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Abstract

Molten salt–based processes and hydrofluxes are highly sensitive to mixture

composition and require knowledge of the combined melting point for successful

materials syntheses. In particular processes using hydroxide–based fluxes (pure

salt melts) and hydrofluxes (salt melts containing 15–50 % H2O) have been

shown to be interesting environments to synthesize inorganic materials in high

oxidation states. The development of tools to predict these properties are de-

sirable to inform the implementation of processes using these mixtures. In this

work, we use an artificial neural network model to estimate the melting points

of fluxes and hydrofluxes comprising of quaternary mixtures of NaOH, KOH,

LiOH, and H2O. A database of 1644 data points collected from 47 different

sources was used in the training of the model. Melting points were predicted

from the molar fractions of each component (4 independent variables). After

training, the ANN model was able to approximate the melting points of the

mixture with an R2 of 0.996 for most conditions. Except for a region defined by

the range 0.08 ≲ ΦLiOH ≲ 0.14 and ΦH2O ≲ 0.85, where the liquidus surface

was multi–valued, preventing accurate representation by the ANN. The model

was able to qualitatively recreate the binary curves and ternary liquidus surfaces

of these mixtures with a root mean squared error of 6.1 °C (Full range −65 –

477 °C). In the future, this model could be used to aid the synthesis of materials
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in the quaternary mixtures investigated in this work.

Keywords: Machine Learning, Molten Salt–Based Processes, Artificial Neural

Network, Melting Points, Alkali Metal Hydroxides

1. Introduction

Alkali metal hydroxides are interesting agents to use in the synthesis of

inorganic materials, in particular as solvents in processes using molten salts

(fluxes) [1–18], or alongside water in hydrofluxes [19–31]. The advent of novel

liquid–liquid phase–segregated solvent systems, such as hydrothermal molten

salts (HyMoS), comprised of alkali metal hydroxides and water, offer the prospect

of developing these syntheses into continuous processes [32, 33]. Molten salt mix-

tures and hydrofluxes can be active participants in synthesis reactions and have

high mass transport, allowing the creation of materials inaccessible via solid–

state reactions controllable through the composition of the salt mixture [34, 35].

For instance, these processes have enabled the synthesis of novel inorganic ma-

terials in high oxidation states, featuring unusual cations such as pentavalent

manganese [23, 36]. Compared with hydrothermal techniques, hydrofluxes allow

high–temperature syntheses to be performed at low–pressure due to the strong

bonding of hydroxide ions to water [37, 38]. These processes are highly sensi-

tive to the mixture composition and consequently, the temperature required to

sustain such a composition in a liquid state [39]. Beyond materials synthesis,

molten mixtures of alkali metal hydroxides and water have found applications

in a wide range of fields; such as high-temperature electrochemistry in fuel

cells, hydrogen–production processes, and electrolyzers, [40–42] and in waste

treatment [43–48]. Hence, there is a great interest in being able to adequately

predict the properties of molten salt mixtures [49–51] and their mixtures with

water [52–56].

The alkali metal hydroxides (Li, Na, K in this study) used in these ap-

proaches are salts with low melting points (∼320 °C, ∼410 °C, and ∼471 °C,

for NaOH, KOH, and LiOH, respectively) [57–59]. These salts have high solu-
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bilities in water (∼5.3, ∼25, and ∼22 M at 25 °C, 1 atm for LiOH, NaOH, and

KOH, respectively) [60] and when molten, these salts are completely miscible

with each other. The phase behavior below the liquidus line of alkali hydroxide

– water mixtures can be quite complex, with NaOH forming eight crystalline hy-

drates [60–62]. Mixtures of these alkali metal hydroxides also result in eutectics

(i.e., a lower melting point than either of the pure components) with melting

points of ∼170 °C, ∼220 °C, and ∼218 °C for mixtures of 50:50 NaOH:KOH,

71:29 KOH:LiOH, and 71:29 NaOH:LiOH [63]. Mixtures of these salts and water

also form eutectics, with melting points of −27 °C, −65 °C, −27 °C for mixtures

of 18.5:91.5 NaOH:H2O, 12.5:87.5 KOH:H2O, and 8.3:91.7 LiOH:H2O [60]. All

of the work on the ternary and quaternary mixtures of hydroxides and water

is found in journals originating in the USSR [63–89]. These works have identi-

fied a range of binary compounds forming below the liquidus surface, as well as

incongruently melting ternary compounds of unknown composition [63–66].

Because of the high demand to have a solid thermodynamic understanding

of these systems, several computational approaches have been proposed for the

prediction of phase behavior in salt mixtures [90]. The most commonly used

is CALPHAD (CALculation of PHAse Diagrams) [91–95]. Several CALPHAD

software products exist that can accurately predict phase diagrams for mixtures,

although the computational requirements of these calculations increase substan-

tially with compositional complexity. CALPHAD is also highly dependent on

the use of comprehensive and accurate thermodynamic databases, which are

costly to access and may not exist for all materials. Calculations for a system

such as the NaOH–KOH–LiOH–H2O quaternary would require a large amount

of computation time and a thermodynamic basis that is currently incomplete.

An alternative, more affordable approach to phase prediction is the use of

machine learning, which can predict melting points of mixtures by capturing

patterns and relationships learned from training on a data set of known com-

positions and melting points [96]. After training, machine learning models can

make predictions in relatively short timescales making them extremely efficient

tools in some applications. Machine learning models have become increasingly
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prominent in the prediction of thermophysical properties of materials [90]. These

have included properties such as thermal conductivities [97–99], phase equilib-

ria [100–102], and diffusion coefficients [103–106]. While there are currently

numerous examples of machine learning models predicting other properties of

molten salt systems [63, 90, 107–110], or predicting phase equilibria in other

single component systems [111–119], work combining these two goals are still

relatively uncommon. Although work exists using machine learning to predict

phase equilibria in binary systems can be found [120–122]. We found no exam-

ples of using machine learning to make predictions for ternary or higher order

mixtures.

In the case of binary mixtures, Sun et al. used molecular properties such as

the self–association constants, molecular weights, and accentricity, alongside the

molar fractions and thermodynamic variables such as temperature and pressure

to predict the vapor-liquid equilibria of binary mixtures using artificial neural

network (ANN) and random forest models [121]. Their random forest model was

less accurate than the nonrandom two-liquid model, but could be trained and

make predictions rapidly. The model was however limited to two components,

which makes it unsuitable for the problem we address in this study. Chen et

al. used an ANN to predict the phase equilibria of aqueous–ionic liquid binary

systems using 71 parameters describing the structure of each component [120].

Their model correlated strongly with experimental data (R2 = 0.92), but again

this was restricted to binary system.

In this work, we demonstrate the use of an ANN to predict the melting

points of quaternary mixtures of alkali hydroxides (Li, Na, K) and water us-

ing data harvested from the literature. This model allows the prediction of

composition–specific properties of hydroxide water mixtures, which is highly–

desirable knowledge in the development of inorganic syntheses using molten

hydroxide fluxes and hydrofluxes.
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2. Methods

2.1. Data Collection and Pre–processing

Melting point, Tm, data for NaOH, KOH, LiOH, and H2O; as well as for mix-

tures thereof was collected from the published literature. Only data that was ex-

plicitly measured experimentally was included in the dataset. Data produced by

extrapolation or theoretical models were not included. In total, 1644 data points

were collected from 47 different sources (50 points excluded) [57–86, 123–139].

Where compositions were given as wt. % in the sources, these were converted to

mol. %, using MW,H2O = 18.022 g·mol−1, MW,LiOH = 23.948 g·mol−1, MW,NaOH

= 39.997 g·mol−1, and MW,KOH = 56.106 g·mol−1 for the calculation. Melting

point data in these papers was collected by variety of techniques included equi-

librium solubility, calorimetry, thermography and the method of P–V curves,

which mostly showed good correlation. There were some limitations to the

dataset, some measurements were performed under pressure, but the pressure

was not recorded or given in the relevant publication. Some points were ob-

served to deviate strongly from the rest of the data set. These were eliminated

based on the magnitude of their deviation. These data points were found in 8

papers [64, 66, 83, 127, 136, 139] (see Section S1 in the Supporting Informa-

tion the full data set). The cause of the deviation is suspected to originate in

water contamination of the hydroxide salts in several cases [127, 136, 139], in

other cases the source of the deviation is not obvious, because the quality of

these points could not be verified, they were excluded from the main dataset.

[64, 66, 83] Experimental error was not reported in enough of the studies to be

reliably included in our model.

The dataset was scaled using the preprocessing.scaler function of the Scikit-

learn Python package. [140] This function centers and scales each data point as

the number of standard deviations from its mean value in the data set (i.e., the

z-score, z = (x− x̄)/σx). Finally, the data was randomly split 80 % – 20 % into

a training and a testing set using the model_selection.train_test_split function

of the Scikit-learn Python package with random_state = 3. [140] The mean
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and standard deviations of the test and training sets were T
(Train)
m = 159.9

°C, σ(Train)
Tm

= 140.6 °C, T (Test)
m = 172 °C, and σ

(Test)
Tm

= 133.6 °C. All hyper–

parameter optimization and validation were performed on the training set.

2.2. Machine Learning Model

The ANN used in this work was implemented using the Scikit–learn Python

package [140]. Specifically, the neural_network.MLPRegressor function. The

script used to train and test the ANN is available as an iPython notebook

in the Supporting Information [141]. The ANN takes four inputs ΦNaOH, ΦKOH,

ΦLiOH, and ΦH2O (molar fractions of NaOH, KOH, LiOH, and H2O, respectively)

and has a single output, Tm, the melting point of the mixture.

2.3. Cross Validation

Hyper–parameter optimization was performed through 5–fold cross–validation

using the model_selection.GridSearchCV function included in the Scikit–learn

Python package [140]. Two rounds of hyper–parameter optimization were per-

formed. First, an exhaustive search of all parameters of combinations of solvers

(Adam and limited–memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS)), learn-

ing rate (constant, adaptive, inverse scaling), activation functions (rectified lin-

ear unit (ReLU), Identity, Tanh, Logistic) and ANN structure (permutations of

50, 100, or 150 artificial neurons per layer in up to three layers) was performed

(Table S4 in the Supporting Information). It was found that the Adam solver

and the identity activation function performed poorly and changing the learning

rate had little impact on the score (Figures S5 and S6).

Following this, a second round of cross–validation was performed using only

the LBGFS solver and omitting the Linear activation function. The tested ANN

structures consisted of permutations of 50, 100, 150, or 200 neurons per layer in

up to three layers. After hyper–parameter optimization, the optimal configura-

tion was found to be 3 hidden layers containing 100, 150, and 50 hidden neu-

rons respectively, using the LBFGS solver and ReLU as the activation functions.

Across the five folds, this configuration had the highest average R2 = 0.9863 and
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lowest standard deviation in the R2, σR2 = 0.009 (Table S5 in the Supporting

Information). The results of the hyper–parameter optimization are summarized

in Sections S2 and S3 of the Supporting Information.

3. Results and Discussion
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Figure 1: Published data vs. ANN predicted melting points for the testing, training, and entire

data set. The data where 0.08 ≲ ΦLiOH ≲ 0.14, and ΦH2O ≲ 0.85 have been highlighted in

blue.

We first compiled a data set comprised of experimentally measured melting

points for NaOH, KOH, LiOH, and H2O, as well as mixtures thereof. In total,

1594 data points of acceptable quality were found in the literature. 39 of these

data points covered the melting points of the isolated compounds that were

collected. The points were distributed as follows: Binaries – NaOH–KOH (96

data points), KOH–LiOH (209), and NaOH–LiOH (100), NaOH–H2O (378),

KOH–H2O (145), and LiOH–H2O (83). Ternaries – NaOH–KOH–LiOH (271),

NaOH–KOH–H2O (54), KOH–LiOH–H2O (87), and NaOH–LiOH–H2O (80).

NaOH–KOH–LiOH–H2O quaternary (61). 50 points from 8 sources were re-

jected from the final data set because they deviated too strongly from the other

data compiled [64, 66, 83, 127, 136, 139].

The full data set is available in Section S1 of the Supporting Information.

The data in the binary and ternary mixtures is plotted in Figures S1-3 of the

Supporting Information.
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A note should be made regarding the melting point of anhydrous KOH; a

wide range of melting points between 360 and 410 °C are reported in the liter-

ature, this has been noted elsewhere (i.e., Refs. [58, 142] and Table S1 in the

Supporting Information). Values of ∼360 °C or ∼380 °C are commonly found in

the literature, product specifications, and chemical property databases. These

values are incorrect and reflect measurements taken on KOH contaminated with

water. The removal of water from KOH powders is notoriously difficult. As a

result, several studies reporting incorrectly low melting points for pure KOH

have been published, which have unfortunately become prominent sources for

Tm,KOH. However, a melting point above 400 °C is more consistent with the

majority of published literature on this topic (Table S1 in the Supporting In-

formation). Seward and Martin, who corrected for the water content of their

salt, found the melting point of anhydrous KOH to be (410 ± 1) °C [58]. Hence,

the two studies presenting Tm < 400 °C for KOH were excluded from the data

set [127, 138].

The predicted vs. true values for the melting point of the NaOH, KOH, LiOH,

and H2O mixtures are shown in Figure 1. The trained model was able to predict

the contents of the training set, testing set, and whole data set with R2 values of

0.976, 0.883, and 0.961, respectively. These values initially seem underwhelm-

ing. However, the values that deviate strongly from the y = x line, all belong to

a group of data points satisfying the following criteria: 0.08 ≲ ΦLiOH ≲ 0.14,

and ΦH2O ≲ 0.85. The feature associated with this is visible in the apparent

in the liquidus curves of the LiOH–H2O binary and the NaOH–LiOH–H2O and

KOH–LiOH–H2O ternaries. This feature will be discussed again later. Elimi-

nating these points from the analysis (i.e., using only the red points in Figure 1)

significantly improves the R2 values to 0.9986, 0.996, and 0.998 for the training,

testing, and entire data set respectively. Whereas, the excluded data points give

much lower R2 values of 0.338, −0.086, and 0.173 for the training, testing, and

entire data set respectively. Hence, it is apparent that the model can estimate

the majority of the data points in the data set to within a reasonable degree of

accuracy, while it fails the range of mixtures where 0.08 ≲ ΦLiOH ≲ 0.14, and
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Figure 2: ANN–predicted melting points (lines) vs. published data (points) as a function

of molar fraction for each of the binary compositions. The ANN model closely fits the ex-

perimental data in regions where the solid–liquid phase transition is single–valued. But fails

where the phase transition is multi–valued (red region of LiOH-H2O binary).

ΦH2O ≲ 0.85.

Finally, before inspecting the ability of the model to reflect the different

binaries and ternaries in these systems, it is worth noting that the vertical

linear series of points at 150 °C below the rest of the data in Figure 1 arise from

the KOH–LiOH–H2O series of a single source, it is unclear whether the data

should be treated as an outlier from the rest of the data set, it has been retained

in the data set [71].

By plotting the data along each of the six binaries in this system, it is

possible to observe where the incorrectly predicted points emanate (Figure 2).

For the NaOH–KOH, KOH–LiOH, NaOH–LiOH, NaOH–H2O, and KOH–H2O

binaries, the collected data within experimental uncertainty is single–valued,

i.e., for every combination of the independent variables (molar fractions) there

is a unique corresponding value of the dependent variable (Tm). However, for the
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LiOH–H2O binary, this is not the case, the model fails in the multiply defined

region of the liquidus curve (0.08 ≲ ΦLiOH ≲ 0.14). The problems in this

section of the curve stem from the poor solubility of LiOH compared to NaOH

and KOH. The maximum solubility of LiOH in H2O at 1 atm is ΦLiOH = 0.157,

where the boiling curve meets the liquidus curve at this concentration at T =

108.9 °C [62]. The only sources for the rest of the liquidus curve were performed

under pressure to increase the solubility of LiOH, but the working pressures were

not specified. The only given information on the pressure conditions suggests

that in the region of (0.08 ≲ ΦLiOH ≲ 0.14, 270 °C ≲ Tm ≲ 350 °C), pressure is at

maximum, with an upper limit on the pressure (due to the equipment used) of

50 MPa [62, 131]. In the range, 0.08 ≲ ΦLiOH ≲ 0.14, the applied pressure for

Tm > 108.9 °C, results in the liquidus curve in Figure 2 appearing to be multi–

valued, because a dependent variable is ignored, preventing adequate fitting in

this region. This is impossible to avoid without generating significant additional

data detailing the pressure dependency of the solubility of these compounds,

hence the ANN model fails in this region.

For ΦLiOH ≳ 0.14, measurements were still taken under pressure, but the

curve is single–valued, hence the model can fit the data in this region without

issue, although it is incapable of reflecting this dependency. With the exception,

of the melting point of anhydrous LiOH which can be measured at atmospheric

pressure and is in the range 471 – 477 °C (Table S1 in the Supporting Informa-

tion). Similarly, without the acquisition and publication of significant additional

data, the ANN cannot reflect the pressure dependencies at ΦLiOH ≳ 0.14.

Turning to the NaOH–KOH–LiOH, KOH–LiOH–H2O, NaOH–LiOH–H2O,

and NaOH–KOH–H2O ternaries, which define the limits of NaOH–KOH–LiOH–

H2O system. The collected data set for these ternaries is plotted in Figures S2

and S3 of the Supporting Information, the data set has been interpolated to

approximate the entirety of all the ternaries. It can be seen in the raw data

set that the multi-valued region of the LiOH–H2O binary extends into both

the NaOH–LiOH–H2O and KOH–LiOH–H2O ternaries. This region is roughly

bounded by the conditions that 0.08 ≲ ΦLiOH ≲ 0.14, and ΦH2O ≲ 0.85, the
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Figure 3: Map of alkali metal hydroxide ternary fluxes and hydrofluxes. Flux syntheses

are typically performed in the NaOH–KOH–LiOH ternary, whereas hydrofluxes syntheses are

typically performed in the region 0.15 ≳ ΦH2O ≳ 0.55 [25]. ANN predicted melting points

for the NaOH–KOH–LiOH, KOH–LiOH–H2O, NaOH–LiOH–H2O, and NaOH–KOH–H2O

ternaries as a function of molar fraction of each component. Small circles indicate harvested

experimental data points, and the interior color fill is matched to the reported experimental

melting point. The color map indicates the output of the ANN on each ternary. Qualitatively,

it can be seen that the model performs well compared with the experimental data for most

compositions, as is suggested by the close match between the colors of the map and the data

points. In the region, bounded by 0.08 ≲ ΦLiOH ≲ 0.14, and ΦH2O ≲ 0.85, where the

surface is multi–valued, it can be seen that the model is not able to reflect this feature. There

are large regions in the NaOH–LiOH–H2O and KOH–LiOH–H2O ternaries where the model

has interpolated and no experimental data exists, where assessing the accuracy of the model

is difficult. Uncertainty in the experimental data is also present due to variations between

sources.

data points from this region are highlighted in Figure 1.

The predictions of the trained ANN in all ternaries are shown in Figure 3.

It can be seen that there is a high degree of qualitative similarity between the

smoothed data set and the prediction of the ANN. The ANN fails to accurately

predict the data set in the multi-valued region, where most of the points deviate

strongly from the predicted surface (this is also the case for the smoothed data

set). Outside of this region, the trained ANN manages to predict Tm with a root

mean square error of 6.1 °C (cf. 75 °C within it) which is within the experimental

error seen between the various sources comprising the data set. Unfortunately,

there are not many data points for large parts of the interior regions of some of
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Figure 4: Absolute error in predicting the data points for the quaternary NaOH–KOH–LiOH–

H2O system at 150 °C from Itkina et al. [70] The dashed lines represent the range covered by

root mean square error (± 3.9 °C).

the ternaries (i.e., ΦLiOH > 0.14 for the NaOH–LiOH–H2O and KOH–LiOH–H2O

ternaries). The ANN–predicted phase diagram is consistent with speculative

phase diagrams in the literature (i.e., Refs. [65, 66, 74]). However, to the best

of our knowledge, these regions remain experimentally unconfirmed.

The data for quaternary mixtures comes from a single source, Itkina et al.

which covered a 150 °C isotherm close to the NaOH–KOH–H2O ternary (ΦLiOH <

0.14) [70]. We were unable to fit any other published data for the quaternary

system. The trained ANN was able to predict the points from this source with

root mean square error of 3.9 °C, with two clear outliers where the absolute

error was above ±15 °C (Figure 4). The model performed adequately on the

points available, but more data is needed to test the model further.

This model could be improved if it were extended to consider the pressure

dependency of the liquidus curve. However, the limitations of the currently

available data prevent this. The model could also be extended to make predic-

tions for a broader range of salts, rather than focusing on a single quaternary

system. This would include significantly expanding the data set to include other

salts such as halides, nitrates, and carbonates, as well as training the model with
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new inputs, beyond molar fractions. For instance, salt properties such as the

atomic number, valency, and molecular weight of the anion and cation of each

component; enthalpy of fusion for each component; ...etc. Such a model could

potentially predict the melting points of a broad range of fluxes beyond the scope

of the model presented here. Datasets like the one assembled for this study could

be integrated into adaptive optimization methods to identify optimal conditions

to gain information from further experimentation, such an approach could be

made powerful if integrated into a self-driving robotic laboratory.

Currently, data availability acts as a bottleneck to establishing these models.

Experimental data exists on a wide range of salts, but it is difficult and time–

consuming to collate them into data sets, although not impossible. For instance,

many of the data points used here were taken directly from Soviet–era journals.

These were often difficult–to–identify and access, due to them being undigitized

and untranslated. The data from these sources when located has been tran-

scribed in the Supporting Information. However, it remains likely that further

data on these systems exists in the Soviet literature that was not yet identified

by us because of the language barriers and low availability of these papers. The

thermophysical data available in these journals is a valuable source of training

data for machine learning models, and attempts to move this data into publicly

accessible databases would be beneficial to the community as a whole. Recent

advances in the development of natural language processing models could help

alleviate this problem by allowing the automatic extraction of this information

from published papers in a range of languages. However, the success of this

approach is currently limited by the lack of digitization of many of the relevant

data sources.

4. Conclusion

In this paper, we have demonstrated a neural network model for the pre-

diction of the melting points of quaternary mixtures of NaOH, KOH, LiOH,

and H2O which can be used to find the melting point of alkali metal hydroxide
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fluxes and hydrofluxes for inorganic crystallite syntheses. After training with

literature data, our ANN model was able to approximate the testing set with an

R2 of 0.996, excluding points in the range 0.08 ≲ ΦLiOH ≲ 0.14. The R2 of the

entire testing set was worse (0.883) due to a multi–valued region in this range

which could not be modeled by the ANN. This feature originates from the need

to pressurize LiOH solutions to maintain stability above ΦLiOH = 0.157. How-

ever, this pressure data is currently absent from the existing literature, making

it impossible to account for without further experimentation. The model was

able to qualitatively recreate the binary and ternary liquidus curves of these

mixtures with a root mean squared error of 6.1 °C. This model and its out-

puts will hopefully act as a useful tool for researchers performing syntheses in

alkali metal hydroxide fluxes and hydrofluxes, by identifying the temperature

conditions required to use compositions with a desired set of chemical prop-

erties. Tools like the one discussed in this study could help enable the use of

quaternary mixtures to be used more reliably in the hydroflux synthesis of novel

materials. Models like the one demonstrated in this study can rapidly predict

phase-equilibria and could be integrated into modeling software to avoid wast-

ing expensive computation time on thermodynamic calculations. They can also

be used as tools by researchers to predict phase equilibria for molten salt and

hydroflux based processes.
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