39.66 12.44 3.59 

May-2020 34.94 34.94 8.39 

June-2020 25.37 9.31 2.81 

July-2020 19.57 6.97 1.31 

August-2020 14.58 5.02 0.56 

September-2020 10.01 2.81 0.37 

October-2020 7.61 2.90 0.50 

November-2020 5.14 5.78 0.33 

December-2020 4.61 57.31 9.05 

January-2021 8.17 71.19 7.14 

February-2021 49.19 108.15 19.78 

March-2021 35.45 18.28 1.73 



3 

 

April-2021 28.22 10.58 1.42 

May-2021 21.54 32.87 1.77 

June-2021 28.23 17.67 0.70 

July-2021 21.80 13.09 0.31 

August-2021 17.91 9.13 0.82 

September-2021 14.26 6.90 0.47 

October-2021 10.31 4.94 

November-2021 8.77 3.63 Instrument stopped 

December-2021 7.61 47.68 

January-2022 17.96 56.49 3.38 

February-2022 28.37 41.11 5.32 

March-2022 43.30 52.76 4.22 

April-2022 44.05 51.24 5.03 

May-2022 34.16 21.45 2.76 

June-2022 23.17 7.81 1.77 

July-2022 14.96 5.88 1.49 

August-2022 11.71 5.21 1.04 

September-2022 8.26 0.72 

October-2022 4.02 0.46 

 5 

 6 
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