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The detection of tiny objects is a challenging task in computer vision. Conventional object detection methods
have difficulties in finding the balance between high detection rate and low false alarm rate. In the literature,
some methods have addressed this issue by enhancing the feature map responses for small objects, but without
guaranteeing robustness with respect to the number of false alarms induced by background elements. To tackle
this problem, we introduce an a contrario decision criterion into the learning process to take into account the

unexpectedness of tiny objects. This statistic criterion enhances the feature map responses while controlling
the number of false alarms (NFA) and can be integrated as an add-on into any semantic segmentation neural
network. Our add-on NFA module not only allows us to obtain competitive results for small target, road crack
and ship detection tasks respectively, but also leads to more robust and interpretable results.

1. Introduction

The detection of tiny objects, defined as having at least one small
(1-5 pixels) dimension, is a great challenge in computer vision. This
issue is of a key interest in many real-world applications, e.g. in the
defense and security fields for surveillance or in the medical field for
early and accurate diagnosis. The rise of deep learning methods has led
to impressive progress in object detection in the past decades, mostly
thanks to their ability to extract non-linear features well adapted to
the downstream task. However, most state-of-the-art (SOTA) object
detection methods such as YOLO [1] perform poorly on very small ob-
jects. Indeed, neural networks (NN) based on bounding box regression
extract features at deeper levels and the lack of data reconstruction
erases small structures, which are essential for the detection of tiny
objects. Semantic segmentation methods are then preferred, although
their performance remains limited. This is firstly due to the nature of
the objects: their surface area is made of only few pixels, and they
do not present a specific structure. Secondly, tiny objects are often
partially hidden in complex and highly textured backgrounds, leading
to many false alarms. Some examples are shown on Fig. 1. Moreover,
dealing with small object detection results in learning from highly class-
imbalanced datasets. Thus, in a semantic segmentation scheme, tiny
object features cannot be learned easily due to the small number of
samples in comparison with the background class.

Among the few approaches that have been proposed to improve tiny
object detection, some of them focus on augmenting or oversampling

the dataset [2], while others focus on improving small object feature-
enhancement. Among the latter, we can cite the Feature Pyramid
Networks (FPN) and their variants [3], whose multi-scale approach is
beneficial for the detection of objects of various sizes. Other works
include attention mechanisms to learn long-range dependencies [4], or
use super-resolution to enhance feature responses of small objects [5].
However, these methods do not take advantage of the unexpectedness
of small objects with respect to the background, as one could do in an
anomaly detection approach with, for example, one-class classifiers [6],
that discriminate small objects as unexpected patterns with respect to
the background. Such a criterion can efficiently reduce the number of
false alarms induced by the background and thus can allow for a better
balance between precision and detection rate.

We therefore propose a new deep learning paradigm for detecting
tiny objects by taking into account their unexpectedness. It relies on a
contrario reasoning, introduced by [7]. These methods allow us to auto-
matically derive a decision criterion by modeling the background using
a naive model and detecting structures or objects as too structured
to appear ‘by chance’ under the naive model. They draw inspiration
from theories of perception, in particular the Gestalt theory [8]. The
latter are based on the Helmholtz principle, which states that a large
deviation from a random pattern is probably due to the presence of a
structure. Our motivation of using such methods is that they model the
background, for which we have a lot of samples, rather than the objects
to be detected. It thus circumvents the problem of class imbalance
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Fig. 1. Example of tiny objects. The first line shows small targets on a sky background. Note the challenging conditions: very small targets, low contrast, cloud-induced textures.
The second line shows road cracks, which have different thicknesses, and are sometimes blended with the textured roads or shadows.

by focusing on the background class and performing detection by
rejection of its distribution hypothesis. Such a modeling appears even
more appropriate as tiny objects often contain very few geometric
features, unlike larger objects for which the literature is very extensive.
Moreover, the a contrario formulation aims at minimizing the Number
of False Alarms (NFA, defined in Section 2.1.1), thus allowing for a
better control of the precision.

In the literature, the a contrario decision is applied either on natural
images directly or after extracting features from the image by tradi-
tional image processing methods. This filtering step can be replaced by
Neural Networks (NN). Indeed, when looking at feature maps of a NN
trained for detecting objects, the objects to detect stand out against a
background made of noise. [9] applied, as a post-processing step, a
contrario detection on feature maps obtained by a NN. However, doing
so appears suboptimal since the feature map statistical distribution
may not match the naive assumption made on the background when
applying a contrario decision. We therefore propose to guide the NN
training by including the a contrario criterion in the training loop
through our NFA module. The latter guides the network to extract
features in a way that the object features will be likely to contradict
the naive hypothesis made on the background. This induces interesting
properties: (1) the results are more interpretable; (2) the threshold
choice allows for a more intuitive control of the number of false alarms
(NFA). Our NFA module can be integrated into any segmentation NN,
and can even take advantage of multi-scale information if the backbone
allows it. We can summarize our main contributions as follows:

1. We propose a new module specifically designed for tiny object
detection that takes into account the unexpectedness of an object
thanks to an a contrario decision criterion.

2. We demonstrate the effectiveness of our method for infrared
small target detection, which achieves state-of-the-art perfor-
mance while also leading to more interpretable results.

3. We extend our experiments to other backbones and applications,
namely road crack detection and ship detection, in order to show
the generalization ability of the proposed method.

2. Theoretical background
2.1. A contrario decision criterion

2.1.1. General a contrario framework

A contrario reasoning consists in rejecting a naive model character-
izing a destructured background by using an interpretable detection
threshold. The latter controls the Number of False Alarms (NFA), often
defined as the product between the total number of tested objects and
the tail distribution of the law followed by the chosen naive model.

Many a contrario formulations have been proposed in the literature,
relying on different naive models. An important distinction is the kind
of considered images, namely either binary or gray-level images. In
the first case, the most widely used naive model is the uniform spatial
distribution of the “true” pixels in the image lattice, leading to binomial
distribution for the number of “true” pixels falling within any given
parametric shape [7,10]. In the second case, the most widely used naive
model is the Gaussian distribution of the pixel gray-level values, leading
to chi-square distribution for the sum of the squared errors [9,11]. We
base our approach on this second formulation since we will deal with
gray-scale feature maps.

Assuming the naive model for the background is a centered Gaus-
sian distribution (hypothesis H,) with parameters py , the following
function is defined, for each tested pixel i € N with value x;:

F(Xis Nigsts Pry) = Niest X IEDHO(”X”2 2 ||x,-||§), (€8]

where X is a sequence of variables that are assumed to follow H, Pp,
the associated probability and N,,,, is the so-called “number of tests”
that corresponds to the total number of analyzed observations x.

As stated by [8], f defines a Number of False Alarms (NFA) pro-
vided that, Ve > 0, and for X; ~ H,, it is e-meaningful, i.e. the following
condition is verified:

E[#{i, f(X;, Niest- ) < €}l < e, (2)

where the symbol E[.] stands for the mathematical expectation and #{.}
for the cardinality of a set. This property guarantees that, on average,
raising a detection every time f is lower than e should lead to at most ¢
false alarms. Thus, such a function allows for the control of the number
of false alarms. [12] showed that defining N, as the total amount
of tested elements allows f to verify the condition (2). Thereafter, we
define N,,,, as the number of pixels composing the image and we call
NFA the tested value f(x;, Ny, Pryy)-

2.1.2. Multi-channel formulation

In [9], the authors adapted the previous single channel formulation
to multi-channel input by considering each channel independently. The
obtained NFA maps are then merged together by taking the union of
detections. In this study, we rather reformulate the previous approach
in terms of a multivariate normal distribution, as suggested by [11]. By
considering a centered input X; with K channels, we can rewrite Eq. (1)
using the Gamma and upper incomplete Gamma functions (denoted I'(.)
and I'(.,.) respectively):

N, K 1, _
NFA(x;, Nypypo K, 5) = —22 G5 2x01%). 3)

est? F(K/Z)

where X represents the covariance matrix of the centered variable X;.
Three assumptions about the feature noise can then be considered: (1)
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Fig. 2. NFA and significance values for a centered unit variance Gaussian variable, with
N, =1 for simplicity.

Elliptical distribution with dependent channels: in this case, X is a
dense positive-definite matrix; (2) Elliptical distribution with indepen-
dent channels, which leads to ¥ = A4 where 4 is a diagonal matrix
with |4] =1 and 4 € R; (3) Spherical distribution, leading to X~ = Al,
where I, is the identity matrix. In this particular case, no direction
or channel is privileged in the decision process. The impact of these
different hypotheses on the training is assessed in Section 4.3.4.

2.1.3. NFA and significance

According to Eq. (1), the NFA values range from 0 to N,,,,. However,
for large values of x; (i.e., when there is a significant response in
the feature map), the NFA values tend towards very small values,
often lower than 10720, In order to increase the readability of those
values, some authors (e.g. [10]) have proposed to rather consider the
significance S(x;, Ny, K, 2) defined using a logarithmic scaling:

S(x;, Nyosr» K, Z) = —In (NFA(x;, Ny, K, X)) . (@)
Then, the significance associated to Eq. (3) is:
Nies K 1,
S(xj, Nyegr» K, 2) = =In ( m?}tz) 5.1z l/zx,-u%)) : (5)

NFA values and their corresponding significance are represented on
Fig. 2. Note that due to rounding problems to 0, we use the approx-
imation of the I'(q, x) function for x — +oco (in practice, for x > 40)
given in [13]:

a—l+(a—1)(a—2)>. ®)

I(a,x)~ x* e (1 + —
x x2

2.2. Attention mechanisms

Despite the efficiency of CNNs in extracting meaningful information
from an image, the translation invariance induced by convolutions
seems to impair the overall understanding of the scene. Attention
mechanisms partly circumvent this limitation by imitating the human
perception and by dynamically weighting features depending on their
relevance to a given final task. Several types of attention mechanisms
have been proposed. In our work, we focus on the use of channel and
spatial attention mechanisms.

2.2.1. Channel-based attention

Channel-based attention allows us to select the relevant channels
in a set of feature maps. This concept was firstly presented in [14],
where the authors introduce a squeeze-and-excitation block made of
two steps. The first one, called the squeeze step, consists in a reduction
in dimensionality while keeping global spatial information. Then, an
excitation module allows for learning channel-wise relationships, which
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gives rise to an attention vector that indicates the weights to apply to
the different channels. Several variants have been proposed to over-
come SE block shortcomings. For example, [15] propose the Efficient
Channel Attention (ECA) block, where they reduce the complexity of
the fully-connected layers used in the excitation step by replacing them
with a 1D convolution. In the following, we focus on this solution.

2.2.2. Spatial attention

Unlike channel attention, spatial attention is intended to indicate
the regions of the image where most attention is needed. This is
achieved by modeling long-range dependencies between the different
regions of an input. Such attention can be useful for detecting objects
that are tiny in one dimension and significantly large in the other
(e.g., cracks). Several strategies have been proposed, including training
a subnetwork to identify the important regions [16], or increasing
the receptive field of CNNs. The methods based on the latest strategy
use self-attention mechanisms, which were introduced in computer
vision tasks by [17]. They lead to impressive results compared to the
performance achieved so far using CNNs, especially when it comes
to the use of Vision Transformers (ViT) for various visual tasks [18].
However, this process is computationally very expensive, and it also
requires a lot of training data. In addition, for small object detection,
the spatial dependencies are mainly local. In this work, we rather
consider the use of local self-attention layers, and more specifically the
stand-alone self-attention layers proposed by [19].

3. Deep a contrario framework

In this section, we present our method for integrating an a contrario
decision criterion into the training loop of a one-class semantic seg-
mentation NN. Two key ingredients are needed for such module: an a
contrario block, called NFA block, that backpropagates the gradients,
and a specific activation function that allows the NN to learn from the
obtained significance scores.

3.1. NFA blocks

3.1.1. Basic NFA block

We propose a basic NFA block that transforms multi-channel feature
maps into a one-channel score map representing the significance defined
by Eq. (5). This block is described by Fig. 4a. Two convolution blocks
(i.e., 2D convolution with kernel 3 x 3 followed by batch normalization
and ReLU activation) are applied on the input features in order to
extract some relevant features for computing the NFA. The significance
scores are then computed using Eq. (5), where N, is equal to the total
number of tested pixels for a given image (i.e., the size of the image).
This equation is derivable, allowing for the backpropagation step in the
NN.

Our NFA block can replace the segmentation head of any one-class
segmentation NN. Its integration on a U-shaped NN is presented in
Fig. 3. Note that the assumptions made on the background do not need
to be verified. Indeed, in a contrario reasoning, the hypothesis made
on the background distribution only needs to be contradicted in the
presence of any structure of object of interest. It means that the back-
ground distribution modeling can be only approximate, as long as the
objects of interest fall outside this distribution. Moreover, introducing
the a contrario criterion into the supervised training loop will guide the
network to extract features in a way that object features will be likely
to contradict the naive hypothesis (here Gaussian distribution) made
on the background.
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Fig. 3. Diagram showing the integration of our NFA module into a U-shaped segmentation NN. Optional blocks are drawn in dotted lines. Details for ECA block can be found in

the original paper [15].
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Fig. 4. Diagram of (a) the basic NFA block and (b) the spatial NFA block. The details
of the stand-alone self-attention (SASA) block can be found in [19].

3.1.2. Multi-scale fusion of significance maps

Many popular segmentation networks rely on encoder-decoder
models introduced in [20,21]. The advantage of using U-shaped NN
is that we can easily extract low-level semantic feature maps and use
the large-scale spatial information they contain for detecting objects
of different sizes. Although the highest-level feature maps are the
most relevant for segmenting tiny objects, we will see that the feature
maps from deeper scales are also useful. These contain rich spatial
information and enable the NN to detect targets of different sizes (and
therefore not be specific to a single target size), and also to better
discriminate targets from potential background false alarms. To do so,
we integrate our basic NFA block at each intermediate scale of any
U-shaped NN, as illustrated in Fig. 3. Considering a NN with m scales,
we perform the detection at each scale and thus obtain m significance
score maps. Note that considering m > 1 scales increases the number of
tests, which thus becomes N,,;, = hx w x (1 + 2% + o+ ﬁ), where
h x w is the number of pixels composing the image. In order to merge
the detections performed at all scales, the low-level significance score
maps are upsampled to match the NN input size h X w using bilinear
interpolation. All significance maps S, ..., S,, are then merged together
through the NFA fusion block by taking the union of all detections. This
leads to the final significance score map S;,,;, defined for each pixel i
as follows:

S finat (i) = max{ Sy (i), ..., S, (D)} )

However, with such a multi-scaling strategy, the detections from
the lower and higher resolution scales have the same weight in the
final significance score map, which may increase the false alarm rate
for applications where coarse scales are less relevant. We thus propose
to dynamically weight the impact of the different scales by learning
weighting coefficients using a channel attention module. The integra-
tion of an ECA block [15] before merging the significance maps is
illustrated on Fig. 3.

3.1.3. Spatial NFA block
The basic NFA block defined in Section 3.1.1 is designed to im-
prove the detection of tiny objects that do not present a specific

1.0
0.8
2 0.6
=
)
~
©w 0.4
— a =0.001
0.2 a = 0.0005
a = 0.0001
0 5000 10000 15000 20000 25000

Significance scores

Fig. 5. Variations of Sicm, function defined in Eq. (8), with different values of a. For

simplicity, we choose N, = 1.

geometric structure (e.g., point-shaped objects). However, for objects
that are small only in one dimensionality and significantly large in
other dimension(s) (e.g., cracks), spatial information is a discriminating
feature. Indeed, in the case of crack detection, several pixels forming a
continuous line are more likely to belong to a crack than a few isolated
pixels. It is therefore necessary to extend the NN receptive field in order
to better take into account the information from more distant pixels.
To improve performance on such objects, we design a second version
of our NFA block that includes spatial attention mechanisms. Fig. 4b
shows this block, where the second convolution layer is replaced by a
stand-alone self-attention (SASA) layer [19]. As shown in Fig. 3, if we
add a spatial NFA block, it is done in addition to a basic NFA block.

3.2. NFA-friendly activation function

The NFA block output is a significance score map whose distribution
of scores is not only asymmetric between positive and negative values,
but also has a much wider dynamic than conventional NN output.
Indeed, as explained in Section 2.1.3, the background values are ex-
pected to be pushed towards —In(N,,,,) < 0, while the object values are
expected to be spread over the interval (- In(N,,,), +o0). Consequently,
the conventional symmetric activation functions, such as the sigmoid
function, are not suitable. This has been confirmed by the experiments
presented in Section 4.3.4. Therefore we rather design the following
activation function:

2

S16M, (X, Nypgy) = 1 + e—@GHIN(Neg) -

1, )

where a € R is a parameter that allows us to control the slope of the
sigmoid. We represent the variations of Sicm, function on Fig. 5 for
different values of «. This activation function strongly penalizes the
background values while compressing progressively the object values,
thus respecting the dynamics induced by the computation of the sig-
nificance. Note that the higher the value of the parameter «, the more
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the dynamic of the significance scores will be non linearly compressed.
The sensitivity of the NN training to this parameter is studied in
Section 4.3.4. This activation function is applied after having combined
all the significance maps obtained from the NFA blocks computed at
different scales, as shown on Fig. 3. The final output scores, therefore,
range between 0 and 1, which allows the user to apply any cost function
that is suitable for one-class segmentation tasks.

Nevertheless, substituting the conventional segmentation head in
a segmentation NN by the NFA module makes the threshold usually
used to binarize the segmentation map (namely, 0.5) no longer suitable,
as background values are constrained to 0 after applying the function
SieM, and even low output values can be significant. Thus we have to
derive the new detection threshold. One argument often given in favor
of a contrario approaches is the interpretation of the NFA and thus the
more or less direct choice of the threshold (nevertheless application
dependent). In our case, the segmentation threshold ¢ is linked to the ¢
threshold defined in Eq. (2) through Eq. (8):

t = S16M, (= In(e), N o), 9

where e represents the average number of false alarms on background
images, at pixel level, that we can tolerate for our application. In
the literature, e is chosen in the interval [1072%, 1], leading to a thin
threshold interval for the value 7, namely [1073,0.12]. We will discuss
a more refined choice of this theoretical threshold for each considered
application, depending on our tolerance for false alarms.

In the following of the paper, we consider different backbones
and evaluate the benefits of our NFA module on three applications,
namely small target detection, road crack detection and ship detec-
tion. Note, however, that the former has been studied more exten-
sively, and the latter two have been considered mainly to test the
possible generalization of the NFA module to other applications (and
backbones).

4. Application to small target detection

We first evaluate the contribution of our NFA module in the case
of infrared small target detection. This application constitutes an ideal
framework for the detection of tiny objects: the targets have a surface
area of only a few pixels, are not very contrasted compared to the
background and do not present a specific structure. Most proposed
methods to tackle this problem use semantic segmentation NN [22]
rather than off-the-shelf detection NN [1]. SOTA NN for small target
detection rely on U-shaped architectures and include spatial attention
mechanisms [23-25].

4.1. Assessed methods

We propose to integrate our NFA module into one of the U-shaped
SOTA backbones. We select the recent DNANet [23], which has shown
impressive performance on widely used small target detection datasets.
DNANet is composed of two parts: a dense-nested U-shaped backbone
(DNIM), which allows for the feature extraction step, and a feature
pyramid fusion module (FPFM), which allows for a multi-scale fusion
of intermediate outputs from the backbone. We substitute the FPFM
block with our NFA module, and we evaluate its contribution with
respect to the backbone DNIM (ResNet-18 version) and DNANet. We
also extend our experiments to the use of a classical backbone, namely
ResUNet [26], to show the generalization of our method to another
backbone that is not specifically designed for small target detection.

For our NFA module, we set the « parameter in Eq. (8) to 0.0005,
as it has shown to lead to the best results in Section 4.3.4. To guide the
selection of the binarization threshold, let us remind that the consid-
ered application handles detections at object level (the first parameter
of interest is the number of detected targets and then their localization,
speed etc.). Thus, the impact of one-pixel false alarm is completely
different whether it is isolated or connected to a detection, since it
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will or not affect the number of detected targets. The strong constraint
to absolutely avoid such errors implies a very low tolerance for false
alarms at pixel level. In the literature, a low NFA in the case of the
a contrario approach lies around ¢ ~ 1072%, leading to a binarization
threshold ¢ ~ 0.1. This value has been confirmed on a validation set
and we kept it unchanged for every experiment of this application.
For the baselines, the detection threshold is set to 0.5 as suggested in
the original paper. All networks are trained from scratch! on Nvidia
RTX6000 GPU for 1000 epochs using the Soft-IoU loss function [27].
The latter is optimized by Adagrad optimizer with the Cosine Annealing
scheduler, using the same parameters as in [23]. The learning rate is
set to 0.05 for DNIM and DNANet as suggested in the original paper.
For DNIM+NFA, we found that decreasing the learning rate allows for
better convergence; we thus set it to 0.03.

4.2. Dataset and evaluation metrics

We conduct our experiments on two datasets. We first consider
NUAA-SIRST dataset [28], which is one of the few infrared small
target datasets publicly released and widely used in the literature. This
dataset contains 427 images, and most targets follow the definition of
a small target proposed by Society of Photo-Optical Instrumentation
(SPIE), that is objects having a total spatial extent of less than 80 pixels
(9 x 9) [29]. We also consider a recently published dataset for small
target detection, namely IRSTD-1k [24]. This dataset is larger (1000
images) and contains more challenging scenes, with different kinds
of small objects (e.g., aircrafts, animals). It also contains some very
large objects, which fall outside the scope of our method (designed
for tiny object detection, cf. Section 6). We therefore remove images
that contain targets having a spatial extent larger than 90 pixels (this
represents 15% of the dataset), and refer to the filtered dataset as
“IRSTD-850”. We discuss the behavior of our method on larger objects
in Section 6.

Both datasets are split into training, validation and test sets using
a ratio of 60 : 20 : 20. We use the same pre-processing steps as those
proposed in [23]. For the evaluation, we mainly focus on object-level
metrics as suggested by [23]. From the predicted binary segmentation
map, targets are individually labeled using a 8-connectivity connected
component module. A detected object is counted as a true positive (TP)
if it has an Intersection over Union (IoU) of at least 5% with the ground
truth. This low-constrained condition is due to the fact that a small
shift in the number of predicted pixels leads to a large deviation in the
IoU. We then compute the Precision (Prec.), Recall (Rec.) and F1 score
(F1) at object-scale. We also consider the area under the object-level
Precision-Recall curve, namely Average Precision (AP), which allows
us to free from the detection threshold, and the number of false alarms
(still at object-level) per image (FA/image).

In the tables, the presented results have been averaged over five
distinct training sessions and they are given in the form u + o, where
u is the mean and o the standard deviation.

4.3. Results

4.3.1. NFA module improves the precision

Results obtained with SOTA backbones - Table 1 shows the
performance for the three compared methods that are based on DNIM
backbone, on NUAA-SIRST and IRSTD-850 datasets. On both datasets,
DNIM+NFA leads to a significant improvement of the baseline DNIM
in both AP and F1. For example, the F1 score is increased by 1.8%
on NUAA-SIRST dataset and by 2.3% on IRSTD-850. More specifically,
since the NFA layer controls the number of false alarms, the precision
appears significantly improved, while keeping the number of correctly

! We used the official implementation of DNANet https://github.com/
YeRen123455/Infrared- Small-Target-Detection.
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https://github.com/YeRen123455/Infrared-Small-Target-Detection
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Fig. 6. Qualitative results obtained with different detection methods (columns (b) to (d)) on NUAA-SIRST dataset. Good detections, false positives and missed detections are circled

in green, red and dotted yellow lines respectively.

Table 1

Object-level F1 (%), AP (%), Prec. (%), Rec. (%), and FA/image achieved by the
compared methods on NUAA-SIRST and IRSTD-850. Best results are in bold and second
best results are underlined.

Method F1 AP Prec. Rec. FA/image
NUAA-SIRST dataset

DNIM 95.8%13  96.2%13 94624 97120 0.06=003
DNIM + FPFM (DNANet) ﬂztm 98.4%%9 M:Lz ﬂxtu Mﬂ)m
DNIM + NFA (Ours) 97.6*"%  98.4*%6  97.9*0!  g7.4*0¢ 0,022
IRSTD-850 dataset

DNIM 89.0514  89.9%16 876825 90508 (20005
DNIM + FPFM (DNANet)  91.4*'*  924*'9 9182  91.1¥9  0.13*0%
DNIM + NFA (Ours) 91.3*%7  94.2*92  921*"*  90.6*"°  0.12*%°

detected targets (recall criterion) at the same level. This improvement
in precision is all the more impressive on the challenging IRSTD-850
dataset (+4.3% in AP). Note that the addition of the NFA module in
DNIM greatly improves the stability of the training, as evidenced by
the decrease in the standard deviation of the results. DNIM+NFA is
also very competitive with SOTA method DNANet. Indeed, on NUAA-
SIRST dataset, the F1 score is better in average (+0.5%), and it can be
noticed that the number of false alarms per image has been divided by
2, while having a better recall. The standard deviation is also reduced.
On IRSTD-850 dataset, although the F1 scores are equivalent for both
methods, the AP is significantly improved by DNIM+NFA (+1.8%). This
confirms the benefit of our NFA module, especially on the control
of the false alarm rate even in scenes with complex backgrounds.
Furthermore, as far as computation costs are concerned, the NFA layer
adds less than 0.1 million training parameters to the initial model,
which is negligible with respect to the benefits deriving therefrom.

Table 2
Comparison of ResUNet and ResUNet + NFA on small target detection. Metrics are
computed at object-level and averaged over three runs.

Method NUAA-SIRST IRSTD-850

F1 AP F1 AP
ResUNet 93,2209 90.3824 85.3%12 87.4%12
ResUNet + NFA 95.4%!3 96.1%" 87.7+%7 96.0+%8

Fig. 6 illustrates some predictions (output score maps before thresh-
old) on challenging scenes, where the contribution of the NFA module
can clearly be seen. For example, the target of the third column is par-
ticularly small and blurred in the background, which does not affect the
performance of the NFA module, unlike the other methods. Moreover,
the baseline methods mistakenly detect the aircraft contrail (fourth
column). The NFA module not only allows for better detection of
small and tiny objects in particularly difficult scenes, but also provides
robustness with respect to challenging environments.

Generalization to conventional backbones - We extend the ex-
periments conducted previously to another conventional NN, namely
ResUNet. We evaluate the benefits of our NFA module for a NN
that is not specifically designed for small target detection. Results are
presented in Table 2, and it can be seen that the NFA module greatly
improves global performance. Indeed, on NUAA-SIRST dataset, the F1
score is improved by 2%, and the AP by 6%, which is mainly explained
by an increase in average precision as observed for DNIM+NFA. This
improvement in precision is even more striking when considering
IRSTD-850 dataset (+8.6% in AP). This confirms that adding an NFA
module on a segmentation network (being SOTA or not) improves the
precision and thus the performance. Furthermore, the results obtained
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Fig. 7. Output scores histograms for (a) DNIM and (b) DNIM+NFA.

Table 3

Results achieved in 15 and 25-shot settings on NUAA-SIRST. Best results are in bold.
Method 15-shots 25-shots

F1 AP F1 AP

DNIM 72.8237 68.0313 87.0%23 82.6%27
DNIM + NFA 87.7+*° 86.3%Y 90.9%%7 93.1+2*

Table 4

Transfer learning from SIRST to IRSTD-850.
Method F1 AP
DNIM 83.4 83.6
DNIM + NFA 84.9 91.2

when adding the NFA module on a conventional segmentation NN
are only few percents lower than what can be obtained by a SOTA
backbone specifically designed for small target detection. For example,
the difference in F1 score between ResUNet+NFA and DNIM is only of
0.4% on NUAA-SIRST. This shows that although the careful design of
the feature extractor is essential to improve performance, the choice
of decision criterion is also very important, especially in the case of
small/tiny object detection.

4.3.2. Overconfidence, did you say?

Most recent neural networks tend to be overconfident as outlined
in [30]. The pixel-level histogram of output scores shown on Fig. 7a
illustrates this phenomenon for DNIM network, where all pixel values
on the final score map are either very close to 0 or to 1. The impact
of NFA layer can clearly be seen on the corresponding histogram in
Fig. 7b: TP are uniformly spread all over the confidence scores and
the number of false positives (FP) decreases monotonically as the score
level increases. Fig. 8 illustrate the relationships between accuracy
and output scores (interpreted as confidence values). When comparing
Fig. 8a and b, we see that the achieved scores are more informative
since the accuracy versus score function is globally increasing. Besides,
we notice that the NFA module prevents the network from being
overconfident. To better calibrate the DNIM+NFA outputs, we can play
a posteriori with the parameter a from Eq. (8). The value of « to get a
calibrated network can be found by solving Siam, (1072, N, ) = 0.5
(since for a calibrated output optimal segmentation threshold should
be equal to 0.5), so that a = 0.003. Fig. 8c illustrates the results after
calibration using a = 0.003: adding the NFA module to a segmentation
NN allows us to obtain a nearly calibrated network without the need of
complex methods. The output scores are also relevant, which is a step
towards Al interpretability.

4.3.3. Robustness analysis

In this subsection, we assess the robustness of our method compared
to the baseline DNIM in two scenarios: weak training conditions and
generalization to new or noisy data.

Few-shot learning - In many real world applications, data col-
lection and annotation requires expertise, which is very expensive and
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Table 5

Ablation study performed on NUAA-SIRST. We evaluated (object-level metrics) the
different forms of the covariance matrix X~ and compared the benefits of multi-scaling
(MS), adding a regularization term (Reg.) and using channel attention (ECA) in our
NFA module.

> (Eq. (3) MS ECA Reg. F1 AP
=l v 96.0+02 97.6%09
Dense ¥ v/ 95.1%13 96.310
T=24 v/ 96.9%05 98.6%!0
=14 v 97.0%06 95.6%23
=4 v/ v 97.2%06 97.9%09
=14 v v v 97.6%3 98.4%0¢

time consuming. Having a method that leads to good performance even
with little training data is essential in such real world applications. In
the subsection, we evaluate the robustness of our method in few-shot
settings, by training the NN on 15 and 25 images from NUAA-SIRST
dataset (representing respectively about 5% and 10% of the training
set used in Section 4.3.1). DNIM and DNIM+NFA are trained on three
different non-overlapping sets of data in both 15-shot and 25-shot
settings, and the averaged results are given in Table 3. It can be seen
that our method performs significantly better in a frugal setting than
the baseline. Indeed, both AP and F1 metrics are increased by more
than 15% when adding the NFA module to DNIM in a 15-shot training.
Moreover, the AP is decreased by only 5.3% for DNIM+NFA (compared
to 13.6% for the baseline) when dividing by 10 the number of training
samples. The robustness of the NFA module towards frugal setting is
explained by the a contrario paradigm introduced in the training loop:
we force the NN to model the background elements (rather than the
targets themselves), for which we have sufficient samples even in a
few-shot setting.

Generalization to noisy and new data - One essential property of
strong detectors is their ability to correctly generalize to unseen data.
To this end, we first evaluate the robustness of DNIM+NFA towards
noisy data during the inference. We consider two types of noise:
additive and multiplicative Gaussian noises, with different variances
(namely 0.01, 0.05 and 0.10). For the additive Gaussian noise the
mean is set to 0 while for the multiplicative one it is set to 1. As
we can see from Fig. 9, although F1 score and AP decrease with
the increase in variance for both methods, DNIM+NFA still achieves
the best performance by a large margin, for both considered types of
noise. It is also significantly robust towards false alarms (AP criterion)
compared to DNIM, especially in the case of additive Gaussian noise
(Fig. 9(a)).

We finally evaluate the methods on new scenes by transferring
the knowledge learned on NUAA-SIRST dataset to IRSTD-850 dataset,
without fine-tuning. The results in Table 4 confirm the generalization
ability of our method on new challenging scenes. Compared to the
baseline, the F1 score is increased by 1.5%, and the AP by 7.6%. This
robustness to new or noisy data is explained by the use of a naive
model, which can only be approximate (provided that it contradicts
the detections).

4.3.4. Ablation study

Tables 5, 6 and 7 present the ablation and sensitivity studies
performed on small target detection on NUAA-SIRST dataset. The con-
clusions are summarized in the five following points.

(a) Assumptions made on the covariance distribution - In
Section 2.1.2, we present three different forms for the covariance
distribution ¥ in Eq. (3), corresponding to three different assumptions
about feature noise: spherical distribution, elliptical distribution with
independent channels or components, elliptical distribution with de-
pendent channels. The first two lines of Table 5 show that assuming a
spherical distribution assumption leads to worse results, as does the
channel-dependence assumption. To explain this, one has to remind
that in deep learning, in order to disentangle causal factors, a series
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(a) DNIM (b) DNIM+NFA (c) DNIM+NFA after calibration
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Fig. 8. Variations in accuracy as a function of output scores for (a) DNIM, (b) DNIM+NFA with a = 0.0005, and for (c) DNIM+NFA after calibration using a = 0.003.
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Fig. 9. Sensitivity of DNIM and DNIM+NFA towards noisy images from NUAA-SIRST during inference.

of filters are applied to extract the relevant characteristics. Each filter
extracts a particular feature represented by a channel in the next
feature maps. Depending on the downstream task, some features will
be more or less relevant. The relevant information is therefore not
equally distributed over all the channels of the feature maps. Besides,
estimating the full covariance matrix in high dimensionality may be
numerically unstable, while the correlation between extracted features
remains low. As a result, the independent elliptical distribution appears
as the more relevant hypothesis.

(b) Adding a regularization term prevents from object fragmen-
tation - According to Table 5, gradient regularization, which is defined
as the L2 norm of the gradient of the image in both vertical and hor-
izontal directions, improves AP criterion. Indeed, it allows us to force
low value difference between neighboring pixels, and thus to avoid
object fragmentation when increasing the segmentation threshold. The
achieved results are then more robust to this threshold, which increases
the AP.

(c) Importance of multiscaling - Adding information from low-
level features helps the network in detecting objects of various size.
This is the case for the baseline DNIM, whose multiscale version is
DNANet, and it has been confirmed when adding NFA layers to the
5 scales of DNIM and considering the F1 criterion in Table 5. However,
F1 increase is at the cost of a decrease of the AP criterion since
introducing low-scale features may bring out more false positives for
lower thresholds. We also performed an ablation study on the number
of scales used in the NFA fusion block. We varied the parameter m in
Eq. (7) from 2 to 5, 5 being the maximum number of scales in DNIM.
The results presented in Table 6 show the importance of considering
all the 5 scales, even for detecting small targets. Indeed, the F1 score
increases gradually from 96.0% to 97.6% as more scales are added, and
the AP reaches its maximum when considering 5 scales. The standard
deviation also decreases when adding more scales, meaning that the
NN gains in stability.

100 100
= DNIM + NFA zDNIM
90 90
80 80
70 % 70
— 7 Y
£ 60 % __60 %
g s g < 50 %
3 / < /
Z a0 | 40 %
n / /
% /
30 % 30 %
/ _
20 % 20 /
. /
10 / 10 /
| | ,
o 0 7 V. o é Y
0.01 0.05 000y o ce 0.01 0.05 0.10
(b) Multiplicative Gaussian noise
Table 6
Ablation study on the number of scales m in Eq. (7).
m (Eq. (7)) F1 AP
2 96_010.8 96,7ﬁ‘0
3 96.5%08 98.3+07
4 97.6203 97.8%10
5 97.6+03 98.4%06
Table 7
Sensitivity study made on the activation function. Metrics are given at object-level.
Activation function F1 AP
Sigmoid 90.5%63 93.5%12
SI16M,40 0001 96.4%14 95.1201
SIGM, 0 0005 97.2%0¢ 97.9+%9
SIGM,_¢,001 96.7+02 94.8%10

(d) Channel attention highlights the importance of high-level
scales for small target detection - To tackle previous issue, we intro-
duced a channel attention layer before merging the different scales, that
is, ECA block. Table 5 clearly shows the superiority of the NFA module
when adding this step. It noticeably improves the average precision as
well as the F1 score, by reducing the object false alarm rate. Looking
at the multiplying factors computed by this channel attention layer,
we observe that, for small target detection, the high-level features are
of primary importance: their weight is about 0.99 when the weight
of lower-level feature maps is about 20 times less, though they still
contribute to the decision.

(e) Appropriate activation function - To confirm that conven-
tional symmetric activation functions such as the sigmoid function
are not suitable for the significance values, Table 7 shows the result
obtained considering the sigmoid activation function, which indeed
severely degrades the F1 score and AP of our method. The results are
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Table 8
Comparison of ResUNet and ResUNet + NFA on crack and ship detection. Metrics are
computed at pixel-level for crack detection, and at object-level for ship detection.

Method CrackTree S2SHIPS
F1 AP F1 AP

ResUNet 85.6%04 852402 237420 52304

ResUNet + NFA 87.2%00 96.7%02 35.3%15 62,347

also less stable across different weight initializations, as shown by the
large standard deviation values (more than 6% in F1 score).

Now, for the proposed activation Sicm,, as discussed in Section 3.2,
the choice of « has an impact on the range of optimal thresholds for
score map binarization. We tested three values of a, which moves the
upper bound for thresholds from 0.02 to 0.3. According to Table 7,
a = 0.0005 leads to the best performance, and we recommend to use
this value.

5. Extension to other applications

We have shown in previous section that the NFA module can im-
prove the performance of a segmentation NN specifically designed for
small target detection. This allowed us to obtain state-of-the-art results
on an application that represents an ideal framework for small object
detection. Now, we propose to expand the boundaries of previous
framework. For this purpose, we integrate our method in a classical
semantic segmentation backbone and we apply it to two other appli-
cations, namely road crack detection and ship detection from remote
sensing data. Both applications deal with small object detection in
a frugal setting, and they are challenging for several reasons. In the
case of road crack detection, the difficulty lies in the fact that (i)
the cracks are very thin and their pixels are very few with respect
to the background class, and (ii) the textured background and road
artifacts can lead to numerous false alarms. Some generic deep learn-
ing approaches have been tested on this application, and are mainly
based on classical segmentation NN [31-33]. Ship detection from low
resolution satellite imagery is even more challenging because of (i)
the large number of boats in the same area and their varying sizes
(e.g., pleasure boats, cargo ships), (ii) the moored or tiny ships that are
very hard to distinguish from decks or water wings, and (iii) the low
resolution of satellite data, which requires to use subpixel information.
Most efficient methods for ship detection rely on data fusion (e.g., using
SAR data, or the informations provided by automatic identification
systems (AIS) [34]). Few deep learning methods for detecting ships
from optical data have been proposed, and these detectors mainly rely
on classical segmentation NN [35].

5.1. Assessed methods

We take as a baseline classical segmentation backbone, namely a
Unet with a ResNet encoder (ResUNet, [26]). Note that, for crack
detection, geometric information is crucial since the cracks exhibit
a specific shape. Therefore, we take the opportunity given by crack
detection to evaluate the contribution of the spatial NFA block in the
NFA module. Based on the ablation study conducted in Section 4.3.4,
we use the multi-scale NFA module with ¥ = 14 (Eq. (3)) and set the
parameter a in Eq. (8) to 0.0005. For both crack and ship detection,
the theoretical threshold can be defined as follows. In the case of an
image without cracks, one false alarm at a pixel level will not be
significant for the application: indeed, a crack is defined by several
hundred pixels. The same reasoning can be applied for boat detection
as in the considered dataset there are many ships, including cargo ships
that have a spatial extent of several hundred pixels. It is therefore
reasonable to tolerate one pixel false alarm per image, which makes
the false alarm expectation ¢ = 1, leading to a binarization threshold
t ~ 0.001. For a fair comparison with the baseline, whose optimal

Pattern Recognition 150 (2024) 110312

threshold no longer seems to be 0.5, we choose the threshold for the
baseline based on the validation dataset. Both methods are trained for
700 epochs using the same loss and optimizer as in Section 4.2. ResUNet
is trained with a learning rate of 0.01, and we lower the learning rate
for ResUNet+NFA to 0.005.

5.2. Datasets and evaluation metrics

Crack detection - We train and evaluate all methods on Crack Tree
dataset from [36]. It is composed of 206 real pavement images, and
it includes various types of cracks. Because very few data is available,
the algorithms are trained using 120 images only. This frugal setting
adds some challenge to the application. Finally, 36 images are used for
the validation step, and 50 for testing. All methods are evaluated using
pixel-level metrics, namely F1 score and average precision. However, as
stated in [36], the annotations do not accurately report crack thickness.
Therefore, like in the original paper, we adopt a tolerance margin of 2
pixels in crack localization.

Ship detection - We consider the dataset S2SHIPS [35], which is
composed of 16 multispectral images from Sentinel 2 satellite sensor,
of size 1783 x 938 pixels. Four images are kept for test, and the others
are used for the train and validation datasets. From each image we
extract 18 patches of size 256 x 256, which makes a total amount of
216 patches for the training and validation sets. We use the following
six spectral channels as in [35]: B2 (B), B3 (G), B4 (R), B8 (NIR), B11
and B12 (SWIR). Note that in this application, training conditions are
particularly difficult: there is very little training data, much of which
does not include ships. The assessed methods are evaluated using F1
score and average precision computed at object-level.

5.3. Results

5.3.1. NFA module leads to better performance

Table 8 shows the performance of the evaluated methods on Crack
Tree and S2SHIPS datasets. It is clear that the NFA module contributes
in improving the baseline. Indeed, in the case of crack detection, the
F1 score is increased by 1.4% when including the NFA module in the
baseline. More precisely, we observe a very significant improvement in
the average precision (more than 10% ), which confirms the ability of
the NFA module to control the number of false alarms at a pixel level.
We notice that the recall is also improved. Fig. 10 shows some results
obtained by the different methods on four different crack examples.
The NFA module appears more robust to the presence of shadows or
textures on the road, since less false alarms are observed.

The same conclusions can be drawn for ship detection: both F1 score
and AP are increased by at least 10%. However, despite a significant
improvement of the baseline thanks to the NFA module, the perfor-
mance remains weak: this is explained by the challenging conditions
described in Section 5.2 and illustrated on the first row of Fig. 11.
Indeed, the presence of decks, coastlines, or even ship wakes leads to
several false alarms. Nonetheless, even though both algorithms struggle
to detect the most tiny ships, ResUNet+NFA considerably increases
their detection as it can be seen on the first image. These experiments
on two different applications confirm once more the robustness towards
challenging conditions brought by our NFA module.

5.3.2. Contribution of attention mechanisms

We have evaluated the contribution of the different attention mech-
anisms, spatial attention and channel one separately, on crack de-
tection. The results are detailed in Table 9 and our conclusions are
summarized in the following points.

(a) All scales are equally important for crack detection - In
crack detection application, unlike in small target one where the de-
cision process mainly relies on the high-level feature map (cf. Sec-
tion 4.3.4), the deeper level feature maps almost equally contribute
to the prediction (multiplying factors all around 0.6). Indeed, the low
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(b) Ground-truth
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(c) ResUNet

(d) ResUNet+NFA

Fig. 10. Qualitative results obtained with different detection methods on Crack Tree dataset. False positives are circled in red, and reconstruction improvements are circled in

green.
Table 9
Ablation study performed on Crack Tree dataset (pixel-level metrics).
ECA SASA F1 AP
86.4+0-1 95.8%02
4 87.0%03 96.4%01
v @tn.z 96.8%02
v v 87.2+00 96.7%02

resolution feature maps contain some useful information to describe
large objects, while the high-level feature maps are meant for capturing
the smaller details as outlined in [3].

(b) Spatial attention has a very significant impact on perfor-
mance - As expected, the spatial attention block (SASA block) helps
detecting precisely large objects. Indeed, thanks to spatial attention,
the average precision is considerably improved: the shape of the cracks
is estimated in an accurate way while eliminating some false positives.

Finally, combining both spatial and channel attention leads to even
better and more stable results.

10

6. Discussion

Sections 4 and 5 show experimentally the benefits of our NFA mod-
ule for tiny object detection. It significantly improves the performance
of a conventional segmentation backbone such as ResUNet in three
challenging applications, namely small target detection in infrared
images, road crack detection in usual RGB images, and detection of
ships from multispectral satellite images. Furthermore, we have shown
that, when our NFA module is added on top of a backbone specifically
designed for small target detection, such as DNIM, it is very competitive
with the SOTA NN for small target detection DNANet, while being
more interpretable. This improvement is due to the introduction of
the a contrario paradigm in the training loop. The NN is forced to
learn an approximate background model rather than the objects to be
detected, by computing a number of false alarms (NFA). This gives
new properties to the NN that includes such a contrario criterion: (i)
the control of the number of false alarms, which translates into a clear
improvement of the AP criterion, and (ii) the ability to learn from few
samples of the object to be detected. The latter property increases the
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Fig. 11. Qualitative results obtained with ResUNet and ResUNet+NFA on S2SHIPS
dataset. True positives, false positives and missed detections are circled in green, red
and dotted yellow lines, respectively.

a) Input b) Segmentation map

Fig. 12. Behavior of DNIM+NFA on large objects.

robustness of the NN to frugal learning and helps to better generalize
to unseen data, as shown experimentally in Section 4.3.3.

The use of our method can be extended to other small object
detection tasks such as the early medical diagnosis, early forest fires
detection, or the detection of buildings in rural areas. Nevertheless,
our method was specifically designed for the detection of very small
objects (with respect to the number of image pixels), and we cannot
expect good performance on large object detection. Indeed, as the
proportion of the objects in the image increases, not only does the NN
struggle to separate the distributions of the background from those of
the objects, but also the unexpectedness feature of the targets becomes
less pregnant. One consequence will be a fragmented detection of
large objects, as illustrated in Fig. 12. Only the ‘hottest’ points of the
aircraft will show up on the segmentation map. Therefore, there will
be three detections for a single object, which will artificially increase

11
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the number of false alarms. A possible solution (left for future work)
would be to be able to link these detections as belonging to the same
object, e.g. according to a priori of distance or shape, or by coupling
our approach with bounding box proposals.

7. Conclusion

In this paper, we propose an add-on NFA module to improve tiny
object detection through semantic segmentation NN. This module intro-
duces a contrario reasoning into the training of the NN, which therefore
performs the detection of small objects by rejecting the background
hypothesis. In addition to enhancing the feature map responses of
small objects as proposed in the literature, our module allows for the
control of the number of false alarms by exploiting the unexpectedness of
tiny objects. We have experimentally demonstrated the competitiveness
of our method compared to state of the art networks in the case of
small target detection. More specifically, our method increases the
precision of a baseline, while maintaining a high detection rate. It also
provides more robustness to frugal training and it leads to a better
generalization to unseen data. The results are also more interpretable,
which is essential in many real-world applications. We have also shown
that our approach generalizes well to other challenging tiny object
detection tasks such as ship detection in satellite imagery, and road
crack detection. Our NFA module also provides interpretable results,
which is essential in many real-world applications.

An interesting perspective would be to apply our NFA module on
object detection NN (e.g., YOLO or Faster R-CNN) for object-level
detections in order to control the NFA at the object level, although this
implies designing an object-level NFA (as in [8]). More generally, we
believe that exploiting statistical criteria based on the unexpectedness
of small objects, as with the a contrario approach we propose, can
significantly improve the quality and interpretability of the results in
the context of tiny object detection.
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