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Abstract13

The study of brain activity and its function requires the development of computational14

models alongside experimental investigations to explore different effects of multiple mecha-15

nisms at play in the central nervous system. Chemical neuromodulators such as dopamine16

play central roles in regulating the dynamics of neuronal populations. In this work, we pro-17

pose a modular framework to capture the effects of neuromodulators at the neural mass level.18

Using this framework, we formulate a specific model for dopamine dynamics affecting D1-type19

receptors. We detail the dynamical repertoire associated with dopamine concentration evolu-20

tion. Finally, we give one example of use in a basal-ganglia network in healthy and pathological21

conditions.22

1 Introduction23

Neuromodulators, such as dopamine and serotonin, play central roles in regulating the dynamics24

of neuronal populations within the central nervous system. These biochemical agents modulate25

the activities of multiple neurons simultaneously, acting on the global dynamics of the brain.26
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At the synaptic level, neuromodulators can modify the strength of connections between neu-27

rons, impacting synaptic transmission and plasticity. Additionally, they can regulate the intrinsic28

excitability of neurons, influencing their firing rates and patterns of activity [38,42].29

On a broader scale, neuromodulators contribute to the synchronization and coordination of30

neuronal ensembles, thereby shaping network dynamics involved in various cognitive and behavioral31

processes [4,15,40,45,49,51]. For instance, dopamine is implicated in reward processing, motivation32

and motor control [5], while serotonin is associated with mood regulation, sleep-wake cycles, and33

emotional processing. Serotonin dysregulation has been associated with mood disorders such as34

depression and anxiety disorders [27,36].35

Understanding the intricate interplay between neuromodulators and brain function as expressed36

in the electrophysiological activity of the neuronal populations is fundamental for elucidating the37

neural mechanisms underlying complex brain functions and disorders.38

Dopaminergic pathways are related to cognitive processes and behaviors such as wakefulness,39

working memory, and cognitive control [44]. Aging-related changes in dopaminergic regulation40

have been linked to cognitive performance [3], and they were hypothesized to play a crucial role41

in the dynamic compensation as a marker of improved cognitive abilities during aging [26]. By42

incorporating the effects of various neuromodulators, we can better understand the differences in43

cognitive decline associated with aging [7].44

At the same time, neuromodulation impairment, in particular of dopamine, has been linked45

to the occurrence of different neurological disorders [24], such as Parkinson’s disease (PD) or46

Schizophrenia [23].47

The pathophysiology of PD is characterized by the degeneration of dopamine-producing neurons48

in the substantia nigra of the basal ganglia, leading to the loss of dopaminergic nigrostriatal neurons49

along the nigrostriatal pathways, with milder losses in the mesolimbic and mesocortical circuits. To50

model the neuromodulatory aspects of these pathways within personalized whole-brain networks we51

need to focus on structural changes, particularly within the basal ganglia-thalamocortical circuit [2].52

PD and psychiatric disorders represent distinct categories of neurological conditions, each char-53

acterized by its clinical features and prevalence. PD, as the second most prevalent neurodegenera-54

tive disorder, primarily manifests motor symptoms, including tremors, rigidity, and bradykinesia,55

alongside a range of non-motor symptoms. The prevalence of PD varies with age, affecting 0.04%56

of individuals in the 40-49 age group and rising to 2% in those aged over 80 [2, 39]. On the other57

hand, psychiatric disorders encompass a heterogeneous group of conditions resulting in disruptions58

to cognitive processes, emotional regulation, and behavior. These disorders affected a staggering59
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970 million individuals worldwide in 2019, as reported by the World Health Organization [37].60

Psychiatric disorders regroup a broad diversity of diseases but to exemplify, Schizophrenia affects61

approximately 24 million individuals globally.62

Psychiatric disorders entail distinctive neuromodulatory mechanisms. Here, the pathophysiol-63

ogy revolves around dysfunctions in neurotransmission and neuromodulation, primarily featuring64

the mesolimbic dopamine pathway. This pathway, extending from the ventral tegmental area to65

limbic regions, takes a central role in the generation of positive psychotic symptoms integral to66

Schizophrenia. To integrate neuromodulatory pathways into whole-brain network models, we need67

to take into account the inter-regional connection between source and target regions in conjunc-68

tion with other region-specific parameters enhancing our comprehension of the intricate interplay69

of mechanisms contributing to the emergence of psychiatric disorders [31,34].70

Furthermore, both PD and psychiatric disorders exhibit broader-scale dynamic phenomena.71

In the context of PD, aberrant dynamics within the basal ganglia result in anomalous bursts of72

activity in the beta frequency range, a phenomenon closely associated with clinical disability [52].73

Similarly, in psychiatric disorders, there is a disruption in the balance between excitation and74

inhibition within cortical regions. This imbalance may result from synaptic pruning or alterations75

in neurotransmitter systems, contributing to the pathophysiology of these conditions [16,20].76

Deep brain stimulation emerges as an intervention strategy aimed at ”desynchronizing” neural77

activity in both conditions, with computational modeling studies playing a pivotal role in exploring78

the underlying mechanisms. These models enable the prediction of optimal stimulation patterns79

in silico, thereby informing treatment design and deepening our understanding of these disorders80

[14, 29,48,53].81

Additionally, the application of brain network models extends to the classification and differen-82

tiation of various forms of these neurological conditions. Recent studies underscore the potential of83

enhancing the classification of PD patients or individuals with psychiatric disorders by supplement-84

ing empirical data with simulated data generated from patient-specific brain network models [22].85

Integrating personalized whole-brain network models and computational methodologies [50]86

should contribute to our understanding of the dynamic aspects of these disorders, facilitating87

refined treatment strategies and a deeper comprehension of their multifaceted etiologies, as it has88

been done previously for other conditions, such as epilepsy [9].89

The aim is to create a model that reflects how neuromodulators influence the electrophysiologi-90

cal activity patterns in the human brain, to be implemented into the simulated environment of The91

Virtual Brain (TVB) [43]. The desired model should provide a level of detail closely resembling real92

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.23.600260doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.23.600260


human data, specifically focusing on the mesoscopic scale to align with TVB’s scope for simulating93

neural dynamics [1]. It is crucial to consider the impact of degeneracy and multi-realizability [13]94

(i.e. multiple models or parmetrizations leads to similar observable behaviors), as well as experi-95

mental challenges associated with biophysical mechanisms that are difficult to access, which could96

impede the interpretability of the model.97

The selected model should incorporate identifiable and measurable biophysical mechanisms,98

ensuring a comprehensive understanding of neural dynamics. Additionally, it should allow for a99

diverse range of dynamic behaviors and account for various inhibitory and excitatory connections100

to capture how neuromodulation affects different receptors.101

To tackle this challenge, this paper introduces a generic framework for modeling neuromodulator102

dynamics within a neural mass model. We specifically concentrate on dopamine by presenting a103

tailored formulation of the model. This includes an examination of how dopamine dynamics104

influence neural activity and concludes with a brief example application involving a model of the105

basal ganglia network.106

2 Methods107

The chosen model is a neural-mass model [6], utilizing a mean-field approach [35]. This model is108

derived from the adaptive quadratic integrate-and-fire model (aQIF) of individual neurons [18]. It109

enables the consideration of different conductance-based synaptic inputs.110

Next, we aim to include neuromodulation as a variable in our model. We follow the formalism111

adopted by Kringelbach et al. [25], which introduces the effects of serotonin on the neural mass112

level as an additive current using the Michaelis-Menten equation [21,32]. In their work, the impact113

of serotonin was introduced as an additive current denoted as M within the excitability model.114

In our study, we adapt this formalism to account for the generic dynamics of neuromodulators.115

We propose using the Michaelis-Menten equation to model the evolution of neuromodulator con-116

centration and introducing its modulatory effect, denoted as M , as a modulation of the synaptic117

conductances rather than as an additive current. This modification aims to enhance the precision118

and relevance of our model in capturing the nuanced influence of neuromodulators on neural ex-119

citability. Then we propose a specific application to dopamine, with a possible further reduction120

for this specific case brought about by the relatively slow timescale of dopamine concentration121

evolution. In the following subsection, we detail the model construction.122
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2.1 Neural mass model123

The equations of the neural dynamics are modified from the work of Chen and Campbell [6]124

and Sheheitli [46], to obtain a neural mass model capturing the dynamics of a population of125

N neurons. Following the Lorentzian ansatz [35], which assumes in the thermodynamic limit126

N → ∞, the distribution of the membrane voltage will converge to Lorentzian-shaped function,127

regardless of the initial conditions, additive currents ηi are assumed to be distributed according to128

a Lorentzian distribution with a half-width ∆, and centered at η̄. The variables correspond to the129

firing rate r, the mean membrane potential V and the adaptation u. We consider conductance-130

based synapses, excitatory with AMPA receptors of maximal conductance ga and reversal potential131

Ea, and inhibitory with GABA receptors of maximal conductance gg and reversal potential Eg.132

The resulting mean-field equations hence become:133

dr

dt
= 2arV + br − garSa − ggSg +

a∆

π
(1)

dV

dt
= aV 2 + bV + c+ η − π2r2

a
+ gaSa(Ea − V ) + ggSg(Eg − V ) + Iext − u (2)

du

dt
= α(βV − u) + udr (3)

dSa

dt
= − Sa

τSa
+ Sjacexc + Jar (4)

dSg

dt
= − Sg

τSg
+ Sjgcinh (5)

(6)

We use this set of equations as a neural mass model, i.e. low-dimensional representation that134

captures the excitability dynamics of a neuronal population. On this basis, we introduce the135

dynamics of neuromodulation, and in particular of dopamine.136

2.2 Generic equations for neuromodulation137

Two aspects are important in neuromodulation dynamics. First, the availability of the neuromod-138

ulator is considered, i.e. the evolution of the local concentration. Secondly, its effect on neural139

activities through specific receptors. One equation for each type of chemical neuromodulation140

(i.e. capturing the evolution of the concentration) and one equation for each receptor type (i.e.141

capturing the activation of each of these receptors) are necessary. The functional form for the142

concentration is made of two terms, where the first one corresponds to the mechanisms leading to143
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the increase of the local concentration. Most neuromodulators depend on the activity of a specific144

brain region that is afferent to the considered node. The second term corresponds to its decrease,145

due to re-uptake mechanisms that can be captured by Michaelis-Manten formalism. In the follow-146

ing subsection, we describe the construction of the equation specific for dopamine. The variable147

denoted M , captures the proportion of specific receptors activated by the neuromodulator. The148

typical functional form is a sigmoid function, the parametrization that must be specific for each149

receptor type. If the receptor has an enhancing effect, the slope is positive; and conversely for150

diminishing effect. Then the M variable enters the mean membrane potential equation according151

to the considered receptor’s specific biophysical properties. It can either modulate a non-synaptic152

conductance through an additional term of the form Mgi(Ei − V ) with gi and Ei associated with153

a charged molecule or directly modulate the synaptic conductances, as it is the case for dopamine.154

In the following subsection, we take the example of D1 receptors modulating the conductance of155

AMPA synapses.156

2.2.1 Dopamine reuptake157

The reuptake of dopamine is a process in which dopamine is returned to the presynaptic neuron158

from the synaptic cleft. The primary molecular mechanism responsible for dopamine reuptake in-159

volves a protein known as the dopamine transporter (DAT). The reuptake process can be described160

by the following simplified equation:161

[Dp]e +DAT
Reuptake−−−−−−→ [Dp]i

In this equation: [Dp]e represents dopamine molecules in the extracellular space, DAT repre-162

sents the dopamine transporter protein on the neuron membrane, and [Dp]i represents dopamine163

molecules that have been taken back into the neuron.164

The dopamine transporter (DAT) actively transports dopamine from the extracellular space165

back into the presynaptic neuron, terminating the signal transmission at the synapse. This reuptake166

process is crucial for regulating the dopamine concentration in the synaptic cleft and maintaining167

proper neurotransmission. Additionally, it serves as a target for various drugs, including certain168

antidepressants and psychostimulants, which can modulate dopamine reuptake.169
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2.2.2 Michaelis-Menten Formalism for Dopamine Reuptake170

The dynamics of dopamine reuptake can be described using Michaelis-Menten (M-M) formalism,171

which involves applying the M-M equation to represent the process of dopamine transport via the172

dopamine transporter (DAT).173

The general form of the M-M equation is:174

V =
Vmax · [S]
Km + [S]

and is a mathematical description of the relationship between substrate concentration [S] and175

reaction rate V , characterized by the maximum reaction rate (Vmax) and the Michaelis constant176

(Km). We can adapt this equation to describe the dynamics of dopamine reuptake:177

VDpr =
Vmax · [Dp]e
Km + [Dp]e

where: VDpr is the reuptake rate and represents the velocity dopamine returns to the neuron.178

Vmax is the maximum reuptake rate, which corresponds to the rate when the dopamine trans-179

porter (DAT) is fully saturated with dopamine. Km is the Michaelis constant, representing the180

extracellular dopamine concentration at which the reuptake rate is half of Vmax. [Dp]e is the181

concentration of dopamine in the extracellular space.182

This formulation is a simplification, and the actual dynamics of dopamine reuptake are influ-183

enced by various factors, including the number and activity of dopamine transporters, the mem-184

brane potential, and the presence of other substances that may modulate reuptake.185

It’s important to note that while the M-M formalism provides a useful approximation for186

enzymatic-like processes, but may not capture all the complexities involved in dopamine dynamics187

within the synapse. More sophisticated models may be necessary to achieve a more detailed188

mechanistic understanding of neurotransmitter reuptake kinetics. In our case, we are interested in189

the global phenomenon leading to the regulation of the electrophysiological activities of a whole190

population of neurons.191

The local concentration will increase thanks to the projection from dopaminergic neurons,192

through the dopaminergic coupling cdopa, scaled in each efferent region by a factor k:193

VDpi = kcdopa

Thus, the change over time (with time constant τDp) in the extracellular dopamine concentra-194
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tion corresponds to the difference between the rate of local input and the rate of reuptake:195

τDp
d[Dp]e
dt

= VDpi − VDpr (7)

Given the M-M equation for dynamics of dopamine reuptake and the local dopamine concen-196

tration, we obtain:197

τDp
d[Dp]e
dt

= kcdopa −
Vmax[Dp]e
Km + [Dp]e

(8)

Considering that variations in dopamine concentration occur much more slowly than the firing198

rate dynamics and, therefore, it does not impact the derivation of the mean-field associated with199

fast variables.200

2.2.3 Modulatory dynamics for D1 receptors201

The given equation represents a mathematical model describing the dynamics of receptors within202

the populations. It uses a phenomenological activation function and an exponential decrease over203

time. It can be specifically formulated for the D1-type dopamine receptor.204

τm
dMD1

dt
= −MD1 +

Rd

1 + exp(−Sp([Dp]e + 1))

Where: MD1 is the modulation effect associated with the D1-type dopamine receptor. The205

modulation effect decreases over time (−MD1). Rd is the receptor density in a given receptor206

population. [Dp]e is the extracellular dopamine concentration. Sp is a parameter that influences207

the sensitivity of the receptor to changes in extracellular dopamine concentration. The term208

Rd

1+exp(Sp([Dp]e+1)) represents the influence of extracellular dopamine on the modulation effect. The209

sigmoidal function introduces a non-linear activation of the receptor and simulates a saturation210

effect as dopamine concentration increases.211

2.3 Neural mass model including neuromodulation212

The modeling framework proposed here aims to enable formulation for different neuromodulator213

and receptor types (see Figure 1). Since our primary focus is on the impact of dopamine dynamics214

within the basal ganglia, as discussed in the next section, we focus on this specific neuromodulator215

and its corresponding receptors. This scenario serves as our example for specifying the model. The216

dopamine affects the AMPA excitatory conductances [47]. In that case, the MD variable modulates217
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the conductance ga through the term MD + B, the variable MD evolves in a range from 0 to Rd218

and B = 1 is the basal level to enable the minimal AMPA conductance even in the absence of219

modulation by the extracellular dopamine [Dp].220

dr

dt
= 2arV + br − gaSar − ggSg +

a∆

π
(9)

221

dV

dt
= aV 2 + bV + c+ η − π2r2

a
+ (MD +B)gaSa(Ea − V ) + ggSg(Eg − V )− u+ Iext (10)

222

du

dt
= α(βV − u) + udr (11)

223

dSa

dt
=

−Sa

τSa

+ Sjacexc + Jar (12)

224

dSg

dt
=

−Sg

τSg

+ Sjgcinh (13)

225

τDp
d[Dp]

dt
= kcdopa −

Vmax[Dp]

(Km + [Dp])
(14)

226

τm
dMD1

dt
= −MD1 +

Rd

1 + exp(−Sp([Dp]e + 1))
(15)

With this formalism, other neuromodulators can be introduced, with an additional variable227

of the same form as equation 14 for each of them. Then multiple types of receptors can be228

considered [33], and each of the receptor dynamics would take the same form as the equation 15.229

Finally, the modulatory equation of each type of receptor would enter the equation 10 of the mean230

membrane potential according to its biophysical properties and either affect one of the synaptic231

conductance and/or an additional conductance. The framework is schematized in Figure 1.232
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Figure 1: Schematic of the model. (a) A generic neural mass model framework with neuromod-
ulation. Neural activity is characterized by the firing rate r, the mean membrane potential V ,
and mean adaptation u. It receives different synaptic inputs S1, S2, ... , and undergoes modula-
tion through receptors M1,M2,M3, ... associated with different neuromodulators NMA, NMB , ...
released by projecting neurons. The modulation can affect either post-synaptic receptors (e.g., M1

or M2 in the schematic) or receptors on the neuronal membrane (e.g., M3). This flexible framework
allows for the consideration of multiple neuromodulators and receptors as needed by the scientific
question. (b) The model schematic for a neural mass model, as introduced in section 2.3. It can
be parameterized for excitatory AMPA and inhibitory GABA synapses, with activation variables
Sa and Sg, respectively. It also accounts for self-recurring connections to excitatory inputs. More-
over, it can be tailored for specific cases such as dopamine ([Dp]) modulation, which linearly affects
AMPA conductance.

M can be removed by adiabatic reduction. Indeed the modulation occurs in the same order233

of time scale as the concentration evolution and is thus strongly correlated with [Dp] variables.234

By considering the linear part of the sigmoid of the MD1 equation (specific for D1 receptors), we235

obtain the linear relation with the form AD1[Dp] +BD1, then the equations become:236

dr

dt
= 2arV + br − gaSar − ggSgr +

a∆

π
(16)

237

dV

dt
= aV 2 + bV + c+ η− π2r2

a
+ (ADp[Dp] +BDp)gaSa(Ea − V ) + ggSg(Eg − V )− u+ Iext (17)

238

du

dt
= α(βV − u) + udr (18)

239

dSa

dt
=

−Sa

τSa

+ Sjacexc + Jar (19)

240

dSg

dt
=

−Sg

τSg

+ Sjgcinh (20)

241

d[Dp]

dt
= kcdopa −

Vmax[Dp]

(Km + [Dp])
(21)

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.23.600260doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.23.600260


3 Results242

We studied the emerging dynamics of this model. We started with a bifurcation analysis of the fast243

sub-system constituted by the r − V variables. Through numerical simulations, we characterized244

the model’s behaviors for different connectivity weights and dopamine inputs. Finally, we built245

a small network corresponding to the basal ganglia and showed how changes in neuromodulation246

dynamics lead to the emergence of dynamics in the frequency band comparable to those described247

in pathological conditions such as PD [30].248

3.1 V-r dynamics249

The system of equations obtained enables a rich dynamical repertoire. To analyze it, we first250

isolated the fast variables r and V associated with the activity of the firing rate and mean membrane251

potential. Other variables are fixed and serve as bifurcation parameters to study their effects on252

the fast dynamics, as commonly done in slow-fast system analysis [10,19,41].253

We consider the case of an excitatory neural mass, the parameters (adapted from [6]) are given254

in table 5. We set Sg to 0 (as it refers to inhibitory GABAergic inputs, not considered here) and255

studied the effects of the variation of adaptation u, AMPA excitatory synaptic activation Sa, and256

dopamine concentration [Dp] on the structure of the dynamics of the r − V sub-system.257

258

With different sets of parameters, we observe a vast diversity of qualitative behaviors in Figure259

2. One is associated with a low firing rate and mean membrane potential around the resting state260

for mean membrane potential. Two fixed points coexist, a r-positive stable node, and, a r-negative261

unstable node (Figure 2a). Oscillatory behaviors corresponding to a limit cycle in the r − V sub-262

system can be found (Figure 2b). We can obtain similar oscillatory behaviors with completely263

different settings of fixed variables of the slow sub-system. [Dp] and Sa values are based on cexc =264

0.017 and cdopa = 1e−5 (which are in the range of values for the full-network analysis) (Figure 2c).265

Dump oscillations are observed, within the configuration presented here, the co-existence of stable266

focus and unstable focus (Figure 2d). We also observe more complex regimes where four fixed267

points exist. In the first situation, we observe three r-positive fixed points and one r-positive fixed268

point of which only one stable fixed node with a low firing rate and mean membrane potential close269

to resting state value (Figure 2e). In the second situation, we observe one r-positive fixed point270

and three r-positive fixed points of which only 1 stable fixed focus with a higher firing rate and271

mean membrane potential close to resting state value (Figure 2f). Due to the presence of stable272
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attractors for realistic negative firing rates in certain configurations, we should ensure that during273

the use of this model for the simulation of brain activities, the trajectory stays into r-positive274

basins of attraction.275
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(a) (b) (c)

(d) (e) (f)

Figure 2: Phase-planes of the r − V subsystem. (a) fixed point for u=21, Sa=0.04, [Dp]=0.8. (b)
limit-cycle obtained considering u=7.9, Sa=0.051, [Dp] = 7.7e−4, (c) limit-cycle obtain for u=10,
Sa=0.06, [Dp] = 1e−5, (d) Dumped oscillations u=100, Sa=0.15, [Dp]=0.5. (e) bistability with
upper stable focus and a lower for r negative with u=70, Sa=0.3, [Dp]=0.1. (f) bistable regime
with a lower fixed point and upper stable focus with u=70, Sa=0.004, [Dp]=25, All temporal
simulations were conducted considering initial conditions (r0, V0) = (0.1, -70.0), values close to
resting state.

To understand the structure underlying these emergent behaviors, we did a bifurcation analysis,276
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considering the slow variable u and the two variables associated with external inputs: Sa which277

will be modulated by cexc corresponding to excitatory input and [Dp] that will be modulated by278

cdopa the dopaminergic input.279

The results are presented in Figure 3. Variable influence on the fast sub-system r − V was280

analyzed varying jointly with the input from two other variables considered constant. The first281

investigation was on the Dp − u influence on the behavior. We can identify the oscillatory regime282

where two green surfaces, corresponding to unstable focuses, appear in Figure 3a, which correspond283

for Dp between 0 to 0.75 and u between 0 and 35, (regions corresponding to the tight south-west284

– north-east hatching in the projection in Figure 3d). This specific regime can be observed in the285

space of Sa − Dp (Figure 3b) for values of Sa starting from 0.8 and Dp up to 0.8 (Figure 3e).286

The 4 fixed points regime is also shown with the existence of the saddle node, in purple for the287

3-dimensional Figures (3a, 3b, 3c) and with vertical hatches for the projection Figures (3d, 3e, 3f).288

The slow variable u enables the bursting activities as shown in previous works [6, 19].289
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(a) (b) (c)

(d) (e) (f)

Figure 3: Structure of the fixed points of the r − V sub system. (a) 3D structure of the V
coordinates depending on the values of Dp and u variables, with Sa fixed at 0.06. (b) 3D structure
of the V coordinates depending on the values of Dp and Sa variables, with u fixed at 120. (c) 3D
structure of the V coordinates depending on the values of u and Sa variables, with [Dp] fixed at 2.
(a, b, c) Unstable nodes are in orange, stable nodes in blue, unstable focus in green, stable focus
in red and saddle-node in purple. (d, e, f) Projections of the structure are presented respectively
in panels a, b, c. In these last three panels, we can identify regions of coexistence of fixed-point.

Considering a fixed u = 10, taking Dp as the bifurcation parameter, we can observe the os-290

cillatory regime mentioned before for values of Dp going from 0 to around 0.75 (Figures 4a, 4b).291

These oscillations are limit-cycles, with amplitude represented by the grey line in Figures 4a, 4b.292

Another interesting slice is with u fixed to 120 on which we can observe the alternance of unstable293

node and unstable focus and, with greater values of Dp, the appearance of the 4-equilibrium points294

(Figures 4c, 4d).295
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One important observation is the existence of stable attractors in the negative range of the296

variable r which corresponds to the firing rate. However, these stable attractors are unrealistic.297

When using the model for simulation purposes, users should ensure that the trajectory remains in298

the basin of attraction of r positive values.299

(a) (b)

(c) (d)

Figure 4: bifurcation diagrams: (a) and (b) respectively for V and r, along Dp values (with fixed
u = 10 and Sa = 0.06), the gray area corresponds to the amplitude of the limit-cycle existing
around unstable focuses (in green), fixed-point in red are stable focuses. (c) and (d) respectively
for V and r, along Dp values (with fixed u = 120 and Sa = 0.06) Unstable nodes are in orange,
stable nodes in blue, unstable focus in green, stable focus in red, and saddle-node in purple

3.2 Full system dynamics300

After having described the possible dynamics of the fast r−V subsystem, we can now present the301

dynamical repertoire of the complete system of equations. The number of dimensions does not302

enable the analytical study of the dynamical structure. In this section, we present the results of303

numerical simulations (10s longs) of the model for different values of external inputs cexc and cdopa.304

After eliminating the transient period of 2 seconds, allowing the system to stabilize and reach a305

steady-state, we not only focus on the mean firing rate but also on the standard deviation to identify306

zones where the dynamics undergo significant changes. These metrics are presented in Figure 5,307

where various qualitative behaviors are illustrated, as also depicted in Figure 6. Specifically, fixing308

the excitation value (for instance, cexc ∼ 1.4e− 1), it is evident that as cdopa increases, both the309

16

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.23.600260doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.23.600260


average firing rate and the standard deviation also increase. This is demonstrated in panels (6d)310

and (6e), where there is a noticeable increase in the amplitude of oscillations; this means that the311

system is characterized by an oscillatory behavior well synchronized. With a further increase in312

cdopa approaching the separation line visible in the referenced Figure 6, the system transitions from313

an oscillatory to a bistable regime (6a-c), and the amplitude of each oscillation grows, becoming314

less synchronized. Beyond this boundary, the dynamics settle into a stable fixed point, similar to315

the scenario at lower cdopa, albeit at a different and higher value for each variable of interest (6f).316

Thus, we demonstrate the dopaminergic effect on a single node; indeed, changes in dopamine317

parameters affect qualitatively the dynamics of the system.318
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Figure 5: Effects of excitatory and dopaminergic inputs on a single neural node, with the mean
firing rate shown on the left and its standard deviation on the right. In the pictures, the colour
gradient transitions from purple to yellow, marking the shift from the lowest to the highest values
observed. The highest mean firing rates occur at elevated levels of both excitatory and dopamin-
ergic inputs. A red square highlights a specific area of interest, and the effects within this region
—both in terms of firing rate and standard deviation— are detailed in the bottom row of the
figure.
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Figure 6: Time series of the system variables to understand the qualitative change in the dynamics
of the system as the parameters cexc and cdopa change, using a noise parameter equal to 1e-4.
Each panel of the figure represents the dynamics for some fixed values of the two parameters.
Specifically, fixing the excitation value at ∼ 1.4e1 (in all panels) and increasing cdopa, the system
goes from an oscillatory regime where the amplitude of each oscillation grows with values for (d)
cdopa ∼ 2e−6 and (e) cexc ∼ 1.4e−1) to a bistable regime (a) cdopa ∼ 6.3e−5, (b) cdopa ∼ 3.6e−5,
and (c) cdopa ∼ 2.7e − 4. For the lowest to highest cdopa value we can notice how the dynamics
of the system are focused around a fixed point, but it becomes higher for high cdopa values (f)
cdopa > 6.3e− 4 .

3.3 Basal Ganglia network319

This model is employed to construct a representation of the basal ganglia network. The basal320

ganglia network constitutes a sophisticated arrangement of subcortical nuclei critically involved321
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in motor control, reward processing, and cognitive functions. Its constituent nuclei include the322

striatum (comprising the caudate nucleus and putamen), globus pallidus (segmented into internal323

and external segments, GPi and GPe), substantia nigra (consisting of the pars compacta and pars324

reticulata), and the subthalamic nucleus. The striatum, as the principal input nucleus, receives325

projections from diverse cortical regions, integrating and processing this information. Subsequently,326

it influences the GPi and GPe, which serve as the primary output nuclei, orchestrating motor327

responses through intricate inhibitory and excitatory pathways.328

The interplay of inhibitory and excitatory signals within the basal ganglia network is highly329

nuanced. The GPe and GPi predominantly exert inhibitory control, transmitting signals to the330

thalamus and brainstem motor centers, thereby regulating motor output. Conversely, the subtha-331

lamic nucleus provides excitatory input to the GPi, contributing to the finely tuned balance of the332

network. This balance is pivotal for the precise modulation of motor functions. Dysregulation in333

these inhibitory-excitatory dynamics is implicated in neurodegenerative disorders such as PD.334

In this small example, we show how the network effect enables the emergence of different335

behaviors. In Figure 7, we show that changing the weights of the dopamine projection from336

Substentia Negra Pars Compacta (SNc) to Dorsal Striatum affects the dynamics of the basal ganglia337

network. In this example, we observed changes in the frequency content and the emergence of a338

peak in the range of the spectrum. Such peaks in frequency are observed in pathological conditions339

such as in PD [30].340
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Figure 7: Basal Ganglia Network simulation: (a) Simplified basal ganglia network schematic
adapted from [8] (b) The network is built with 3 layers of connectivity between nodes: excita-
tory, inhibitory, dopaminergic, (c) Firing rate of each node for 10-second simulations: on the left
”Healthy” resting state simulation, on the right impaired dopamine projection (i.e. weights de-
creased by half) from substantia negra pars compacta to dorsal striatum D1 population. (d) On
the first row is the fast-Fourier transform of the ”Healthy” resting state condition, where no spe-
cific peaks appear. On the second row, corresponding to the impaired condition, peaks appear and
notably in the β range of frequency.

4 Discussion341

We proposed a modeling framework to capture the effects of neuromodulator dynamics on the342

neuronal electrophysiological activity at a neural mass level. We gave results on a reduced version,343

specific for dopamine dynamics. We show the dynamical repertoire associated with the level of344

dopamine and we validate the novel implementation with an example model of the basal ganglia345

network.346

Such an approach enables us to obtain the dynamical repertoire with a reduced number of347

variables that can still be interpreted or associated with meaningful biophysical units. Indeed,348

while the proposed model is phenomenological in nature, it serves to capture the evolution of349

physical variables that can be directly related to observables, such as firing rates, mean membrane350

potentials, and synaptic currents.351
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One novelty of the framework presented here is the expression of the action of dopamine as a352

scaling of the synaptic conductance at the mesoscopic neural mass model level, this formulation353

can in fact be seen as a natural extension of the seminal works of Humphries [17] and Durstewitz354

[11, 12] in which dopaminergic action was modeled as such on the microscopic level of individual355

spiking neurons. This latter approach was also employed in [28] to capture the effects of dopamine356

depletion in a spiking neural network model of the basal ganglia. As such, our proposed form for357

dopamine action on the neural mass model builds on previous work of validated biophysical models358

of spiking neurons to provide a computationally efficient framework that extends the modeling of359

dopaminergic neuromodulatory action from the level of populations of spiking neurons to that of360

the whole brain network level.361

This modeling framework also enables the introduction of other receptors, such as NMDA [46].362

The framework is modular in function of the application. It makes it a good candidate to be used363

in personalized brain models, in the context of virtual brain twins.364

Virtual brain twins represent a novel concept, where only specific features of interest to a365

neurological condition are captured by the model to be related to corresponding clinical data [50].366

This method can go a step further and tailor the model to the patient’s brain. This approach367

involves simulating subject-specific brain structures to aid in the diagnosis and treatment of brain368

disorders or to gain deeper insights into the healthy brain. By tailoring the modeling to individual369

subjects, researchers can better understand the intricacies of brain function and pathology. In370

Wang et al. [50], the standard model was presented in a generic format, including local dynamics371

with both global and local connectivity. With this work, we present one of the first detailed and372

concrete models that could serve as a standard model for brain dynamics on a mesoscopic level. In373

ongoing works, we are utilizing this model as the foundation for virtual brain twins, particularly374

in the context of PD and psychiatric disorders.375
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List of variables and parameters380

The model is unitless by definition, however, some of the variables and parameters can be ”associ-381

ated phenomenologically” with measurable biophysical units. We detail the parameter values and382

the units that could be conceptually associated with in table 5.383

384

Variables Symbol Associated unit

Neuromodulation Firing rate r kHz

neural mass Mean membrane potential V mV

Adaptation u nA

AMPA synapses activation Sa -

GABA synapses activation Sg -

Extracellular dopamine concentration [Dp]e mM

D1 dopamine receptor modulation MD1 -

385
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Parameters Symbol Value Associated unit

aQIF parameter a 0,04 -

aQIF parameter b 5 -

aQIF parameter c 140 -

aQIF parameter α 0,013 -

aQIF parameter β 0,4 -

Mean additive current η 18 nA

Maximal conductance of AMPA ga 12 nS

Maximal conductance of GABA gg 12 nS

Additive current half-width distribution ∆ 1 -

Linearization factor of dopaminergic receptors ADp
1 nS/mM

Basal level in absence of neuromodulation B 0,2 nS

Reversal potential of AMPA synapses Ea 0 mV

Reversal potential of GABA synapses Eg -80 mV

External current Iext 0 nA

Adaptation step ud 12 nA

Time constant of AMPA synapses τSa 5 ms

Time constant of GABA synapses τSg 5 ms

Time constant of dopamine concentration evolution τDp 500 ms

Time constant of dopamine receptor modulation τm 500 ms

Strength of AMPA synapses Sja 0,8 nS

Strength of GABA synapses Sjg 1,2 nS

Excitatory coupling cexc - kHz

Inhitatory coupling cinh - kHz

Dopamine coupling cdopa - mM

Maximum dopamine reuptake rate Vmax 1300 mM/s

Michaelis constant Km 150 mM

Dopamine coupling factor k 100 000 -

Receptor density Rd 1 -

Receptor sensitivity to dopamine Sp 1 -

Noise standard deviation σ 1e-3 -

386

387
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