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a b s t r a c t

Modern additive manufacturing processes enable fabricating architected cellular materials of complex
shape, which can be used for different purposes. Among them, lattice structures are increasingly used in
applications requiring a compromise among lightness and suited mechanical properties, like improved
energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios. A dedicated
modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial
compression loading is presented in this work. The numerical model is developed in a non-linear
framework accounting for the strain rate effect on the mechanical responses of the lattice structure.
Four geometries, i.e., cubic body centered cell, octet cell, rhombic-dodecahedron and truncated cuboc-
tahedron 2þ, are investigated. Specifically, the influence of the relative density of the representative
volume element of each geometry, the strain-rate dependency of the bulk material and of the presence of
the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the
lattice structure is investigated. The main outcome of this study points out the importance of correctly
integrating geometrical imperfections into the modeling strategy when shock absorption applications
are aimed for.
© 2023 China Ordnance Society. Publishing services by Elsevier B.V. on behalf of KeAi Communications
Co. Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).
1. Introduction

In several industrial sectors, the mechanical response of struc-
tures under dynamic loads is usually investigated to assess and
validate specific design requirements, such as impact resistance,
payload protection or quasi-static load withstanding. In the case of
impacts, shock absorbers are used to absorb a maximum amount of
impact energy, minimizing the protected load probability of being
structurally compromised by any violent collision. According to
Refs. [1], shock absorbers are the main relevant protection archi-
tecture ensuring sensitive material or people safety by being sub-
ject to progressive local strain, as a mean to minimize permanent
damage. These absorbers roles are commonly filled by cellular
solids-void cells interconnected with solid shells or beams. Cellular
solids are assorted into two typologies of structures. The first class
.eu, marco.montemurro@u-

ce Society

g services by Elsevier B.V. on beha
.

includes stochastic cellular structures, which are open or closed
cells of random spatial distribution and sizes but assumed as ho-
mogeneously distributed in a statistically representative volume
element (RVE). The second class includes periodic cellular struc-
tures, which are open or closed geometries, identical in size and
shape, distributed according to a periodic pattern at the macro-
scopic scale.

Stochastic cellular structures may be subdivided into two cate-
gories [1]: closed cell stochastic solids or open cells stochastic solids.
Closed cellular solids, such as agglomerated cork, have consistent
force attenuation properties, inversely proportional to the specimen
thickness, high energy absorption capacities, which are preserved
even after impact phenomena (from 70% to 80%) [2,3], and, conse-
quently, are suitable candidates for vehicle seats, high speed helmets
[4] and even for composite sandwich structures for military and
aerospace applications [5]. Open cellular solids, such as polymeric
foams, present the same advantages as their closed cell counterparts
[6], although used for lower strain-rate applications and vibration
damping [7], as these foams are not suited for personal protection
such as helmets [8]. These cellular structures present a major
lf of KeAi Communications Co. Ltd. This is an open access article under the CC BY
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weakness that has direct consequences on the mechanical behavior:
the uncontrolled presence of local imperfections in the micro and
meso-structure, such as bubbles or inner grain mantles [9], due to
the manufacturing process. Specifically, foams tend to have
enhanced mechanical properties along the foam rising direction
[10]. Therefore, when incorporated into larger structures, the sto-
chastic architectures might present unexpected mechanical
behavior, tailoring forces in uncontrolled directions.

In analogy with stochastic cellular structures, periodic cellular
structures may be subdivided into the same two families. Some
periodic structures are suited to tailor loads in specific directions. For
example, honeycombs are suitable for loads following the direction
of honeycomb extrusion [11e14] and exhibit anisotropic behavior in
the two other loading directions [15]. For other periodic cellular
structures, like lattice structures (LSs), the mechanical behavior is
strongly dependent on the RVE geometry [16e23] and on relative
density [24] or less influenced by the cell size [25]. Extended studies
indicate that the use of LSs is crucial to achieve an optimal level of
energy absorption capacity (EAC) for specific load cases [26,27].
Moreover, experimental data suggest that the increase of the num-
ber of cells in a fixed absorber volume tends to stabilize and increase
the levels of absorbed energy, although this assessment has yet to be
numerically validated [28]. Regarding the mechanical behavior and
EAC of regular cubic and functionally graded lattice structures under
uniaxial quasi-static loads, consequent groundwork has been
established [29e32]. Specifically, dynamic simulations to assess the
mechanical behavior of honeycomb panels have been carried out
thoroughly, indicating relative density plays a significant role in the
EAC of periodic cellular structures, and putting forward the impor-
tance of the RVE geometrical features in structural collapse and load
tailoring [33,34]. Currently, additive manufacturing (AM) processes
for polymers enable the possibility of fabricating such structures, as
discussed inRefs. [35e37]. However, processes such as Stereo-
lithography Apparatus (SLA), Continuous Liquid Interface Production
(CLIP) or Digital Light Synthesis (DLS) present high resolution ca-
pacities, down to an in-plane resolution of 25 mm, and indistin-
guishable layers of material in the vertical direction, generating a
bulk material characterized by an essentially isotropic behavior,
which reduces the sources of errors whenmodeling the constitutive
behavior in finite element (FE) analyses [38,39]. Nevertheless,
geometrical imperfections due to AM processes, such as curling or
trapezoid deformations [40,41], must be consideredwhen designing
structural components made of LSs. Simulations to assess the in-
fluence of geometrical imperfections on the mechanical response of
the structure have been carried out in Refs. [42,43], limiting the
study to linear elastic material properties.

In this context, the aim of this paper is to propose a general
numerical strategy to evaluate the influence of geometrical im-
perfections induced by themanufacturing process on the EAC of LSs
in non-linear dynamic analyses, considering both the non-linear
strain-rate dependent constitutive material model and the con-
tact interactions between the geometrical features of the RVE of the
LS. Four RVE geometries belonging to the class of strut-based LSs
[44,45] have been selected and investigated in this paper. For each
configuration, an extensive campaign of sensitivity analyses of the
EAC to the value of the RVE relative density as well as to the
macroscopic compressive strain rate is carried out. Furthermore,
the influence of geometrical imperfections on the EAC is studied by
considering different parameters that contribute to the definition
of the deformed shape: the maximum value of the defect size and
the shape of the imperfection.

The remainder of the paper is as follows. The problem
description is given in Section 2, while Section 3 presents the RVE
geometries analyzed in this work as well as the constitutive law of
the bulk material. The numerical framework developed to address
48
the mechanical problem is presented in Section 4 together with the
details of the sensitivity analyses. The numerical results are pre-
sented and discussed in Section 5, while meaningful conclusions
and prospects are provided in Section 6.
2. Description of the mechanical problem

To evaluate the capability of cellular structures to absorb energy
under impact loads, two indicators are usually assumed in experi-
ments [46]: the EAC, which considers the area under the local stress
vs. nominal strain measurements and the energy absorption effi-
ciency (EAE), which is computed as the ratio of the EAC to the
maximum nominal compressive stress. Both indices are considered
applicable before densification of the cellular structural configu-
ration occurs and under the hypothesis that, during the application
of the external load, the strain rate is kept constant. The comparison
between cellular structures made of different bulk materials and
different relative densities can be performed by normalizing the
value of the EAC by both the value of relative density and bulk
material density. The normalized EAC, Wc can be computed as:

WcðeÞ ¼ 1
rrmat

ðef
0
scde ¼ Wc

rrmat
; (1)

where r is the relative density, rmat is the density of the bulk ma-
terial of the RVE, sc is the compressive stress obtained from the
experiments as the ratio of the load cell force to the initial specimen
section and ef is the compressive strain before densification occurs
computed as the ratio of the applied compressive displacement to
the initial specimen height.

In the context of the current numerical study, the indicator used
to quantify the energy absorption of cellular structures under dy-
namic loading is the normalized internal energy IE, which is more
suited to the analysis of numerical results if compared to the
normalized EAC indicator. For a general loading condition, the
normalized internal energy of a body can be computed as:

IEðeÞ ¼ IEðeÞ
rrmat

¼ Ee þ Ep þ Ev
rrmat

; (2)

where IEðeÞ is the internal energy computed for the whole body
volume, Ee is the elastic strain energy, Ep is the energy dissipated
via plasticity, Ev is the energy dissipated by time-dependent
mechanisms (e.g., viscosity).

The value of IE can be obtained by computing the terms Ee, Ep
and Ev as follows:

IEðeÞ ¼ Ee þ Ep þ EV ¼
ðt
0

�ð
V
s : _eedV

�
dtþ

ðt
0

�ð
V
s : _epdV

�
dt

þ
ðt
0

�ð
V
s : _evdV

�
dt;

(3)

where s is the stress tensor and _ee, _ep and _ev are the three strain rate
tensors which describe the contributions to the total strain rate
tensor decomposition, i.e.,

_e ¼ _ee þ _ep þ _ev; (4)

where _ee is the elastic strain rate tensor, _ep is the plastic strain rate
tensor and _ev is the strain rate tensor related to time-dependent
mechanisms.

In the following of this paper, the quantity IE is used to perform
a comparative study on the dynamical behavior of four lattice



Fig. 1. Geometries of the lattice structures considered in this study: (a) CBCC; (b) OC; (c) RD; (d) TrCO.
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configurations characterized by different values of relative density
and different values of applied strain rate in the presence of
geometrical imperfections aimed at reproducing those typically
related to AM technology. Finally, a comparison between the IE and
the Wc indicators is systematically carried out on selected RVE
configurations to highlight and discuss their fitness to address the
mechanical response of LSs in shock absorption applications.
1 http://homtools.lma.cnrs-mrs.fr/
3. Geometry and material properties

Four RVE geometries embedded in a cubic domain have been
selected for this study. They have been taken from Ref. [20] and
shown in Fig. 1: cubic body centered configuration (CBCC), octet
configuration (OC), rhombic-dodecahedron (RD) and truncated
cuboctahedron 2þ(TrCO). Three values of relative density r, defined
as the ratio of the volume occupied by the bulk material to the
volume of the whole RVE, have been considered: r ¼ [0.2, 0.4, 0.6].

Due to the cubic volume of the RVE, only two geometrical pa-
rameters are needed to define the lattice architecture: the global
cell size Lc, and the radius of the struts Ra, as illustrated in Fig. 2(a).
The relationship r (Lc, Ra) between the relative density and the
geometrical parameters Lc and Ra, has been determined through
preliminary geometric/numerical analyses. As a result, Fig. 2(b)
shows the four surfaces describing the function r (Lc, Ra) for each
RVE geometry. The four solid lines of Fig. 2(b) represent the inter-
section between the fitting surfaces and the horizontal plane, r (Lc,
Ra) ¼ 0.2. The solid lines are then used to define the relationships
between the geometrical parameters Lc and Ra which are needed to
generate the FE model of the lattice geometry characterized by the
selected relative density.

The analytical relationships that define the curves resulting
from the intersection between the fitting surfaces and the hori-
zontal planes at r (Lc, Ra) ¼ [0.2, 0.4, 0.6] can be properly interpo-
lated with a linear relationship as follows:

LcðrÞ¼CðrÞRa (5)

where the coefficients CðrÞ are provided in Table 1 for each RVE
geometry.

The bulkmaterial constituting the lattice cells is a Thermoplastic
Polyurethane (TPU). The constitutive behavior of the TPU, typically
assumed as hyper-viscoelastic [47], is modeled via a Cowper-
Symonds (CS) material model [48], which represents a relatively
simple material model capable to reproduce an elasto-plastic
constitutive law including strain rate-dependency hardening ef-
fects. In the CS model, the flow stress sy is described via a power
law as follows:

sy ¼ sQSy

�
1þ

� _ε

D

�
1
p

�
; (6)

where the flow stress values at a given strain-rate value _ε is
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computed by scaling the quasi-static yield stress values sQSy ob-
tained via quasi-static compression tests on the bulk material, with
a power law relationship characterized by two parameters, D and p,
to be determined via dedicated experimental dynamic tests.

The set of parameters describing the CS material model, used in
the present study, is reported in Table 2. The seε curves corre-
sponding to the three strain-rate values _ε ¼ [250, 750, 1250] s�1

considered for the sensitivity analyses discussed in section 4 are
shown in Fig. 3 together with the quasi-static seε data (black
markers in Fig. 3), taken from Ref. [48], from which the corre-
sponding quasi-static constitutive law has been approximated.

4. The numerical modeling strategy

4.1. The finite element model of the representative volume element

The campaign of sensitivity analyses presented in this work
aims to investigate the sensitivity of the dynamical response of the
RVE geometries shown in Fig. 1 to the following parameters:

� The relative density of the RVE.
� The value of the strain rate imposed to the RVE.
� The geometrical imperfections resulting from the
manufacturing process.

Three values of relative densities are considered in all the ana-
lyses, i.e., r¼ [0.2, 0.4, 0.6], for which three values of strain rate, i.e.,
_ε¼ [250, 750,1250]s�1, are used to define the dynamic compressive
loading.

To evaluate the EAC of the different RVE geometries and to
assess the influence of manufacturing-induced geometrical im-
perfections on the dynamics of the LS, a numerical framework is
developed within the Abaqus® FE commercial software.

Python scripts are created and coupled with the Abaqus CAE
interface to perform all the operations required to prepare the input
files to be submitted to the Abaqus Implicit solver. An example of
the FE model, for each RVE topology, is illustrated in Fig. 1. Specif-
ically, for each RVE geometry, the following operations have been
completely automated: (1) creation of one eighth of the RVE ge-
ometry; (2) creation of the mesh and generation of the FE model of
the whole RVE by means of duplication and mirroring operations;
(3) applications of the periodic boundary conditions (PBCs) to the
boundary of the FE model (this operation is carried out through the
HOMTOOLS1 toolbox for Abaqus); (4) definition of the contact re-
gions (contact zone between the struts composing the RVE,
including self-contact) and of the loading case (i.e., uni-axial stain
field along x axis); (5) submission of the run and post-processing of
the results.

The first two operations allow obtaining a perfect matching of

http://homtools.lma.cnrs-mrs.fr/


Fig. 2. (a) Geometrical parameters of the lattice cells; (b) Relative density as function of the two geometrical parameters.

Table 1
Values of the coefficient of the linear interpolation law relating the geometric pa-
rameters of the cubic RVE at the selected values of relative density.

CBCC OC RD TrCO

C(r ¼ 0.2) 5.49 7.28 6.47 6.702
C(r ¼ 0.4) 3.69 4.74 4.27 4.394
C(r ¼ 0.6) 2.94 3.71 3.36 3.449

Table 2
TPU material properties for the definition of the Cowper-Symonds material model.

Property Value Plastic strain Yield stress/MPa

Young Modulus, ETPU/MPa 158 0 11.05
Poisson coefficient, nTPU 0.4 0.36 25.92
Density, rTPU /(kg�m�3) 1150 0.76 45.36
Cowper-Symonds law parameter

Value
1.42 119.02

D/s�
1

971 1.90 265.26
p 0.98 2.18 295.46

2.97 390.17

Fig. 3. Stress-strain curves obtained with the Cowper-Symonds material model: black
dots represent the experimental data taken from Ref. [48] and provided in Table 2.
Solid black line is obtained by fitting the shown experimental data.
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those nodes located on opposite sides of the FE model, which is
needed for the PBCs to be correctly enforced [49]. Although the
maximum compressive strain is set equal to 0.4, for all the RVE
geometries considered in the study, the value of the constant strain
rate is set by acting on the simulation time tsim as follows:

tsim ¼ εmax

_ε
; εmax ¼ 0:4; _ε ¼ ½250;750;1250�s�1 (7)

The value of tsim obtained from Eq. (7) defines the step time of
the implicit dynamic non-linear analysis.

Due to the complexity of the geometries at hand, four-node
tetrahedral elements (C3D4) [50] are used to generate the FE
model with a total number of elements of approximately 240000
(different RVE geometries and relative densities are characterized
by a different number of elements). To prevent interpenetration
and meaningless deformed shape of the struts constituting the RVE
geometry during compression, general contact interaction with
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penalization is enforced to all the external element faces. Moreover,
frictionless contact interactions have also been added between the
external element faces of the lattice FE model and two rigid planes,
as shown in Fig. 4. These planes, placed in proximity of the FE
model, follow the lattice FE model external faces along the global x-
axis (the loading direction) as illustrated in Fig. 4. The aim of the
rigid planes is twofold. On the one hand, they allow to enforce the
periodicity of the deformation of those regions of the FE model of
the RVE which are not driven via the PBCs (i.e., nodes belonging to
struts that do not lie on the model boundaries). On the other hand,
they allow simulating the presence of adjacent cells and, thus, the
occurring of the densification phenomenon (which cannot be
predicted when considering the FE model of single RVE).

Of course, by including the rigid planes within the simulations,
the value of the EAC will increase, as expected, for all the sensitivity
analyses due to the additional lateral confinement, which generates
higher stress/strain values in the struts of the RVE involved in the



Fig. 4. (a) Numerical analysis setup with rigid surfaces to reproduce densification ef-
fects at high strain values of uniaxial strain; (b) Example of a deformed configuration of
the TrCO cell for r ¼ 0.2 at ε ¼ εmax ¼ 0.4. The color plot corresponds to that of the
magnitude of the displacement vector.
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contact (which takes place at high values of the imposed macro-
scopic strainwhen densification occurs). Fig. 5 shows a comparison
between both the force vs. deformation curves obtained for the
TrCO geometry, at different values of relative density, with and
without rigid surfaces and the deformed shapes of the same RVE
geometry at ε ¼ εmax ¼ 0.4.

Due to the significantly greater computational cost of numerical
analyses including contact interactions with the rigid planes, a
preliminary evaluation of the EAC has been carried out on all the
RVE geometries with and without rigid planes. For all the consid-
ered RVE configurations, except to the TrCO topology, the relative
difference of the EAC assessed with and without modeling rigid
planes is negligible. Therefore, rigid planes have been included
within all the numerical analyses of the TrCO RVE geometry which,
as discussed later in subsection 5.2, is the one capable of absorbing
more energy when geometrical defects are considered, if compared
to the other RVE geometries. It stands out that, for the TrCO RVE
geometry, the relative error of the EAC between the simulations
without rigid planes and those with rigid planes spans is, in any
case, between 3% and 10%. To this purpose, it was not considered
Fig. 5. (a) Longitudinal force vs. longitudinal deformation curves of the TrCO geometry for r
deformed shapes at εmax ¼ 0.4 of the simulations performed with and without rigid surfaces
corresponds to that of the displacement magnitude.
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relevant to include the contact interactions with the rigid planes
within the numerical analyses for the three other RVE geometries
(CBCC, OC and RD).

A preliminary sensitivity analysis of the EAC to the mesh size is
performed to identify the value of the average element size
allowing for a reasonable compromise between accuracy of the
results of the non-linear analyses and computational costs. As an
example, Fig. 6 points out the influence of the average element size
(esize) on the normalized compressive force vs. the macroscopic
strain imposed to a CBCC geometry characterized by a relative
density r ¼ 0.2 at a strain rate _ε ¼ 750 s�1. The results of these
preliminary analyses point out that an average element size of
approximately 0.4 mm allows for a good compromise between
accuracy of the results and computational cost, as shown in Fig. 6,
in terms of normalized compressive effort, normalized simulation
time and normalized strain energy. The normalization is performed
with respect to the relevant quantities obtained for the coarsest
average element size (esize ¼ 0.46 mm). It results that a value of
esize ¼ 0.39mm represents a good compromise between simulation
time and accuracy in assessing the normalized strain energy.

4.2. Description of the sensitivity analyses

To quantify the influence of geometrical imperfections on the
capacity of the considered lattice cells to absorb energy, a sys-
tematic sensitivity analysis is carried out. Different scenarios of
geometrical imperfections are imposed to the considered RVE ge-
ometries and the resulting values of absorbed energy are compared
with those obtained on idealized RVE geometries (i.e., without
defects) for different values of both macroscopic strain rate and
relative density.

Different approaches can be used to introduce geometrical im-
perfections in a FEmodel. For instance, one can introduce a random
offset to the coordinates of each node constituting the FE model, or
an analytical definition of the imperfection can be used to define
the initial configuration of the FE model. A sound alternative con-
sists in introducing a linear combination of the normalized
displacement fields related to the first N buckling loads (i.e., the
deformed shapes corresponding to the eigen-vectors) to generate a
global imperfection. The latter approach is usually used in the
context of post-buckling analyses of structures [51e53] and it has
¼ [0.2, 0.4, 0.6] and _ε ¼ 750 s�1 with and without rigid planes; (b) Comparison of the
at _ε ¼ 750 s�1 (rigid surfaces have been hidden to show the lattice cell). The color plot



Fig. 6. Example of the sensitivity of the results of the non-linear dynamic analysis to the average element size on the CBCC geometry for r ¼ 0.2 and _ε ¼ 750 s�1: normalized
longitudinal force vs. macroscropic longitudinal strain, normalized simulation time vs. average element size and normalized strain energy vs. average element size. The curves have
been obtained for one of the simulation scenario discussed in subsection 4.2 including a geometrical imperfection.

Fig. 7. Examples of three buckling modes (number 3, 6 and 8) of the four RVE
geometries.
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been applied in the present study.
Once the normalized nodal displacements of the FEmodel of the

RVE are extracted from eigenvalue buckling analyses, the global
imperfection is generated by changing the coordinates of the nodes
of the RVE as follows:

uðxÞ ¼
XN
i¼1

�
4iu

0
i ðxÞ

�
; (8)

where u(x) is the nodal displacement vector which define the
global imperfection to be imposed to the FE model (x contains the
nodal coordinates), N is the number of buckling modes included in
the definition of the global imperfection, 4i is the value of the
weight coefficient associated to the i-th buckling mode and u0

i ðxÞ is
the normalized nodal displacement vector of the i-th buckling
mode.

Eq. (8) shows that, for a generic FE model, two parameters in-
fluence the global imperfection: the number of modes N and the
weights 4i. In the present study, the weight coefficients are the
same for each buckling mode included within the global imper-
fection. As a consequence, once the maximum global amplitude is
defined, the weight coefficients are computed by dividing the
global amplitude by the number of modes N. As an example of
typical buckling modes obtained for the studied lattice cells, Fig. 7
shows the buckling modes of the considered RVE geometries
relative to modes number 3, 6 and 8.

Table 3 lists the scenarios considered in the campaign of
sensitivity analyses presented in this work. These scenarios aim at
addressing the influence of different parameters defining the
geometrical imperfection on the EAC of each RVE topology.
Particularly, two aspects are addressed: the choice of the buckling
modes which define the global imperfection (scenarios D1 and D2)
and the absolute value of the global amplitude of the geometrical
imperfection (scenario D3). Finally, the effect of the lattice cell
relative density is addressed in scenario D4. The value of the global
amplitude defining the imperfection is provided as a percentage
value of the RVE size 2Lc.

5. Numerical results

The computation of the normalized internal energy IE is
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performed by means of dedicated post-processing Python scripts,
which are executed after those used to generate the FE models of
the RVEs and to run the simulations. Abaqus automatically com-
putes the values of the internal energy, according to Eq. (3), for each
element constituting the FE model. By performing a sum over the
elements constituting the FE model, the value of IE is computed as
reported in Eq. (2). The normalized EACWc of Eq. (1) is obtained by
extracting the value of the axial force and the equivalent
compressive stress sc is obtained as the ratio of the axial force to the
initial cell section.

To highlight the influence of geometrical imperfections on the
dynamical response of RVE geometries, the results of the idealized
RVE geometries are assumed as the reference ones and the results
obtained with the scenarios of Table 3 are provided as percentage
values with respect to the reference ones.
5.1. Nominal geometries

To provide a baseline for the simulations incorporating the



Table 3
Overview of the sensitivity analysis scenarios.

Scenario ID Buckling modes Global amplitude Relative density

D1 1, 2, 3, 4, 5 1% 0.2
D2 D2-1 1, 2 1% 0.2

D2-2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1% 0.2
D3 D3-1 1, 2, 3, 4, 5 0.1% 0.2

D3-2 1, 2, 3, 4, 5 5% 0.2
D4 D4-1 1, 2, 3, 4, 5 1% 0.4

D4-2 1, 2, 3, 4, 5 1% 0.6
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geometrical defects, a first numerical campaign of analyses is car-
ried out on the RVE geometries without defects. The values of IE
obtained for the nominal RVE geometries are reported in Fig. 8.

These results point out that the values of IE increase with the
strain rate, as expected, in the same fashion for the four RVE ge-
ometries in the considered range of strain rate. This behavior is
obtained also for those simulations involving greater values of
relative density. It is noteworthy that when increasing the value of
relative density the increase of the value of IE is not the same for all
the lattice cells. As illustrated in Fig. 8, the CBCC and the TrCO ge-
ometries exhibit a higher capacity of absorbing energy within the
considered range of both _ε and r. In particular, when small values of
r are considered, the CBCC geometry proves to be the best solution.
Conversely, when higher values of r are considered, the TrCO ge-
ometry exhibits the highest IE among the considered RVE
geometries.

As introduced in Section 2, an alternative approach to evaluate
the EAC, which is easily applicable in experiments, consists of
computing the value of Wc. As an example, Fig. 9 illustrates the
longitudinal force vs. longitudinal deformation curves, extracted at
the reference point of the FE model used to drive the macroscopic
strain applied to the RVE FE models. By applying Eq. (1), the values
of Wc can be computed for the considered RVE geometries. Fig. 10
shows the percent relative error obtained by considering the values
of IE and the values of Wc resulting from the numerical analyses,
whose curves are shown in Fig. 9, for a relative density equal to 0.2
and a strain rate equal to _ε¼ 750 s�1 for all the RVE geometries (the
results are reported for all the strain rate values only for the TrCO
Fig. 8. Normalized strain energies of the nominal RVE geometries for three values of strain ra
cell correspond to the values obtained with the simulations including the rigid planes, as p
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geometry in Fig. 10(b)). As expected, from the energy balance of
Eqs. (1) and (3), the computed values of Wc are very close to those
reported in Fig. 8 with a maximum percent relative error around
3%.

5.2. Geometries with manufacturing process-induced geometrical
imperfections

To investigate the effect of geometrical imperfections on the
dynamical response of the considered RVE geometries, the FE
models used in the simulations presented in subsection 5.1 have
been modified by introducing geometrical imperfections according
to the defect scenarios presented in Table 3. Greater relevance will
be given to the results of the TrCO lattice geometry since, as shown
later in this section, it exhibits the most efficient response, in terms
of EAC, when geometrical imperfections are included within the
numerical simulations. Finally, to point out the influence of
geometrical imperfections on the EAC of the considered RVE ge-
ometries, most of the results presented in this section, are
normalized with the counterparts obtained for the nominal RVE
geometries discussed in subsection. 5.1.

An overview of the change of IE due to the presence of
geometrical imperfections (for each scenario listed in Table 3) is
illustrated in Fig. 11 for those RVE configurations characterized by
r ¼ 0.2. The values of Fig. 11 represent the relative error, in per-
centage, with respect to the nominal values of IE shown in Fig. 8. A
first analysis of these results highlights that, regardless of the strain
rate value, CBCC and OC geometries are remarkably more sensitive
to the presence of geometrical defects with a maximum relative
te and three densities: (a) r ¼ 0.2; (b) r ¼ 0.4; (c) r ¼ 0.6. The hatched bars for the TrCO
resented in section 4.



Fig. 9. (a) Longitudinal force vs. longitudinal deformation of the four considered RVE geometries with r ¼ 0.2 and _ε ¼ 750 s�1; (b)Longitudinal force vs. longitudinal deformation of
the TrCO geometry with r ¼ 0.2 and _ε ¼ [250, 750, 1250] s�1.

Fig. 10. Percentage error between Wc and IE for: (a)The studied lattice cells with r ¼ 0.2 and _ε ¼ 750 s�1; (b) The TrCO lattice cell with r ¼ 0.2 and _ε ¼ [250, 750, 1250] s�1.
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reduction of the IE reaching values of about 50%. Conversely, RD and
the TrCO geometries exhibit a less significant modification in the IE
values with percentage differences ranging between, approxi-
mately, 1% and 17%.

The influence of the different scenarios (for r¼ 0.2, scenarios D1,
D2-1, D2-2, D3-1 and D3-2) can be observed on the magnitude of
the reduction of IE. If scenario D1 is assumed as reference (black
bars in Fig. 11), by keeping unchanged the global amplitude of the
defect, when a smaller number of modes (scenario D2-1) is used to
generate the imperfection, a greater reduction (red bars in Fig.11) is
obtained. Conversely, by increasing the number of modes, the value
Fig. 11. Percentage error of the values of IEImp computed for the different scenarios of Table
values obtained with the nominal RVE geometries, IENom.
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of relative error (blue bars in Fig. 11) is essentially equal to the that
obtained with the scenario D1. As a matter of fact, when the
number of modes is excessively small, the structural instabilities
undergone by the RVE geometries take place for a smaller macro-
scopic deformation. This pattern can be observed for the CBCC, OC
and RD geometries for all the considered strain rate values while
the TrCO geometry seems to be almost insensitive to the choice of
the number of modes.

From the analysis of the results illustrated in Fig. 11 one can infer
that for all the RVE geometries and for all the simulated strain rate
values, the smaller the imperfections (scenario D3-1) the smaller
the reduction of the IE (green bars in Fig. 11) and, when the
3 (for the RVE geometries characterized by r ¼ 0.2) with respect to the corresponding
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magnitude is increased as in scenario D3-2, the maximum reduc-
tion in IE is attained (cyan bars in Fig. 11).

A deeper insight of the results shown in Fig. 11 can be gained by
observing the longitudinal force vs. longitudinal deformationwhen
geometrical imperfections are included into the analysis. Specif-
ically, Fig. 12 illustrates the comparison between the scenario with
no geometrical defect (continuous lines) and the scenario D1
(dashed lines) for the four RVE geometries at _ε¼ 750 s�1. As already
discussed for the values of relative error of Fig. 11, CBCC and OC
geometries are remarkably sensitive to the presence of a small
geometrical defect, with a sudden force reduction at approximately
ε ¼ 0.15. This behavior is probably due to the presence of struts
aligned to direction of compression which, without introducing
defects, undergo solely axial compression and, when defects are
introduced, they undergo a combination of axial compression and
bending. For RD and TrCO geometries, the reduction of the force is
Fig. 12. Comparison between the longitudinal force vs. longitudinal deformation of the four
the D1 scenario.

Fig. 13. Comparison between the longitudinal force vs. longitudinal deformation for the TrCO
1250] s�1.
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less significant and the macroscopic deformation, after which the
difference between the curves is higher, shifts at a value greater
than ε¼ 0.2. By observing the results relative to the RVE geometries
characterized by r ¼ 0.2 of Figs. 11 and 12 and by considering the
reduction of IE with respect to the results of Fig. 8, the TrCO ge-
ometry proves to be, within the limits of the hypotheses at the basis
of the numerical analyses, the most efficient configuration, in terms
of IE, when a realistic magnitude of geometrical defect is assumed.

The influence of the number of modes included in the genera-
tion of the defect and of its magnitude, as well as the strain-rate
effects, can also be observed on the curves representing the lon-
gitudinal force vs. longitudinal deformation in Fig. 13. If scenario D1
is assumed as reference, a greater defect (scenario D3-2) shifts the
curves towards smaller values of the longitudinal force (green
curves in Fig. 13) while smaller values (scenario D3-1) makes the
RVE geometries for r ¼ 0.2 and _ε ¼ 750 s�1 between nominal geometries and those of

geometry between the scenarios of Table 3 carried out with r ¼ 0.2 and _ε ¼ [250, 750,



Fig. 14. Percentage error between IEImp and IENom for all RVE geometries by considering scenarios D4-1 and D4-2 of Table 3 and _ε ¼ [250, 750, 1250] s�1.

Fig. 15. Comparison between the longitudinal force vs. longitudinal deformation of the TrCO geometry for the D4-1 scenario of Table 3 carried out with r ¼ 0.4 and _ε ¼ [250, 750,
1250] s�1.
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TrCO geometry closer to the nominal one with a consequent in-
crease of longitudinal force (cyan curves in Fig. 13).

If compared to the other RVE geometries, the TrCO topology
exhibits a distinct mechanical response when different number of
modes are used to generate the geometrical defect (by keeping
constant the amplitude of the defect). In fact, unlike the behavior of
the other RVE geometries, the values of longitudinal force of sce-
nario D2-1 (where only twomodes are used to generate the defect)
are in any case greater than those obtained with the scenario D1.
This response is probably due to the specific influence of these two
buckling modes, used to create the geometrical imperfection, on
the deformation of the TrCO geometry.

The results of the numerical analyses including geometrical
defects for the RVE geometries characterized by values of relative
density equal to r ¼ 0.4 and r ¼ 0.6, are shown in Fig. 14, where the
percentage errors between the simulations including defects, i.e.,
scenarios D4-1 and D4-2, and those considering the nominal
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geometries are reported. It stands out that all the RVE geometries
are remarkably less sensitive to defects with maximum relative
errors smaller than 5% for the CBCC and OC geometries character-
ized by r¼ 0.4 and significantly even smaller values (less than 0.5%)
for all the other studied cases. As an example, these results can also
be interpreted on the basis of the longitudinal force vs. longitudinal
deformation curves of Figs. 15 and 16, extracted from the numerical
analyses of the TrCO geometry at r ¼ 0.4 and r ¼ 0.6, respectively.
Due to the greater values of relative density, the magnitude of the
geometrical defect is not capable of triggering different instabilities
of the struts constituting the RVE compared to the simulations on
the nominal geometries. Of course, for these values of relative
density the presence of a geometrical defect would be detectable
only if a significant magnitude of the defect is included in the
simulations.

Finally, the comparison between the values of IE and Wc, the
latter computed via Eq. (1), of the numerical analyses including



Fig. 16. Comparison between the longitudinal force vs. longitudinal deformation of the TrCO geometry for the D4-2 scenarios of Table 3 carried out with r ¼ 0.6 and _ε ¼ [250, 750,
1250] s�1.

Fig. 17. Percentage error between Wc and IE obtained from the force vs deformation
curves of Figs. 12 and 13.
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imperfections and characterized by a value of relative density
r ¼ 0.2, are shown in Fig. 17. The results show that both indicators
return consistent values. Among the considered RVE geometries
and defect scenarios, the maximum value of the relative error,
which is about 6%, is obtained for the CBCC geometry. For all the
other lattice geometries and defect scenarios, the relative errors
range between 1.6% and 5%, approximately.

6. Conclusions

In this study, the influence of geometrical defects on the energy
absorption capacity and on the dynamical response of four lattice
structure geometries, by considering different relative densities,
subject to uni-axial strain field at different strain-rate values has
been investigated. This study contributes to develop a numerical
framework aimed at addressing the energy absorption of lattice
structures for real-life shock absorption applications.

Particularly, the study of geometrical defects, typically obtained
in additive manufacturing processes of polymers, allows to
consider, within the design phase, the reduction in terms of energy
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absorption capacity that, for certain geometries, can be significant.
Non-linear numerical analyses have been performed by

considering non-linear, strain rate-dependent material behavior
together with contact interactions between the struts of the lattice
structures and between different cells to reproduce, through a
dedicated modeling strategy developed for a single representative
volume element, the beginning of the densification phase.

A broad range of defect scenarios has been investigated where
the magnitude and the global shape of the defect have been
selected as the main parameters to be modified during the sensi-
tivity analysis. (1) The results indicate that when considering
nominal geometries (i.e., without introducing defects) the energy
absorption capacity is significantly dependent on the lattice ge-
ometry with the CBCC being the most efficient geometry at small
density and the TrCO being the most efficient one at higher den-
sities; (2) the introduction of defects induces a reduction in energy
absorption capacity, for the lattice cells characterized by r ¼ 0.2,
which is remarkable (between 20% and 50% of the values obtained
with no defects) for CBCC and OC configurations and it is signifi-
cantly smaller for RD and TrCO geometries (between 1% and 16%);
(3) the geometries characterized by a greater value of relative
density (r ¼ 0.4 and r ¼ 0.6) are essentially insensitive to the
presence of the simulated defects.

Even though these results are limited to uni-axial strain field
and to a limited number of lattice geometries, they highlight that it
is questionable to consider geometrically perfect lattice geometries
when dealing with the assessment of the energy absorption ca-
pacity of lattice structures. Ongoing studies are addressing more
complex loading conditions, a larger number of lattice geometries
as well as evaluating if, with canonical geometries, it is possible to
optimize their response by acting on the geometrical parameters
defining the lattice cell. To further advance the design of lattice
structures, the use of robust design strategies would also promote a
better understanding of the effects of sources of uncertainty on the
structural response. This will require extensive experimental
campaigns to measure both the relevant material properties and
the associated scattering to be used in numerical analyses. Of
course, when numerical analyses of large lattice structures are
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needed, it would be impractical to explicitly model every single
lattice cell of the structure. To this end, non-linear homogenization
techniques are of paramount importance and should be applied, on
lattice structures including geometrical imperfections.
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