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Abstract

Connectome-based models, also known as Virtual Brain Models (VBMs), have
been well established in network neuroscience to investigate pathophysiological causes
underlying a large range of brain diseases. The integration of an individual’s brain
imaging data in VBMs has improved patient-specific predictivity, although Bayesian
estimation of spatially distributed parameters remains challenging even with state-
of-the-art Monte Carlo sampling. VBMs imply latent nonlinear state space models
driven by noise and network input, necessitating advanced probabilistic machine
learning techniques for widely applicable Bayesian estimation. Here we present
Simulation-Based Inference on Virtual Brain Models (SBI-VBMs), and demonstrate
that training deep neural networks on both spatio-temporal and functional fea-
tures allows for accurate estimation of generative parameters in brain disorders.
The systematic use of brain stimulation provides an effective remedy for the non-
identifiability issue in estimating the degradation of intra-hemispheric connections.
By prioritizing model structure over data, we show that the hierarchical structure
in SBI-VBMs renders the inference more effective, precise and biologically plausible.
This approach could broadly advance precision medicine by enabling fast and reliable
prediction of patient-specific brain disorders.

Keywords: Virtual brain models, Simulation-based inference, Degradation, Structural
and functional connectivity, Non-identifiability, Stimulation, Hierarchical structure

Abbreviations: VBM, virtual brain model; SBI, simulation-based inference; SC, struc-
tural connectivity; FC, functional connectivity; FCD, functional connectivity dynamic; BOLD,
blood-oxygen-level-dependent; fMRI, functional magnetic resonance imaging; ANNs, artifi-
cial neural networks; NFs, normalizing flows; MAF, masked autoregressive flow; NSF, neural
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1. Introduction

Model-based inference involves constructing a statistical or mechanistic model that cap-
tures the essential features of the data-generating process and the underlying structure or
relationships in the observed data (Anderson, 2008). It emphasizes the incorporation of do-
main knowledge (Gelman et al., 2013), hypothesis testing (MacKay, 2003), interpretability
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(Hastie et al., 2009), generalizability (Vapnik, 1999), and causality (Pearl, 2009). It also
often provides superior performance over purely data-driven methods, particularly in the
context of brain disorders, such as epilepsy (Hashemi et al., 2020; Wang et al., 2023; Jirsa
et al., 2023), and Alzheimer’s disease (Triebkorn et al., 2022; Yalcinkaya et al., 2023). One
class of computational network models commonly used to analyze functional neuroimaging
modalities, such as fMRI, MEG, and EEG, is the class of connectome-based models (Ghosh
et al., 2008; Sanz-Leon et al., 2015; Bassett and Sporns, 2017), also known as Virtual Brain
Models (VBMs; Sanz Leon et al. (2013); Jirsa et al. (2023)). Each node in these models
corresponds to a brain region (Bullmore and Sporns, 2009; Sporns, 2016). The collective
behavior of these nodes over time is then described using a dynamical model of average
neuronal activity, known as neural mass models (Deco et al., 2008, 2011; Breakspear, 2017).
The connectome-based models incorporate individual structural brain imaging data (Melozzi
et al., 2019; Hashemi et al., 2021), typically diffusion-weighted imaging data, to estimate the
edge weights (Hagmann et al., 2007; Van Essen et al., 2012; Schirner et al., 2015, 2023). The
structural connectivity imposes a constraint on the brain dynamics, allowing for the person-
alized simulation of the brain’s (ab)normal activities and their associated imaging recordings,
potentially informing targeted interventions (Proix et al., 2017; Olmi et al., 2019; Wang et al.,
2023; Jirsa et al., 2023).

During aging or some diseases, the SC is reported to deteriorate (Antonenko and Flöel,
2013; Damoiseaux, 2017; Zuo et al., 2017), or be perturbed (Stam, 2014; Ozdemir et al., 2020;
Menardi et al., 2021), particularly with respect to the number of inter- and intra-hemispheric
fibers within tracts and fiber density (Puxeddu et al., 2020; Petkoski et al., 2023; Lavanga
et al., 2023). These observations, however, do not map trivially on functional data, such as
fMRI (Stumme et al., 2022; Jockwitz et al., 2023; Krämer et al., 2023). This could be due to
several factors, notably those related to the structure of the generative model family: these
features include a degenerate mapping between Structural Connectivity (SC) and Functional
Connectivity (FC), high dimensionality of the parameter space, and degeneracy induced by
network effects in the latent state space, all introducing potential non-identifiability. These
sources of indeterminacy stymie even state-of-the-art methods, which invites us to find ways
to improve identifiability and employ algorithms better equipped for dealing with degeneracy.

State-of-the-art methods for inverting models of neuroimaging data vary in realism and
complexity of the resulting estimate. Methods such as Dynamical Causal Modeling (Friston
et al., 2003, 2014) combine sophisticated statistical models and fixed variational schemes to
address specific mechanistic hypotheses in neuroimaging datasets but scale poorly in terms
of the size of the hypothesized network, and its mean-field variant ignores -by definition- the
correlation between parameters. The Digital Twin Brain (Lu et al., 2022), on the other hand,
models a very large network of spiking neurons and employs a Kalman filter scheme (a type of
recursive filtering algorithm) to fit the data, yet it remains difficult to assess both the realism
of the network connectivity and the interpretability of the model parameters. The VBMs
aim to push the frontier forward by combining scalability to realistically detailed whole-
brain models with recent probabilistic inference schemes to yield reliable, mechanistically
interpretable estimates (Hashemi et al., 2020, 2021, 2023). The resulting improvements in the
state-of-the-art are achieved through parameterizations, which decorrelate model parameters
(e.g., to take advantage of parallel simulations). The resulting models scale well with data
resources while remaining tractable for probabilistic inference on personalized whole-brain
functional data. This work highlights the importance of exploring flexible and scalable
alternative methods that may offer unique advantages in terms of realism, interpretability,
and uncertainty quantification through Bayesian estimation for better downstream decision-
making processes.

Using random simulations, Markov Chain Monte Carlo (MCMC) is the gold standard
technique for carrying out the Bayesian inference (Andrieu et al., 2003; Murphy, 2022; McEl-
reath, 2020). MCMC is a powerful class of computational algorithms for sampling from a
probability distribution, in which the sampling process does not require knowledge of the
whole distribution. In Bayesian inference, MCMC methods are often used for unbiased
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sampling from distributions, which is asymptotically exact in the limit of infinite runs, but
require explicit evaluation of the likelihood function (Hashemi et al., 2020, 2021). The Marko-
vian (sequential) structure of MCMC methods interacts poorly with the highly multimodal,
non-convex posteriors of generative VBMs, where nonlinear latent dynamics generally imply
multistability in a high dimensional state space. Hence, MCMC methods require restric-
tive reparametrizations to deal with geometrical issues (Betancourt et al., 2014; Betancourt,
2016), immense computational cost (Baldy et al., 2024), or intricately designed sampling
strategies (Hashemi et al., 2020; Jha et al., 2022) to efficiently converge (Gabrié et al., 2022;
Baldy et al., 2023).

Simulation-Based Inference (SBI; Cranmer et al. (2020); Boelts et al. (2022)) or likelihood-
free inference (Papamakarios et al., 2019b; Brehmer et al., 2020) sidesteps problems with
posterior geometry and algorithm sequentiality entirely: SBI uses the generative model to
map samples from the prior to a corresponding set of data features, and then it takes a max-
imum likelihood estimate of a Bayesian regression of model parameters on data features.
In practice, to ensure the resulting approximate posterior density is sufficiently expressive,
these methods employ deep neural networks to parametrize or construct directly the ap-
proximated density (Greenberg et al., 2019; Gonçalves et al., 2020; Hashemi et al., 2023). In
these deep network approaches, a simple base probability distribution (i.e., prior) is trans-
formed into a more complex distribution (i.e., posterior) through a sequence of invertible
transformations (Rezende and Mohamed, 2015; Papamakarios et al., 2019a)). In particular,
the advanced machine learning techniques based on unsupervised generative models offer
efficient reconstruction of the probability density functions and highly expressive transfor-
mations with low-cost computation (Kobyzev et al., 2020; Papamakarios et al., 2021), hence,
efficient Bayesian inference on complex high-dimensional systems. SBI implies computa-
tionally intensive simulation and training stages, but performed only once, and subsequent
inference is extremely efficient as it requires only a forward pass of the neural network on
a vector of data features to construct a posterior distribution (in order of seconds, due to
amortized strategy; Hashemi et al. (2023)).

In this study, we use an exact mean-field model of spiking neurons at each parcellated
brain region, displaying a variety of dynamics such as multi-stability, in which the emergent
dynamics are constrained by personalized anatomical data (SC matrix). We aim to reliably
estimate the full posterior distribution of control parameters in VBMs, by training deep
neural networks on a low-dimensional representation of fMRI BOLD data, such as functional
connectivity (FC; Friston (1994); Honey et al. (2009); Greicius et al. (2003)), and Functional
Connectivity Dynamics (FCD; Zalesky et al. (2014); Hansen et al. (2015); Lurie et al. (2020)).
We use the term spatio-temporal data features to refer to the statistical moments derived
from BOLD time-series, while we refer to the summary statistics extracted from FC and
FCD matrices as functional data features. The main motivation for using the SBI approach
is to leverage the advantages of fast and parallel simulations for efficient and flexible inference
using data features, accompanied by uncertainty quantification rather than a single point
estimation (Wang et al., 2019; Kong et al., 2021).

Note that opting for SBI over MCMC sampling will not offer a straightforward solu-
tion to the inference challenges at the whole-brain level. A generative model defines the
joint probability distribution of both observed data and latent variables or parameters of
the model, enabling the generation of synthetic data samples. Hence, the performance of
inference relies on both the level of information contained in the observed data, and the
efficiency of model structure to consistently recognize that data. Accordingly, to address
non-identifiability issues using generative models such as VBMs, we take the following ap-
proaches: (i) Enhancing the inference by incorporating more information, e.g., through data
augmentation; (ii) Increasing the probability transition between states in latent dynamics,
e.g., through intervention by stimulation; (iii) Restructuring the model configuration space,
e.g., through hierarchical reparameterization, to facilitate more efficient exploration of the
posterior distribution.

Our results on the uncertainty quantification using SBI show that FCD is more informa-
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tive than FC for inference on perturbed connections, but using both data features provides
stronger model evidence against the fitted data. Nevertheless, correlations between different
brain regions and the associated dynamics (functional data features) do not provide sufficient
information for inferring heterogeneous excitability at whole-brain level. We demonstrate
that training deep neural density estimators (Papamakarios et al., 2019a; Kobyzev et al.,
2020) by including the spatio-temporal data features provides more accurate inference on
generative parameters. As an alternative to such data augmentation, the perturbation in
brain dynamics by stimulation can provide an efficient remedy for the non-identifiability
issue in the estimation of degradation in intra-hemispheric connections (within the limbic
system). By prioritizing model structure over data, we show that the hierarchical structure
in VBMs proves to be more effective than pooled (homogeneous) and unpooled (heteroge-
neous) modeling, to infer the control parameters from functional data. This set of control
parameters comprises the excitability across brain regions, a global scaling factor on the
connectome, and the level of (inter- and intra-hemispheric) degradation in the connectome.
The SBI-VBMs approach is now available on the cloud platform EBRAINS (Schirner et al.,
2022) to assist users in uncovering more realistic brain dynamics that underlie brain diseases,
within a Bayesian causal framework.

2. Materials and methods

2.1. Structural connectivity
The Virtual Brain Models (VBMs) emphasize the structural network characteristics of

the brain by representing the brain regions as nodes, which are connected via a structural
connectivity matrix representing white matter fibre tracts (Sanz-Leon et al., 2015). The
Structural Connectivity, SC ∈ RN×N with N parcelled regions, was derived from a prob-
abilistic tractography-based connectome using generally available neuroimaging software,
such as The Virtual Brain (TVB; Sanz Leon et al. (2013); Schirner et al. (2015)). The
T1-weighted MRI images were processed to obtain the brain parcellation, whereas Diffusion-
weighted (DW-MRI) images were used for tractography. With the generated fiber tracts and
with the regions defined by the brain parcellation, the connectome was built by counting the
fibers connecting all regions. Using Desikan-Killiany parcellation (Desikan et al., 2006) in the
reconstruction pipeline, the patient’s brain was divided into N = 88 cortical and subcortical
regions. The connectome was normalized so that the maximum value is equal to one.

2.2. The virtual brain models
To ensure a realistic in-silico experiment and therefore assess the function-structure

link during the brain disorders via VBMs, we simulated the blood-oxygen level dependent
(BOLD) fMRI using a whole-brain network model that couples exact mean-field representa-
tion of spiking neurons through the weighted edges in the SC matrix. Assuming a Lorentzian
distribution on the membrane potentials across decoupled brain regions, with half-width ∆
centered at η, the macroscopic dynamics associated with a local network node is governed by
a neural mass model (NMM) derived analytically as the limit of infinitely all-to-all coupled
quadratic integrate-and-fire (QIF) neurons (Montbrió et al., 2015):

τ ṙ(t) = 2r(t)v(t) +
∆

πτ

τ v̇(t) = v2(t)− (πτr(t))2 + Jτr(t) + η + Istim(t),

(1)

where v and r are the average membrane potential and firing rate, respectively, at each
brain region. The excitability η = −4.6, the synaptic weight J = 14.5, the spread of the
heterogeneous noise distribution ∆ = 0.7, and the characteristic time constant τ = 1, are
tuned so that each decoupled node is in a bistable regime, exhibiting a down-state stable
fixed point and an up-state stable focus in the 2D phase space (Montbrió et al., 2015).
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The bistability is a fundamental property of regional brain dynamics to ensure a switching
behavior in the data (e.g., to generate FCD), that has been recognized as representative
of realistic dynamics observed empirically (Rabuffo et al., 2021). The input current Istim
represents the stimulation to selected brain regions, which increase the basin of attraction
of the up-state in comparison to the down-state, while the fixed points move farther apart
(Rabuffo et al., 2021).

By coupling the brain regions via an additive current in the average membrane potential
equations, the dynamics of the whole-brain network can be described as follows (Rabuffo
et al., 2021; Fousek et al., 2022):

τ ṙi(t) = 2ri(t)vi(t) +
∆

πτ

τ v̇i(t) = v2i (t)− (πτri(t))
2 + Jτri(t) + η + Istim(t)+

G
N∑
j=1

SCij(rj(t)− ri(t))) + ξ(t),
(2)

where G is the network scaling parameter that modulates the overall impact of brain con-
nectivity on the state dynamics (see Supplementary, Fig S1), SCi,j denotes the symmetrical
connection weight between ith and jth nodes with i, j ∈ {1, 2, . . . , N}, and the dynamical
noise ξ(t) ∼ N (0, σ2) follows a Gaussian distribution with mean zero and variance σ2 = 0.03.

The brain network model was implemented in TVB software (Sanz Leon et al., 2013;
Rabuffo et al., 2021) and equipped with BOLD forward solution comprising the Balloon-
Windkessel model (Stephan et al., 2007) applied to the firing rate. In addition, we have
implemented the model in C++, which is around 2 times faster than our Python implemen-
tation with Just-in-Time (JIT) compilation, and also CUDA-based GPU, which provides up
to 100 times faster computational cost through parallelization (see Supplementary, Fig S2).

The approach of virtually modeling the brain connectivity in disorders provides the
basis to investigate whether a specific modification in connectome affects the observed brain
function in a causal sense. We specifically tested whether the disorder is related to inter-
hemispheric and intra-hemispheric connections in SC, by applying two spatial masks on the
subject-specific connectome (normalized by the scaling factor G) as follows:

SCdisordered = GSChealthy − αMinter − βMintra (3)

where parameters α and β are the unknown normalized intensity of degradation in SC (as
the target of parameter estimation in the range [0-1]), according to the spatial masks Minter

and Mintra, on inter-hemispheric and intra-hemispheric connections, respectively. In this
study, the Mintra mask indicate the afferent and efferent connections originating from the
limbic system (see Fig 1).

2.3. Functional connectivity dynamic
To quantify the communication between different brain regions and associated dynamics,

we computed both static Functional Connectivity (FC) and Functional Connectivity Dynam-
ics (FCD), which is the time-variant representation of FC and reflects the fluctuation of the
covariance matrix over time (see Supplementary, Fig S1). From the simulated BOLD signals
generated by TVB, we extracted FC matrix by calculating the Pearson correlation between
the BOLD signals of any two brain regions. In order to track the time-dependent changes
in the FC, we computed the windowed FCD, with length of sliding window τ = 30 sec and
step size of tw+1 − tw = 6 sec (Hansen et al., 2015; Arbabyazd et al., 2020):

FCD(wi, wj) = corr(uppertri(FC(wi)), uppertri(FC(wj))) (4)

where, the (i, j) entry of the FCD matrix provided the Pearson correlation between the
upper triangular parts of the two FC matrices FC(wi) and FC(wj) calculated at each sliding
windows w = 1, 2, ..., Nw. To assess whether the simulated BOLD time-series might have
state transitions between up and down states, we quantified the brain’s fluidity by calculating
the FCD variance to capture the transitioning behavior (see Supplementary, Fig S1).
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2.4. Bayesian inference
The Bayesian approach offers a principled way for making inference, prediction, and

quantifying uncertainty for decision-making process (Gelman et al., 1995; Bishop, 2006; Box
and Tiao, 2011). This approach naturally evaluates and incorporates uncertainties in the
parameters and observations to drive meaningful conclusions from the data, with a broad
range of applications (Bonomi et al., 2016; Hashemi et al., 2018; Khalvati et al., 2019;
Guimerà et al., 2020; Broderick et al., 2023; Sip et al., 2023; Wang et al., 2023). Parameter
estimation within a Bayesian framework is treated as the quantification and propagation of
uncertainty through probability distributions placed on the parameters, updated with the
information provided by data (Hashemi et al., 2020, 2021). Considering the joint probability
distribution of the observation x and the unknown control parameters θ, referred to as
the generative model. Then by the product rule: p(θ, x) = p(θ | x)p(x), equivalently,
p(θ, x) = p(x | θ)p(θ). Hence, given data x and model parameters θ, Bayes rule defines the
posterior distribution as

p(θ | x) = p(θ)p(x | θ)
p(x)

(5)

that combines and actualizes prior information (domain expertise) about unknown parame-
ters with the knowledge acquired from observed data through the so-called likelihood function
(data generating process). The prior information p(θ) is typically determined before seeing
the data through beliefs and previous evidence about possible values of the parameters. The
likelihood function p(x | θ) represents the probability of some observed outcomes given a
certain set of parameters (the information about the parameters provided by the observed
data). The denominator p(x) =

∫
p(x | θ)p(θ)dθ represents the probability of the data and it

is known as evidence or marginal likelihood. In the context of inference, this term amounts
to simply a normalization factor. Note that using Bayesian inference in this study, we aim
to estimate the entire posterior distribution of the unknown parameters, i.e., the uncertainty
over a range of plausible parameter values that generates the data, rather than a single point
estimate for data fitting (e.g., the maximum likelihood estimation; Hashemi et al. (2018), or
the maximum a posteriori; Razi et al. (2015); Friston et al. (2014); Vattikonda et al. (2021)).

2.5. Simulation-based inference
The key challenge to perform an efficient Bayesian inference is the evaluation of likelihood

function p(x | θ). This is typically intractable for high-dimensional models involving non-
linear latent variables (such as VBMs), as the likelihood evaluation requires an integral
over all possible trajectories through the latent space that controls the generative process:
p(x | θ) =

∫
p(x, z | θ)dz, where p(x, z | θ) is the joint probability density of data x and

unmeasured (hidden) latent variables z, given parameters θ. In particular, when dealing with
high-dimensional latent space at whole-brain scales, the computational cost of evaluating the
likelihood function can become prohibitive. This makes likelihood-based approaches, such as
Monte Carlo sampling, inapplicable (Hashemi et al., 2023). Simulation-Based Inference (SBI)
or likelihood-free inference performs efficient Bayesian inference for complex models where
the calculation of likelihood function is either analytically or computationally intractable
(Cranmer et al., 2020). Instead of direct sampling from distributions and explicit evaluation
of likelihood function, SBI sidesteps this problem by employing deep artificial neural networks
(ANNs) to learn an invertible transformation between parameters and data (more precisely,
between the features of a simulated dataset and parameters of a parameterized approximation
of the posterior distribution).

Taking prior distribution p(θ⃗) over the parameters of interest θ⃗, a limited number of
N simulations are generated for training step {(θ⃗i, x⃗i)}Ni=1, where θ⃗i ∼ p(θ⃗) and x⃗i is the
simulated data given model parameters θ⃗i. In other words, the training data set is an
ensemble of N independent and identically distributed samples from the generative model
p(θ⃗, x⃗) = p(θ⃗)p(x⃗ | θ⃗), that can be run in parallel. After the training step, we are able to
efficiently estimate the approximated posterior qϕ(θ⃗ | x⃗) with learnable parameters ϕ, so
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that for the observed data x⃗obs: qϕ(θ⃗ | x⃗obs) ≃ p(θ⃗ | x⃗obs). For more details, see Hashemi
et al. (2023). Note that due to the amortized strategy, for any new observed data x⃗obs, we
can readily approximate the true posterior p(θ⃗ | x⃗obs) by a forward pass through the trained
ANN (in the order of seconds).

Under preserving total probability used in this approach, the prior distribution (a sim-
ple distribution such as a uniform or standard normal) is transformed into the posterior
distribution (a more complex potentially multi-modal), through a sequence of invertible
transformation. This class of ANNs used for sampling and probability density estimation is
called Normalizing Flows (NFs; Rezende and Mohamed (2015)). NFs are a family of gen-
erative machine learning models that convert a base distribution into any complex target
distribution, where both sampling and density estimation can be efficient and exact (Pa-
pamakarios et al., 2019a; Kobyzev et al., 2020). The aim of density estimation is to offer
an accurate description of the underlying probability distribution of an observable data set,
where the density itself is unknown. In particular, NFs embedded in the SBI approach,
such as (sequential) neural posterior estimation (Gonçalves et al. (2020); Lueckmann et al.
(2017), allow for the direct estimation of joint posterior distributions, and bypass the need for
MCMC, while also potentially capturing degeneracy or multi-modalities. Recently advanced
NFs such as Masked Autoregressive Flows (MAF; Papamakarios et al. (2017)) and Neural
Spline Flows (NSF; Durkan et al. (2019)) provide efficient and exact density evaluation and
sampling from the joint distribution of high-dimensional random variables in a single neural-
network pass. These generative models use deep neural networks to learn complex mappings
between input data and their corresponding probability densities. They have achieved state-
of-the-art performance with diverse applications, which efficiently represent rich structured
and multi-modal posterior distributions, capturing complex dependencies and variations in
the data distribution (Papamakarios et al., 2019a; Kobyzev et al., 2020). In this study, we
use MAF and NSF models, which support invertible nonlinear transformations, and enables
highly expressive transformations with low-cost computation. By training MAF/NSF on the
virtual brain simulations with random parameters, we are able to readily estimate the full
posterior of parameters from low-dimensional data features, such as FC/FCD.

2.6. Sensitivity analysis
Sensitivity analysis is a necessary step to determine which model parameters mostly

contribute to variations in the model’s behavior due to changes in the model’s input, i.e., the
identifiability analysis (Hashemi et al., 2018, 2023). A local sensitivity coefficient measures
the influence of small changes in one model parameter on the model output, while the other
parameters are held constant. This can be quantified by computing the curvature of objective
function through the Hessian matrix (Bates and Watts, 1980; Hashemi et al., 2018):

S(θ) = D(
∂2E(θ)
∂θ∂θ⊤ |θ∗), (6)

where D denotes the main diagonal elements of a matrix, E indicates a fitness function,
centered at estimated parameters θ∗.

Using the SBI approach, after the training step and posterior estimation for a specific
observation, we can also efficiently perform sensitivity analysis by calculating the eigenvalues
and corresponding eigenvectors from (Tejero-Cantero et al., 2020; Deistler et al., 2021):

M = Ep(θ|xobs)[∇θp(θ|xobs)
T∇θp(θ|xobs)], (7)

which then does an eigendecomposition M = QΛQ−1. A strong eigenvalue of the so-called
active subspaces (Constantine, 2015) indicates that the gradient of the posterior is large,
hence, the system output is sensitive to changes along the direction of the corresponding
eigenvector.
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2.7. Evaluation of posterior fit
To measure the reliability of the Bayesian inference using synthetic data, we evaluate

the posterior z-scores (denoted by z) against the posterior shrinkage (denoted by s), which
are defined as (Betancourt, 2014):

z = | θ̄ − θ∗

σpost
|, (8)

s = 1−
σ2
post

σ2
prior

, (9)

where θ̄ and θ∗ are the posterior mean and the true values, respectively, whereas σprior, and
σpost indicate the standard deviations of the prior and the posterior, respectively. The pos-
terior z-score quantifies how much the posterior distribution of a parameter encompasses its
true value. The posterior shrinkage quantifies how much the posterior distribution contracts
from the initial prior distribution. The concentration of estimations towards large shrink-
ages indicates that all the posteriors are well-identified, while the concentration towards
small z-scores indicates that the true values are accurately encompassed in the posteriors.

3. Results

3.1. The SBI-VBMs workflow
Figure 1 illustrates the overview of our approach, referred to as Simulation-Based In-

ference on Virtual Brain Models (SBI-VBMs), to make probabilistic predictions on brain
disorders by estimating the joint posterior distribution of the generative parameters. This
approach relies only on random model simulations to efficiently approximate the posterior
distribution of unknown parameters, without requiring exact likelihood evaluation.

At the first step, the non-invasive brain imaging data such as T1-weighted MRI and
Diffusion-weighted MRI (DW-MRI) are collected for a specific patient (Fig 1A). The T1-
weighted MRI images are processed to obtain brain parcellation, and diffusion-weighted
(DW-MRI) images are used for tractography. With the generated fiber tracts and the re-
gions defined by the brain parcellation, the connectome (i.e., the total set of links between
brain regions) is constructed by counting the fibers connecting all regions. The SC matrix,
whose entries represent the connection strength between brain regions, provides the basis for
constructing a network model–the virtual brain– which is capable of generating various func-
tional brain imaging data at arbitrary locations (e.g., cortical and subcortical structures).
This step constitutes the structural brain network component, which imposes a constraint
on brain network dynamics, i.e., the evolution of trajectories in the latent space, allowing
the hidden state dynamics to be inferred from the data.

Then, each brain network node is assigned a computational model of average neuronal
activity, a so-called neural mass model (see Fig 1B). Here, we use an exact mean-field approx-
imation for a population of spiking neurons (see Eq. (1)), which due to its rich dynamics,
such as bi-stability, enables us to generate various spatio-temporal dynamics as observed
experimentally. This combination of the brain’s anatomical information with the mathe-
matical modeling of averaged dynamics at the level of local neural populations (e.g., 16 cm2

of the cortical surface) constitutes the functional brain network component, characterizing
the communication between brain regions.

Subsequently, the perturbation of SC by spatial masking, the inter- and intra-hemispheric
edges can provide an estimation of the level of degradation in the patient connectome caused
by disorders (see Eq. (3)). Notably, the stimulation of certain brain regions can be used to
increase the causal evidence in the structure-function relationship. Embedding the disordered
SC into the VBM, then complements the generative brain model of disorders (see Eq. (2),
as a nonlinear dynamical model dx⃗

dt = f(x⃗, SC, θ), with control parameters θ). The set of
generative parameters comprises the regional excitability parameters ηi, a global coupling
parameter G describing the scaling of the brain’s SC, and parameters α and β indicating the
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Fig. 1. The SBI-VBMs workflow to estimate the posterior distribution of generative parameters in
brain disorders. (A) TVB reconstruction pipeline. The T1-MRI and DW-MRI images are processed
to build a personalized brain connectome. (B) The Virtual Brain Model (VBM). An exact neural
mass model of spiking neurons is placed at each brain region, combined with anatomical data
to generate various data features, such as FC and FCD. Estimating the generative parameters
with perturbation in the SC using a masking approach, and stimulating certain regions, provides
predictions on degradation in the connectome caused by disorders. (C) The SBI with deep neural
density estimators. First, the model parameters are drawn randomly from a prior distribution.
Then, the VBM simulator takes the parameters as input and generates summary statistics of the
data as output. Next, a class of deep neural density estimators is trained on the pairs of random
parameters and corresponding data features to learn the joint posterior distribution of the model
parameters. Finally, we can quickly approximate the posterior for new data and make probabilistic
predictions that are consistent with the observed data.

levels of interhemispheric deterioration, and intrahemispheric degradation within the limbic
system, respectively. With an optimal set of these parameters, VBMs can mimic essential
data features observed in fMRI recordings, such as FC/FCD matrices.

Finally, we use SBI (see Fig 1C) to estimate the posterior distribution of the generative
parameters in brain disorders. To perform SBI with deep neural density estimators, we
first draw the parameters randomly from a prior distribution, i.e., θ⃗i ∼ p(θ⃗), for each i-th
simulation. The VBM simulator takes the parameters θ⃗ as input and generates summary
statistics x⃗ of the data as output. By preparing a training dataset through performing
VBM simulations with random parameters, a class of deep neural density estimators (such
as MAF or NSF model) is then trained on {(θ⃗i, x⃗i)}Ni=1 with budget of N simulations, to
learn an invertible transformation between data features and parameters of an approximated
posterior distribution p(θ⃗ | x⃗) (see Eq. (5)).

Notably, for any new observation x⃗obs, we can readily approximate the posterior p(θ⃗ |
x⃗obs), making predictions that are probabilistically consistent with the observed data. This
approach allows for efficient and accurate inference of the full posterior, with no demand
for further simulations at the inference step due to the amortization strategy (i.e., a single
pass through the ANNs). This is the primary advantage of this approach that the amortized
inference at the subject level enables us to evaluate different hypotheses with uncertainty
quantification for decision-making processes at a negligible computational cost, typically in
the order of a few seconds.
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Fig. 2. Sensitivity analysis on the degree of degradation in a personalized connectome caused by
virtual disorders. The plots represent the results of a grid search over the KS distance between the
distribution of observed and predicted FC (in blue) and FCD (in red), computed for incremental
increase in (A) the global scaling parameter denoted by G, (B) the degree of degradation in inter-
hemispheric connections denoted by α, and (C) the level of intra-hemispheric degradation within
the limbic system, represented by β. (D) The Hessian values, quantifying the local curvature of
KS distance at the ground truth values (in green), indicate more sensitivity to FCD than FC. The
sensitivity of the β mask is nearly zero (see Tabel S1).

3.2. Sensitivity analysis on the degree of brain degradation
First, we perform a sensitivity analysis on the degree of perturbation in the connectome

(see Eq. (2) and Eq. (3)). The sensitivity analysis can shed light on the identifiability of
model parameters. A small change in a very sensitive model parameter causes a strong
response in the model output, which indicates that the parameter is more identifiable. On
the contrary, a model parameter with low sensitivity is more elusive to identify, because any
modification in an insensitive parameter has no influence on the model output. To assess the
sensitivity of the parameters, we used the Hessian matrix (see Eq. (6)), a metric describing
the local curvature of a function based on its second partial derivatives.

Figure 2A-C shows the Kolmogorov-Smirnov (KS) distance between the distributions of
values in the observed and predicted FC matrices (in blue) and FCD matrices (in red), for
a sweep over the global coupling parameter G, and the levels of inter- and intra-hemispheric
degradation denoted by α and β, respectively. The results indicate a unique global minimum
in the objective function defined by the KS distance, but with varying sensitivity values as
indicated by the Hessian matrix in Fig 2D. Note that the finite confidence intervals in
the profile of the β mask indicate a practical non-identifiability rather than structural non-
identifiability (which demonstrates a flat valley that extends infinitely in both the upper and
lower bounds).

Interestingly, the generative parameters show greater sensitivity to FCD compared to FC
(see Tabel S1), while the sensitivity to β mask, representing the level of intra-hemispheric
degradation (within the limbic system), is near zero, indicating non-identifiability for its esti-
mation. See Supplementary Fig S3 for similar results using Kullback-Leibler (KL) divergence
between the distributions of observed and predicted FC and FCD matrices. Supplementary
Fig S4 shows the KL divergence between these features at the optimal points. Note that
reporting an error metric between predicted and observed BOLD time-series, such as the
root mean square error, can be misleading due to the high noise present in the generated
signals.

An important question that arises is how to effectively integrate spatio-temporal and
functional data features into the inference process. This involves incorporating relevant
information derived from both FC and FCD, including summary statistics such as variance
(fluidity) as well as the (high-order) statistical moments of BOLD data, beyond the KS
distance (synchronization). In addition, we need to assess the uncertainty associated with
the estimated parameters and their relationship to ascertain parameter identifiability. These
questions will be addressed by SBI, which enables us to naturally account for uncertainty
and identifiability concerns while leveraging the maximum information available from the
data for accurate and reliable inference.
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Fig. 3. Inference on the global, inter- and intra-hemispheric degradation in a virtual brain. The
posterior distribution estimated using 100k random simulations for training on functional data
features (FC and/or FCD), is shown (in red) for (A) the global coupling parameter G, (B) the
inter-hemispheric deterioration α, and (C) the intra-hemispheric degradation β. The parameters are
drawn from a uniform prior between zero and one (in blue). The ground truth values are G = 0.62,
α = 0.3, β = 0.4 (in green). (D) The sensitivity analysis conducted using active subspaces explains
the lack of posterior shrinkages in the estimation of β. (E), (F), (G) The estimated posteriors of
parameters G, α, and β, respectively, by increasing thee simulation budget for training. (H) As the
number of simulations for training increases, the sensitivity increases for parameters G, and α, but
not for β, indicating the non-identifiability of degradation within the limbic system.

3.3. Inference on level of degradation in connectome
Here we use SBI to estimate posterior distribution in the set of unknown generative

parameters denoted by θ⃗ = {G,α, β} ∈ R3. Figure 3 shows the estimated posterior using
SBI, by investigating the impact of functional data features (FC and/or FCD), as well as
the number of simulations in quantifying posterior uncertainty. For the training (here using
MAF model), the parameters are drawn from a uniform prior in the range: θi ∈ U(0, 1). It
can be seen that the SBI accurately estimates the posterior of parameters G and α using
functional data features from a budget of 100k simulations (see Fig 3A, B). However, we
observed no posterior shrinkage in the estimation of β mask (see Fig 3C). This is due to
the model’s insensitivity to intra-hemispheric deterioration compared to the whole-network
and intra-hemispheric degradation (see Fig 3D), as calculated from the eigenvalues of the
posterior density (see Eq. 7). This is in agreement with the sensitivity analysis conducted
using the Hessian matrix (see Fig 2D).

Moreover, the uncertainty estimation indicates that FCD is more informative than FC
when inferring perturbed connections. However, using both data features provides even
stronger evidence against the fitted data (see solid lines in Fig 3A-D). We also observe that
increasing the number of simulation budget during the training step provides more informa-
tive posterior distributions for parameters G and α, but not for parameter β (see Fig 3E-H).
These results demonstrate the non-identifiability in estimating the intra-hemispheric degra-
dation from functional data features, even when a large number of model simulations are
used for training.

The effect of the simulation budget on the uncertainty of posterior when training with
the state-of-the-art deep neural density estimators (MAF and NSF) is shown in Fig S5. We
observed that both MAF and NSF models are compatible in uncertainty quantification (with
different simulation budgets), but MAF was 2-4 times faster than NSF during the training
process.

3.4. Inference on perturbation-based degradation in connectome
The structural non-identifiability is independent from the accuracy of experimental data.

Simply increasing the quantity or quality of existing measurements will not resolve this issue.
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The remedy is to design a new setup for the measurements (e.g., new mapping function
from the source to sensor space or reparameterizing the model configuration space). In
contrast, the practical non-identifiability arises due to the limited amount and/or quality of
observations. The remedy for this issue is to add more data so that it provides sufficient
constraining power in the latent space dynamics, yielding a unique estimation with finite
confidence intervals.

To address the practical non-identifiability issue in estimating the β mask, we included
the statistical characteristics of the BOLD time-series (such as the mean, variance, skew-
ness, and kurtosis of BOLD time-series) in the training step. As shown in Fig S6, adding
such spatio-temporal data features results in the better estimation of model parameters,
particularly in the estimation of β mask. However, this leads to a high correlation between
the global scaling parameter G and the α mask (ρ = 0.9, see Fig S6B). Furthermore, the
spatio-temporal data features such as mean and variance can become redundant when using
signal processing techniques such as normalization or z-scoring. To address this issue, we
have perturbed the brain dynamics through stimulation. Fig 4 illustrates the consequence of
brain stimulation on the recovery of generative parameters denoted by θ⃗ = {G,α, β} ∈ R3.
Here we used only functional data features for training in SBI.

Fig 4A, E show the simulated BOLD data and the corresponding FC and FCD matrices,
in the absence and presence of intervention by stimulation, respectively. It can be seen that
the BOLD data display enhanced structural patterns, as evidenced by the higher FC and
the increased variance in FCD (the fluidity before stimulation was 0.001, and it increased to
0.004 after stimulation). Here the stimulation is induced by adding a repetitive step current,
characterized by a duration of 5 sec and an amplitude of 1.2 µA/cm2 to the membrane
potential variable (through Istim in Eq. (2)), within the limbic system.

Fig 4B, F show that SBI provides accurate recovery of global scaling factor G, before
and after stimulation, respectively. This is consistent with our previous results indicating
the model’s heightened sensitivity to this parameter. Fig 4C, G demonstrate the robustness
of estimation on the α mask by closely matching the true values, regardless of the stimu-
lation. This indicates the reliability of SBI in estimating the level of degradation between
hemispheres, even by perturbation in brain dynamics.

Fig 4D, H show that SBI provides poor estimation on the β mask when the stimulation
is off, but reliable estimation when the stimulation is applied, respectively. This demon-
strates that the intervention by stimulation is able to address the non-identifiability issue
encountered when estimating degradation within brain hemispheres. In sum, perturbing
brain dynamics through stimulation increases the likelihood of transitions between brain
states, thereby improving the quality of estimation by providing new observable responses
for the inference process. Nevertheless, it may be impractical to administer stimulation to
all subjects.

In the following, we extend the dimensionality of generative parameters to include the
excitability parameter. We investigate different forms of model parameterization, such as
pooled (homogeneous), unpooled (heterogeneous), and hierarchical (multi-level), to improve
the efficiency of SBI-VBMs in higher dimensions, with no need for stimulation.

3.5. Inference on homogeneous generative parameters
Pooled modeling is a statistical technique that assumes a common structure or distribu-

tion across all individual units, treating them collectively as a single unit and assuming no
variation in the sampling process. For simplicity purposes, homogeneous (or pooled) mod-
eling of excitability assumes a uniform and shared excitability parameter across all brain
regions.

Here we use SBI to estimate posterior distribution in the set of unknown generative
parameters denoted by θ⃗ = {G,α, β, η, J,∆} ∈ R6. In this case, we infer the brain dynamics
from parameters located in multiple brain regions with similar or homogeneous characteris-
tics (see Supplementary, Fig S7A). This form of model parameterization reduces the spatial
dimensions, hence the computational complexity of the inference process.
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Fig. 4. Inference on the global, inter- and intra-hemispheric degradation in a virtual brain with
perturbed dynamics induced by stimulation. Here we used only functional data features for training
in SBI. (A), (E) The simulated BOLD data and corresponding FC and FCD matrices, under
conditions of no-stimulation and with-stimulation, respectively. (B), (F) SBI provides accurate
recovery of the parameter G, pre- and post-stimulation, respectively. (C), (G) Accurate posterior
estimation of the α mask, before and after stimulation, respectively. (D), (H) SBI on β mask
shows poor estimation when the stimulation is off, but reliable estimation when the stimulation is
on, respectively. The violin plots in red show the estimated posterior densities. The black dots
represent a linear regression on the maximum values of the estimated posteriors. Dashed green lines
represent a perfect fit (ground truth values).

Fig 5 shows the estimated posterior distributions using both spatio-temporal and func-
tional data features extracted from BOLD time-series. The diagonal panels show that the
ground-truth values (in green vertical lines) used for generating observed data are well under
the support of the estimated posterior distributions (in red). Here, we used 100k random sim-
ulations from uniform priors (in blue) as: G,α, β ∈ U(0, 1), η ∈ U(−6,−3.5), J ∈ U(1, 30),
and ∆ ∈ U(0.1, 2). Due to sufficient budget of simulations and the informativeness of the
data features for training, hence the accurate parameter estimation, we can see a close agree-
ment between the data features in the observed and predicted BOLD data (see FC/FCD
matrices, shown in the lower diagonal panels). The joint posterior between parameters are
shown at the upper diagonal panels, along with their correlation values (ρ shown at the
upper left corners). It can be seen that there is a strong correlation between parameters
η and J (with ρ=-0.9), also between η and ∆ (with ρ=-0.9). This indicates a parameter
degeneracy between the excitability and the spread of their distribution, as well the synaptic
weight at whole-brain level. This can be due to the homogeneous parameterization used for
inference, which ignores all variation among the units being sampled. Using MAF model,
the training took around 45 min, whereas generating 10000 samples from the posterior took
less than 2 sec. Supplementary Figure S8 demonstrates that excluding the spatio-temporal
data features (i.e., statistical characteristics of BOLD time-series) during training leads to
poor parameter estimation.
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Fig. 5. Inference on homogeneous generative parameters in a virtual brain. Here the set of inferred
parameters is θ⃗ = {G,α, β, η, J,∆} ∈ R6. The training process involved using both spatio-temporal
and functional data features, with a budget of 100k simulations. The diagonal panels display the
prior (in blue) and estimated posterior (in red). The true values (green lines) are well under the
support of the estimated posterior distributions. The lower diagonal panels display the observed and
predicted BOLD data and the corresponding FC/FCD matrices. The upper diagonal panels show
the joint posterior between parameters, and their correlation values (ρ at the upper left corners).
The ground-truth values are shown by green stars. High-probability areas are color-coded in yellow,
while low-probability areas are represented in black.
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Fig. 6. Inference on heterogeneous generative parameters in a virtual brain. Here the set of
inferred parameters is θ⃗ = {G,α, β, ηi} ∈ R91. SBI provides accurate posterior estimation for
various scenarios by setting different excitability maps across brain regions. Both spatio-temporal
and functional data features were used for training, with a budget of 1M simulations. The regions
are color-coded based on their excitability values, with blue representing low-, red representing
medium-, and green representing high- excitability. At top: axial view. At bottom: sagittal view.

3.6. Inference on heterogeneous generative parameters
Unpooled modeling is a statistical technique that treats individual units as being sampled

independently, allowing for adaptation to diverse characteristics and behaviors within the
dataset, without assuming a common structure. Heterogeneous (or unpooled) modeling of
excitability captures the distinct characteristics of each region without imposing a uniform
structure at whole-brain level. This approach leads to more precise and biologically plausible
inference on the brain’s (dis)functioning, but significantly increases the dimension of the
parameter space.

Here we use SBI to estimate posterior distribution in the set of unknown generative
parameters denoted by θ⃗ = {G,α, β, ηi} ∈ R91, where ηi with i ∈ {1, 2, . . . , Nn = 88} is the
excitability parameter heterogeneously distributed across brain regions (see Supplementary,
Fig S7B). This form of model parameterization offers a comprehensive explanation for the
variation in the excitability across brain regions. Fig 6 shows the maximum of estimated
posterior distribution for three different scenarios in setting the excitabilities across brain
regions. It can be seen that SBI provides accurate estimation for different configurations
in excitabilities across brain regions. Here, the training process involved using both spatio-
temporal and functional data features. See Supplementary, Fig S9 for the setups and full
estimated posteriors. Importantly, using only the functional features (FC and FCD) does not
provide sufficient information to infer heterogeneous excitability across whole-brain regions
(see Fig S10).

Regarding the computational cost, using MAF model, the training on 1M simulations
took around 10 h, whereas generating 10000 samples from the posterior took less than
60 sec. Figures S11, S12 demonstrate that both MAF and NSF models were compatible
in uncertainty quantification of heterogeneous parameters. Note that here we used 1M ran-
dom simulations, compared to the 100k simulations used in homogeneous parameterization
(Fig 5). This indicates the demand for a very large simulation budget during training step
to achieve accurate estimation based on a heterogeneous parameterization.

3.7. Inference on hierarchical generative parameters
Hierarchical (or partial pooling) models offer a middle ground between the simplicity of

pooled models (which assume homogeneity) and the complexity of fully unpooled models
(which assume complete independence by heterogeneity). This balance allows for more
flexibility in modeling, and more efficiency and accuracy in estimating.
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Fig. 7. Inference on hierarchical generative parameters in a virtual brain. Here the set of inferred
parameters is θ⃗ = {G,α, β, µη, ση} ∈ R5, with ηi ∼ N (µη, σ

2
η). We used both spatio-temporal and

functional data features, for the training on a budget of 100k simulations. The diagonal panels
display the prior (in blue) and estimated posterior distributions (in red). The true values (green
lines) are well under the support of the estimated posterior distributions. The lower diagonal panels
display the observed and predicted BOLD data and the corresponding FC/FCD matrices. The
upper diagonal panels show the joint posterior between parameters, and their correlation values (ρ
at the lower left corners). The ground-truth values are shown by green stars. High-probability areas
are color-coded in yellow, while low-probability areas are represented in black.
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Here we use SBI to estimate posterior distribution in the set of unknown generative pa-
rameters denoted by θ⃗ = {G,α, β, µη, ση} ∈ R5, where ηi ∼ N (µη, σ

2
η), indicating that ex-

citabilities are sampled from a Gaussian distribution with mean centered at µη, and standard
deviation of ση. This is a hierarchical parameterization on excitabilities (see Supplementary,
Fig S7C), in which they are sampled from a population distribution so that the heteroge-
neous parameters ηi with i ∈ {1, 2, . . . , Nn} are now sampled from a generative distribution
N (µη, ση). Hence, only two hyperparameters µη and ση need to be estimated to explain the
variation in excitability across the brain, rather than Nn excitability parameters.

Fig 7 shows the estimated posterior by SBI using the both spatio-temporal and functional
data features for training. The diagonal panels show that the posterior (in red) accurately
encompass the ground-truth values (in green vertical lines) used for generating the observed
data. For training, we generated 100k random simulations from uniform priors (in blue)
as: G,α, β ∈ U(0, 1), µη ∈ U(−6,−4), and ση ∈ U(0, 1). Due to effective form of model
parameterization, hence the accurate parameter estimation, we can see a close agreement
between the data features in the observed and predicted BOLD data, such as the FC/FCD
matrices (shown at the lower diagonal panels). The joint posterior between parameters are
shown at the upper diagonal panels, along with their correlation values (ρ at the upper left
corners). Using MAF model, the training took around 30 min, whereas generating 10000
samples from the posterior took less than 1 sec. In contrast to heterogeneous modeling, the
hierarchical structure yields more informative posteriors when using only functional data fea-
tures, even with a significantly smaller budget of simulations for training (see Supplementary,
Figure S10 versus Figure S13). These results indicate that hierarchical approach effectively
takes into account the variability across brain regions while naturally incorporating a form
of regularization to provide more stable and robust estimates.

4. Discussion

This study addresses the ongoing challenge of probabilistic inference on complex whole-
brain dynamics using connectome-based models, by presenting simulation-based inference
on virtual brain models (SBI-VBMs). Our methodology (see Fig 1) offers a compelling
advantage in terms of parallel and fast simulations, especially when utilized with the com-
putational power of GPUs (see Supplementary, Fig S2). We showed that by systematically
examining how variations in input parameters affect the output, sensitivity analysis (see
Fig 2, and Fig S3) is crucial in ensuring the robustness and reliability of inference results,
thus for decision-making processes. Our results underscore the limitations of relying simply
on functional data features for making inferences about degradation in brain connectivity
and regional excitability (see Figs 3-4, and Supplementary, Fig S10). Rather, we proposed
the SBI-VBMs approach, which relies on expressive deep neural networks to easily incorpo-
rate all relevant information, such as spatio-temporal and functional features. This approach
demonstrates its effectiveness in accurately estimating generative parameters associated with
brain disorders (see Figs 5-7). Furthermore, perturbing the brain dynamics through stimu-
lation, which increases the likelihood of transitions between brain states, provides a valuable
tool for resolving the issue of non-identifiability, especially in the context of intra-hemispheric
connections (see Fig 4). Ultimately, the hierarchical structure of SBI-VBMs emerges as an
efficient parameterization, enabling precise and biologically meaningful inference on brain’s
(dys)functioning (see Fig 7, and Fig S13).

Several previous studies in whole-brain modeling (Deco et al., 2014; Wang et al., 2019;
Kong et al., 2021; Cabral et al., 2022) have used optimization methods to provide a single
best value of an objective (or a cost) function, scoring the model performance against the
observed data (such as minimizing Kolmogorov-Smirnov distance or maximizing the Pearson
correlation between observed and generated FC/FCD). Such a parametric approach results in
only a point estimation, and is limited to construct the relationship between parameters and
the associated uncertainty (see Fig 5, and Fig 7). The optimization algorithms may easily
get stuck in local extrema, requiring multi-start strategies to address the potential multi-
modalities and parameter degeneracies. Moreover, the estimation depends critically on the
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form of objective function defined for optimization (Svensson et al., 2012; Hashemi et al.,
2018), and the models involving differential equations often have strongly correlated and/or
non-identifiable parameters (Raue et al., 2009; Wieland et al., 2021). These issues can be
addressed by using Bayesian inference which provides proper representation of distributions
and dependence among parameters (Samaniego, 2010; Hashemi et al., 2018).

Bayesian approach has the advantage of yielding a joint probability distribution for model
parameters (see Supplementary, Fig S6, and Figs S8-S13). The posterior distribution encom-
passes all possible parameter combinations that produce a simulation output that explains
the data with quantifying the uncertainty in estimation, which is critical for model com-
parison, selection and averaging, hypothesis testing, and decision-making process. Bayesian
inference also allows us to integrate the prior knowledge in inference and prediction (Gelman
et al., 2014) e.g., the physiological, anatomical, or clinical knowledge to maximize the model
predictive power against measurements (Hashemi et al., 2021; Baldy et al., 2023).

Learning the parameters of dynamical systems enables one to infer not only beliefs or
probabilities of events but also the dynamics of events under changing conditions, for in-
stance, changes induced by treatments or external interventions (Friston et al., 2003; Pearl,
2009). A well-established Bayesian framework for inferring hidden neural state dynamics
from neuroimaging data is the so-called Dynamical Causal Modeling (DCM; Friston et al.
(2003)). Our SBI approach shares a key aspect with DCM: Bayesian inference for causal ef-
fects by estimating the posterior distribution of parameters of a dynamical generative model.
However, there are key differences in practice. The connectome-based approach used in this
study considers the structural connectivity as fixed parameters which are obtained from non-
invasive imaging data of individuals. In contrast, DCM relies on effective connectivity to
explain the effects on observation induced by the causal changes in interactions among brain
regions (Frässle et al., 2017, 2018). Although effective connectivity can provide a better
model fit to empirical data due to the high-dimensionality of parameter space, it may easily
suffer from the non-identifiability issue, unless the changes in connectivity are constrained
by the prior belief that there are transitions among a small number of brain connectivity
states (Zarghami and Friston, 2020). In DCM, the non-linear ordinary differential equation
representing the neural mass model is often approximated by its linearization around the sys-
tem fixed points, whereas the non-linear property of generative models to ensure a switching
behavior in the data is maintained in our approach (see Eq. (2)). More importantly, in-
version of a DCM involves minimizing the free energy (equivalently, the Kullback-Leibler
divergence), in order to maximize the model evidence (Friston et al., 2014; Razi et al., 2015),
while its mean-field variant ignores -by definition- the correlation between parameters. Our
approach is equipped with state-of-the-art deep learning algorithms for Bayesian inference
(e.g., MAF/NSF models), in which systematically place a tighter upper bound on model
evidence (Rezende and Mohamed, 2015; Papadopoulou et al., 2017) to deal with potential
muti-modalities and degeneracies among parameters (Hashemi et al., 2023).

Recently, we have proposed a whole-brain probabilistic framework, the so-called Bayesian
Virtual Epileptic Patient (BVEP; Hashemi et al. (2020)), in which the generative model
based on a system of high-dimensional and nonlinear stochastic ordinary differential equa-
tions was inverted using unbiased and automatic MCMC sampling algorithms. Although,
we have shown that this non-parametric approach is able to accurately estimate the spa-
tial map of epileptogenicity across whole-brain areas, it required a reparameterization over
model configuration space to facilitate efficient exploration of the posterior distribution in
terms of computational time and convergence diagnostics (Jha et al., 2022). In the pres-
ence of metastability in the state space (see Fig 1, Fig S1), MCMC methods require either
more computational cost or intricately designed sampling strategies (Gabrié et al., 2022; Jha
et al., 2022; Baldy et al., 2023), whereas SBI allows for efficient Bayesian estimation with-
out the access to the full knowledge on the state space representation of a system (Baldy
et al., 2024). Note that we used the data features derived from only firing rates, while
the information related to membrane potential activities was treated as missing data (i.e.,
no access to the full state space behavior). More critically, this is highly beneficial if the
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model output such as simulated raw time-series poses discrepancy with the observed data,
rather, it accurately explains the low-dimensional data features such as FC/FCD. Providing
fast simulations, SBI can be applied to other whole-brain network models, since it requires
neither model nor data features to be differentiable (Gonçalves et al., 2020; Hashemi et al.,
2023). Nevertheless, finding low-dimensional but sufficient informative that can deal with
parameter degeneracies, the noise estimation, and scalability to higher dimension with a
feasible budget of simulations are the challenges for this approach to be applied on other
neuroimaging datasets.

In recent work by Sip et al. (2023), a data-driven approach has been introduced to
infer both the unknown generative dynamical system and the parameters varying across
brain regions, while network nodes representing the brain regions are connected with real-
istic strengths derived from diffusion-weighted imaging data. This method offers a different
perspective, leveraging the power of deep generative moodels (Variational Autoencoders)
to focus on the role of regional variance of model parameters. This approach bypasses the
need for specific mathematical form of the neural mass models at each region, allowing for
increased flexibility and the potential to capture complex relationships within neuroimag-
ing data. In contrast, the current study employs an exact mean-field description of spiking
neurons to ensure both realistic simulations of brain activities and the interpretability of
the estimations to develop effective interventions. However, determining causality in brain
disorders requires careful consideration of multiple variables, including longitudinal data,
multimodal imaging techniques, and consistency of statistical and computational methods
with the data. Moreover, brain disorders often involve intricate interactions between genetic,
environmental, and neurobiological factors, making it challenging to isolate specific causal
factors.

In summary, the methodology employed in this study offers the advantage of parallel and
fast simulations for flexible, scalable, and efficient probabilistic inference and can be applied
to different connectome-based models. The key challenge lies in identifying low-dimensional
yet informative data features that can effectively deal with the non-identifiability issues in
the generative models. Nevertheless, hierarchical structures serve as an effective solution,
especially in cases where informative data features or perturbing brain dynamics are not
easily available. The applications of our approach to inferring the origin of brain diseases
remain to be explored in future studies. This investigation holds promise for advancing
our understanding and potentially informing targeted interventions to clinicians for different
brain disorders.

5. Technical Terms

Bayesian Rule: A fundamental belief updating principle that calculates the probability
of a hypothesis given new evidence.

Connectome: The total set of links between brain regions.
Deep neural density estimators: A class of neural network-based approaches that are

used to learn and approximate the underlying probability distribution from a given dataset.
Evidence: Empirical data or observable information that can be used to support or

reject a hypothesis.
Generative parameters: The setting or configuration within a generative model that

controls the synthesis of data and represents causal relationships.
Generative model: A statistical, machine learning, or mechanistic model that repre-

sents the underlying data distribution to generate new data resembling the original dataset.
Hierarchical modeling: A statistical modeling approach where multiple levels of prob-

ability distributions are used to represent uncertainty and variability in a complex system,
with structured dependencies.

Hidden state: A possible model outcome describing system behaviour, which cannot
be measured directly but only inferred indirectly through observed data.
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Hypothesis: A statement on potential causality or predictive relationships to observed
data.

Likelihood: The conditional probability of observing the evidence given a particular
hypothesis.

Markov chain Monte Carlo (MCMC): A family of stochastic algorithms used for
uncertainty quantification by drawing random samples from probability distributions, in
which the sampling process does not require knowledge of the entire distribution.

Prior: The initial probability assigned to a hypothesis before considering new evidence.
Probability distribution: The statistical description of potential outcomes of random

events, where a numerical measure is assigned to the possibility of each specific outcome.
Probability density estimation: The process of inferring the underlying probability

distribution of a random event based on observed data.
Posterior: The updated probability of a hypothesis after taking into account both prior

beliefs and observed evidence.
Simulation-based inference (SBI): A statistical method that involves generating

synthetic data through forward simulations to make inferences about complex systems, often
when analytic or computational solutions are unavailable.

Virtual brain models (VBMs): Personalized data-driven models at whole-brain scale
that use the connectome for network construction, with a set of equations describing regional
brain dynamics placed at each node.

Information Sharing Statement

All code is provided freely and is available at GitHub (https://github.com/ins-amu/
SBI-VBMs) and TVB services on the cloud research platform EBRAINS (https://www.
ebrains.eu/).
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6. Supplementary

Figure S1. The simulated firing rates and the corresponding BOLD signals across brain regions, for
different values of the network scaling parameter G (see Eq.2), which modulates the overall impact
of the SC matrix (left column). The FC (middle column) and FCD (right column) matrices are
shown for the simulated BOLD data. (A) When the global coupling parameter G is weak, the brain
regions enter the monostable regime (down-state), resulting in low firing rates across regions. This is
manifested as a lack of interactions between different brain regions, resulting in a random FC matrix.
Consequently, there are no temporal dynamics in FC, leading to a zero switching index in the FCD
matrix (with the variance of 0.001). (B) At the working point (here around G = 0.5 with noise
level of σ2 = 0.03), the brain regions transition into the bistable regime. This leads to structured
transitions between low and high firing rates in those regions. Consequently, the brain demonstrates
correlated activities between brain regions, as captured by the FC matrix. Additionally, there is
recurrence in the brain’s large-scale dynamics, which is reflected by a non-zero switching index in the
FCD matrix (with the variance of 0.009). (C) When the global coupling parameter G is strong, the
brain regions enter the monostable regime (up-state), resulting in high firing rates across regions.
Again, this results in decorrelated regional activities, which are represented by a random FC matrix
and a zero switching index in the FCD matrix ((with the variance of 0.002)).

Table S1. Sensitivity analysis conducted based on KS and KL distances between the distributions
of values in the observed and predicted FC/FCD matrices.

Hessian value G α β

KS distance between FC matrices 0.1022 0.0085 0.0016
KS distance between FCD matrices 0.2052 0.0213 0.0033
KL distance between FC matrices 0.4128 0.0337 0.0046
KL distance between FCD matrices 0.42512 0.0484 0.0109
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Figure S2. Benchmarking the simulation cost of the VBM using MPR neural mass model, with
2.5M time step on Intel(R) Core(TM) i9-10900 CPU 2.80GHz (in red) and NVIDIA RTX A5000
GPU (in blue). GPUs deliver substantial speedups up to 100X over multi-core CPUs.

Figure S3. Sensitivity analysis on the degree of degradation in a personalized connectome caused
by virtual disorders, based on KL divergence. The plots represent the results of a grid search over
the KL divergence between the distribution of observed and predicted FC (in blue) and FCD (in
red) values, computed for incremental increase in (A) the global scaling parameter G, (B) the
level of deterioration in inter-hemispheric connections α, and (C) the degree of intra-hemispheric
degradation β within the limbic system. (D) The Hessian values, quantifying the local curvature of
KL distance at the ground truth values (in green), using FC and FCD, show no sensitivity to the β
mask.
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Figure S4. Kullback-Leibler (KL) divergence between the observed and predicted data for esti-
mated parameters over the degree of degradation in the global, between and within connections
(denoted by G, α, and β, respectively) in virtual brains. The estimation is performed by minimizing
the KL divergence, which measures the difference between probability distributions. (A) and (B)
display the distribution of FC (functional connectivity) and FCD (functional connectivity dynamics)
matrix elements, respectively, for the observed and the estimated working point.

Figure S5. The effect of the number of simulations on uncertainty estimation with training the
state-of-the-art deep neural density estimators (MAF and NSF models). (A), (B), and (C) show
the plot of posterior shrinkage versus the number of simulations for estimating the parameters G,
α, and β, respectively, from FC/FCD, indicating that both MAF and NSF yield compatible results.
(D) However, we observed that MAF was 2-4 times faster than NSF during the training process.
(E) The plot of z-score versus shrinkage indicates an ideal Bayesian estimation for G and α, but
not for the β mask.
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Figure S6. SBI on the global, inter- and intra-hemispheric degradation in a virtual brain, by adding
spatio-temporal information to the set of data features. Here we used 100k simulations for training,
on both spatio-temporal (statistical moments of the BOLD time-series) and functional (FC/FCD
matrices) data freatures. (A) The estimated posterior (in red) is shown for the global coupling
parameter G, the inter-hemispheric degradation mask α, and the intra-hemispheric degradation
mask β. For random simuations, the parameters are drawn from a uniform prior (in blue). The
ground truth values are G = 0.62, α = 0.3, β = 0.4 (in green). We observe that the estimated
posteriors accurately capture the true parameters, and they exhibit appropriate shrinkages from the
priors. (B) The joint posterior distributions indicate a correlation of ρ = 0.9 between G and α, a
correlation of ρ = 0.6 between G and β, and a correlation of ρ = 0.3 between α and β.
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Figure S7. Modeling structures in Bayesian framework, to explains the observation denoted by
xi (e.g., BOLD data) through the hidden layer of zi (e.g., firing rates in Eq. (2)). (A) Pooled
(homogeneous) modeling, which assumes a common distribution across all individual parameters
and assumes no variation in the sampling process. Hence, the set of generative parameters is
low-dimensional as θ⃗ = {G,α, β, η} ∈ R4. (B) Unpooled (heterogeneous) modeling captures the
distinct characteristics of individual parameters without imposing a uniform structure. Hence,
the set of generative parameters becomes high-dimensional as θ⃗ = {G,α, β, ηi} ∈ RNn+3 with
i ∈ {1, 2, . . . , Nn}. (C) Hierarchical (or partial pooling) modeling offer a balance between the
simplicity of pooled models and the complexity of unpooled models. Hence, the set of generative
parameters is optimal as θ⃗ = {G,α, β, µη, ση} ∈ R5, with ηi ∼ N (µη, σ

2
η).
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Figure S8. Inference on homogeneous generative parameters in a virtual brain using only functional
data features. Here the set of inferred parameters is θ⃗ = {G,α, β, η, J,∆} ∈ R6. The training
process involved using only functional data features (FC/FCD), with a budget of 100k simulations.
The diagonal panels display the prior (in blue) and estimated posterior (in red). For most of
parameters, the maximum a posterior deviates form true value (green lines) with a large uncertainty.
The lower diagonal panels display the observed and predicted BOLD data and the corresponding
FC/FCD matrices. The upper diagonal panels show the joint posterior between parameters, and
their correlation values (ρ at the upper left corners). The ground-truth values are shown by green
stars. High-probability areas are color-coded in yellow, while low-probability areas are represented
in black.
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Figure S9. Inference on heterogeneous excitabilities ηi for 88 brain regions. SBI provides accurate
posterior estimation (in red) using both spatio-temporal and functional data features for (A)-(C)
different configurations in excitabilities across brain regions (ground truth in green dots). Here, we
used 1M random simulations from uniform priors (in blue) as: ηi ∈ U(−6,−3.5).

Figure S10. SBI on the set of generative parameters denoted by θ⃗ = {G,α, β, ηi} ∈ R91, where
ηi with i ∈ {1, 2, . . . , Nn = 88}. The training process involved only functional data features, on a
budget of 1M simulations. (A) The estimated posterior (in red) for parameters G, α, and β. The
prior (in blue), for each was placed between zero and one. The ground truth values are G = 0.62,
α = 0.3, β = 0.4 (in green). (B) The join posterior between parameters. (C) The plot of z-score
versus shrinkage indicates an ideal estimation for G and α, but poor estimation for β and ηi. (D)
The estimated posterior of ηi, for 88 regions. The prior on excitabilities (in blue) was placed as:
ηi ∈ U(−6,−3.5). This result indicate that relying on functional data is inadequate for accurate
inference on heterogeneous excitabilities distributed across the whole brain regions.
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Figure S11. Estimation on heterogeneous generative parameters, using MAF model for training in
SBI. Here the set of generative parameters is θ⃗ = {G,α, β, ηi} ∈ R91, with i ∈ {1, 2, . . . , Nn = 88}.
The training process involved using both spatio-temporal and functional data features, with a budget
of 1M simulations. (A) The estimated posterior (in red) for parameters G, α, and β. The prior
(in blue), for these parameters was placed between [0,1]. The ground truth values are G = 0.62,
α = 0.3, β = 0.4 (in green). (B) The join posterior between parameters. (C) The plot of z-score
versus shrinkage indicates an ideal estimation for G, α, and ηi but poor estimation for β. (D)
The estimated posteriors of ηi, for 88 regions (in red) demonstrate no shrinkages from prior (in
blue). The prior on excitabilities was placed as: ηi ∈ U(−6,−3.5). This result indicates that both
spatio-temporal and functional data features provides an ideal Bayesian estimation on all generative
parameters, except the intra-hemispheric degradation within the limbic system denoted by β mask.

Figure S12. The same analysis as shown in Fig S11, but using the NSF model for training in
SBI. Both the MAF and NSF models are compatible in accuracy of estimation and uncertainty
quantification of the generative parameters.
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Figure S13. The same analysis as shown in Fig 5, but excluding the spatio-temporal data feature
from training. In contrast to heterogeneous modeling (Figure S9), the hierarchical modeling provides
informative posteriors when using only functional data feature for inference, even with a significantly
smaller budget of simulations.
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