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Abstract: Background: The ecological validity associated with usability testing of health information
technologies (HITs) can affect test results and the predictability of real-world performance. It is,
therefore, necessary to identify conditions with the greatest effect on validity. Method: We conducted
a comparative analysis of two usability testing conditions. We tested a HIT designed for anesthesiolo-
gists to detect pain signals and compared two fidelity levels of ecological validity. We measured the
difference in the number and type of use errors identified between high and low-fidelity experimental
conditions. Results: We identified the same error types in both test conditions, although the number
of errors varied as a function of the condition. The difference in total error counts was relatively
modest and not consistent across levels of severity. Conclusions: Increasing ecological validity does
not invariably increase the ability to detect use errors. Our findings suggest that low-fidelity tests
are an efficient way to identify and mitigate usability issues affecting ease of use, effectiveness, and
safety. We believe early low-fidelity testing is an efficient but underused way to maximize the value
of usability testing.

Keywords: usability; evaluation; user testing; ecological validity; nociception index

1. Introduction

Ecological validity (i.e., “test fidelity”) is “the extent to which behaviour in a test situation
can be generalised to a natural setting” [1]. Many testing conditions, such as the realism
of the physical environment or the responsiveness of software functionality, can affect
test validity and the ability to predict real-world performance. Ecological validity is
high when each test condition closely mimics reality [2], whereas differences between
the live and test environments may limit the accuracy of observations [3–6]. Borycki
and Kushniruk’s Cognitive Socio-Technical Framework [7] says ecological validity should
increase as tests move from the bench to the bedside. However, this is not always possible
because of organizational resource constraints, including time, money, and the availability
of skilled testers. It is, therefore, important to identify which conditions have the greatest
effect on validity and estimate the cost-effectiveness of replicating them with the highest
possible fidelity.

Studies have investigated the effect of ecological validity on usability testing outcomes.
Most of them evaluated only one ecological validity dimension at a time, usually comparing
two levels of that dimension [8–10]. Only a few studies have looked at multiple dimen-
sions concurrently [3,4]. Our goal was to study how manipulating several dimensions of
ecological validity simultaneously can affect testing results, including detecting technology
use errors [8]. We focused on summative testing of an acute care and intraoperative pain
monitor. We compared two levels of ecological fidelity and asked the following questions:
(1) were all use errors detected in both test settings? (2) did the level of fidelity influence
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the number of errors made by participants? (3) were any novel errors (i.e., not identified in
the risk analysis) detected?

2. Models of Ecological Validity

Many research teams have published models of ecological validity [3,11]. For example,
Sauer’s Four-Factor Framework of Contextual Validity categorizes conditions according
to activity system components (i.e., user, technology, task, and environment). For our
study, we used van Berkel’s Seven Dimensions Framework (2020). This model lists seven
dimensions of ecological validity that are important to consider when designing usability
studies: (1) user roles, (2) the evaluation environment, (3) the presence of user training,
(4) the clinical scenario, (5) whether patients are involved during testing, (6) attributes of the
hardware, and (7) the software. We chose this model because it captured the largest number
of variables in the most granular detail across the technology development lifecycle. In the
next section, we describe each dimension in greater detail [11].

2.1. User Roles

It is important to recruit representative end-users for testing whenever possible rather
than developers or professional testers. People involved in the design process—including
clinician developers—cannot substitute for actual users [11,12]. The characteristics of the
participant sample, such as professional role (e.g., physician, nurse, specialist), technical
skill (e.g., computer literacy, years of experience), level of clinical training, usage habits,
and preferences or values about the task or technology should match the target population
to ensure the sample is representative of intended end-users [3,4,6,11]. There is some
disagreement among experts on whether it is important to recruit only novices [13] or
novices and experts [3,14,15]. We believe the decision to recruit multiple levels of user
expertise depends on the objectives of the test (e.g., counting the number of usability issues,
estimating learnability, or measuring error tolerance) [3]. Participants’ conditions during
testing (e.g., fatigue, beginning vs. end of shift, mood) may also affect test results and
should match the end-user’s context during actual use. To limit inequity or implicit bias, it
may also be necessary to account for age, gender, and ethnicity.

While including representative end-users in testing is always preferable, it is often
challenging to recruit healthcare professionals with the necessary subject matter expertise,
knowledge of the target setting, and who have protected time to participate in testing.
Usability professionals often must adapt and improvise to meet sponsor deadlines. If
recruiting all representative users is cost or time-prohibitive, we suggest developing user
personas. Personas are fictional but evidence-based representations of user groups that
can guide recruitment strategies or testers [16]. We believe personas are most helpful for
identifying technology requirements and guiding early design decisions but should not
replace testing with representative users.

2.2. Environment

The environment dimension includes the physical (i.e., “built”) and the social envi-
ronment. The physical test environment refers to attributes of the facility or equipment
that influence user behavior. This might include the configuration of the testing room or
the presence of background noise. Test environment fidelity could range from an admin-
istrative office equipped with a desktop computer (i.e., low fidelity) to a simulation lab
reproduction of a hospital room (i.e., high fidelity) to an actual unoccupied hospital room
(i.e., naturalistic) [6]. The social environment refers to the presence of other humans or
workflow interference (e.g., competing clinical requests, text messages, and pages) during
the test [1]. Some tasks require multiple healthcare providers to work collaboratively.
Teamwork and interprofessional interactions can be reproduced using scripts and actions
performed by members of the research team (i.e., low fidelity), actors (i.e., high fidelity), or
real-life colleagues (i.e., naturalistic).
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While replicating real-world conditions is desirable [2–4,6,11,17–21], especially during
safety investigations [6,22], it is often not feasible given cost constraints. For example,
testing a new surgical device a surgeon uses might call for a detailed simulation of the
operating theatre, including medical equipment, an interactive mannequin, and actors to
portray the interdisciplinary team. Unfortunately, many manufacturers and organizations
cannot afford this level of ecological validity. In these circumstances, usability professionals
must compromise between the realism of the test conditions and the built environment [23].
While it is important to replicate the most important attributes of the real environment, this
is an unresolved area of active research [8,24–31].

2.3. Training

Van Berkel et al. [11] pointed out that researchers often train participants on a system
before testing in a simulation. To avoid confounding, test proctors must offer the same
training and materials actual users would receive. Including product training as part of the
testing protocol can identify education gaps and ways to improve new user orientation [11].

2.4. Test Scenario

The test scenario provides context for the test participants; it describes the clinical
use case, care setting, and task goals [32]. The fidelity of the scenario influences how
seriously participants behave in a study (i.e., behavioral fidelity) [11]. In goal-based
scenarios, usability professionals observe participants as they determine and execute the
steps necessary to achieve the goal [32]. These are higher fidelity than simple tests of
product features or user acceptance tests wherein proctors provide participants with step-
by-step instructions to complete tasks. The breadth and depth of scenarios should, therefore,
be representative of real-life activities [3]. Breadth is the extent to which activity system
complexity is captured in the test (e.g., single task vs. parallel tasks) [3]. Depth is the level of
detail and completeness with which a task is simulated (i.e., the proportion of real-life steps
included in the test) [3,6]. The instructions researchers give testers for reporting findings
can influence the results [18–20]. For example, with static prototypes (e.g., drawings,
wireframes), participants may be asked to describe what they would do (e.g., click, type,
scroll) to operate a product, whereas with interactive prototypes, participants may verbalize
their thoughts while using the product.

Kushniruk and colleagues also suggested explicitly defining the urgency and typicality
of tasks when designing the scenario [6]. Urgency indicates the level of immediacy and pres-
sure associated with completing a task. Tasks can range from non-urgent (e.g., submitting
a routine electronic order for acetaminophen) to urgent (e.g., submitting an order for a stat
antihypertensive during a medical emergency). Typicality refers to how a task represents
the usual, normal, or expected system use or workflow. Both extremes (i.e., typical and
atypical) can be important during testing. For example, minor—yet common—usability
issues may profoundly affect efficiency and user satisfaction. Rare usability issues may be
more difficult to detect and cause catastrophic outcomes [12].

2.5. Patient Involvement

Van Berkel et al. (2020) [11] cautioned that including real patients in usability testing
can generate valuable insights but at considerable risk. Patients may identify usability
issues that are impossible to detect with actors. However, there are potential patient safety
risks. There are both physical and psychological risks to consider. For example, a patient
participating in an interview may re-experience painful events or memories. Usability
testing, therefore, often includes a proxy for patients. For example, a study might instead
use a mannequin or actor (i.e., a standardized patient) [8].

2.6. Software

Usability professionals sometimes conduct tests using early HIT prototypes (e.g., pa-
per prototypes or wireframes). Generally, the prototyping method and degree of realism
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can influence participants’ reactions. The dimensions to consider include feature breadth
(i.e., the proportion of finished features present), feature depth (i.e., level of feature
detail) [3], physical similarity, interaction similarity, visual appearance [33], and data
similarity [11].

While it is important to test as early as possible in the product design lifecycle—even
with paper prototypes—there is a complex interaction between prototype fidelity and
outcome measures [3,5,9,34,35]. Some studies suggest that prototype fidelity does not
affect the number and type of usability problems detected [3,9]. However, we believe that
when measuring participant behavior (e.g., clinically relevant performance), efficiency
(e.g., task completion time), and effectiveness (e.g., task success rate), prototype fidelity is
relevant [5,34,35]. Furthermore, it may be necessary to pre-populate the system with patient
data. These data might be fabricated or real, anonymized patient data. If fabricated, it is
important to include extreme values and test at the edges of input ranges (i.e., “boundary
value analysis”) to identify rare occurrences.

2.7. Hardware

Technology hardware can create usability issues or affect the goal success rate. A
study by Andre et al. looked at the design and performance of four automatic external
defibrillators [36]. The team found that participants could not use two machines to deliver a
shock. The hardware design and packaging significantly influenced the ability of untrained
caregivers to use the equipment properly. While hardware should be accounted for when
designing tests or evaluating usability data, high-fidelity hardware prototypes are often
expensive and time-consuming to produce [6].

3. Materials and Methods
3.1. Health Information Technology

We studied a novel pain monitor that uses calculations from an electrocardiogram
(ECG) tracing to estimate the autonomic nervous system response to painful or stressful
stimuli. The HIT measures the R-R interval between two QRS complexes [37]. An algorithm
then calculates an analgesia nociception index (ANI): a unitless index ranging between
0 and 100, with higher values indicating more parasympathetic activity associated with
analgesia and lower values indicating more sympathetic activity associated with pain
(i.e., 0 = great pain or stress; 100 = adequate anesthesia). The goal is to keep the patient’s
ANI between 50–70.

The graphical user interface of the HIT (Figure 1) displays the instantaneous value
of the ANI (ANIi) and its average over time (mean ANI, ANIm). The display includes
numerical values, graphs, and information about the ECG and signal quality. The ANI
monitor must be reset between patients to avoid errors (i.e., new patient data displayed
with the previous patient’s threshold calibration). The pain monitor can be used in intensive
care units, operative theatres, and post-surgical care units. It is typically located at the head
of the bed, close to other vital sign monitors.

3.2. Risk Analysis to Inform Scenario Development

We used a mixture of published articles and grey literature to conduct an a priori
risk analysis. We studied safety incident reports databases and complaints files, published
usability studies on earlier versions of the pain monitor, and conducted interviews with
end-users using similar devices to identify potential usability errors and their consequences.
We identified eight usability errors (Table 1) associated with physician and nursing tasks.
We classified errors into three severity levels: mild: no injury, no patient discomfort
(n = 1 error); moderate: light patient discomfort (n = 4 errors); severe: serious injury or
death (n = 3 errors). We developed scenarios to test for each of the eight use errors.
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Figure 1. Screenshot of the analgesia nociception index (ANI) monitor.

Table 1. List of use error types and severity. Mild = no injury, no patient discomfort; moderate = light
patient discomfort; severe = serious injury or death.

Type No. Error Type Description of the Error Level of Severity

1 ANI-ECG * confusion Participant confuses ECG with ANI Mild

2 No detection of overdosage
The participant does not recognize when an ANIm value
over 80 for an unconscious patient represents a medication
overdose

Moderate

3 Focus on ANI The participant only uses the ANI index and neglects other
data sources to evaluate the patient’s discomfort level Moderate

4 Considering poor-quality data The participant does not consider the quality of signal
acquisition and bases her/his decision on poor-quality data Moderate

5 Considering out-of-date data The participant does not reset the ECG signal and bases
her/his decision on out-of-date or erroneous data Moderate

6 High ANI misunderstanding The participant erroneously interprets the meaning of a
high ANI on the screen Severe

7 Low ANI misunderstanding The participant erroneously interprets the meaning of a low
ANI on the screen Severe

8 Considering other patient data The participant does not reset the values from the previous
patient and bases her/his decisions on erroneous data Severe

* ANI = analgesia nociception index; ECG = electrocardiogram.

3.3. Participants

In France, physicians and nurses with specialized training in anesthesiology typically
manage pain in dedicated anesthesiology and resuscitation units. We conducted a prelimi-
nary context-of-use analysis in these two units and found no differences in how the devices
were used. Therefore, to gather comprehensive data on the types of errors encountered
with the ANI monitor, we recruited physicians and nurses for this study.
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We included participants in this study if they were: (1) physicians (i.e., resuscitation
clinicians or anesthesiologists) or nurses specialized in intensive care, (2) had at least two
months of professional experience in an intensive care unit, (3) completed training with
the ANI monitor, and (4) consented to be recorded. Participants were excluded if they
had previously used this ANI pain monitor. Recruitment proceeded through convenience
sampling. We recruited volunteers through announcements (i.e., newsletters and emails) in
Lille Academic Hospital’s units and through their professional networks.

3.4. Study Design and Test Conditions

We performed an in-lab experimental study using a one-factor within-subjects design
(Figure 2). The within-participants variable was the level of fidelity; this included two
conditions: low fidelity and high fidelity. While ecological validity can be conceptualized
on a continuum, we designed two discrete levels for our study: low-fidelity and high-
fidelity. We manipulated multiple ecological dimensions for each level (i.e., environment,
scenario, patient involvement, software) (Table 2). All participants completed the same five
scenarios twice—once for each test condition (i.e., low- and high-fidelity). We furnished
each subject with two different but equivalent clinical cases to limit any carryover or
priming effect. We counterbalanced the exposure order for each condition and clinical case.
All test scenarios were developed by an anesthesiologist and modeled after real patient
cases. A second anesthesiologist reviewed each case for face and content validity. During
testing, a proctor observed participants either through one-way glass (high-fidelity) or
while standing in the same room (low-fidelity). The proctor gave instructions through a
loudspeaker (high-fidelity) or in person (low-fidelity). We audio- and video-recorded all
usability tests.

Figure 2. Diagram of the within-subjects study design. Thirty physicians and nurses completed five
low-fidelity scenarios and five high-fidelity scenarios. We changed the fidelity in six of the seven
ecological validity dimensions.
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Table 2. Description of the test environment according to the level of fidelity.

Ecological Validity
Dimension The Low-Fidelity Condition The High-Fidelity Condition

1. User roles
Physicians and nurses specialized in intensive care. Participants had a
minimum of two months of experience in intensive care and received
training on the pain monitor two days before the test.

2. Environment
Administrative room without other
types of medical equipment
and devices.

Simulated resuscitation rooms
were similar to actual
resuscitation rooms. The room
was equipped with furniture
and real medical technology
and devices (infusion pumps,
ECG * monitor, etc.). The
simulation space mimicked a
real resuscitation room in
terms of temperature, ambient
sounds, interruptive alarms,
and disinfectant smell.

3. User training All participants attended a training session at least two days before the
test. This matches current training protocols with new equipment.

4a. Scenarios,
breadth

We did not set off monitor
alarms to interrupt the participants.

Interrupting alarms from the
monitors interrupted the
participants, just like in
real-life resuscitation rooms.

4b. Scenarios, depth

Five goal-based scenarios to test all eight identified use errors. Each
scenario was performed twice, once in each condition. We furnished a
summary of the patient’s case, including a description of the patient
(e.g., age, gender, conditions), the clinical course, and a list of
medications taken.

4c. Scenarios,
behavior

Participants were asked to verbalize
how they would respond and what
actions they would take.

Participants were asked to act
on the mannequin as they
would in real life.

5. Patient
involvement

We did not include a patient or
representation (i.e., a mannequin).
Instead, the test moderator described
the patient’s status. We provided
screenshots of the patient parameters
required for medical decision-making.

We used a mannequin capable
of reproducing
physiologically realistic
reactions of the human body.

6. Hardware

Participants are shown screenshots
printed on paper and a video on a
computer screen with no possibility of
interaction with the computer.

The ANI * pain monitor is an
interactive screen framed by a
plastic shell. Users can
interact by directly pressing
the interactive buttons on the
screen. Depending on which
buttons are pressed,
parameters are modified, or
windows are opened on the
interface.

7. Software

The test was primarily performed using
screenshots of the pain monitor.
Scenario 4 (testing error 8) required the
participant to see blinking ANI curves;
thus, a video of the blinking screen was
shown instead of a screenshot.
Participants could see screenshots of
data typically rendered on ECG,
respiratory, and ANI pain monitors.

The test was performed with
an actual ANI pain monitor.
Participants could see the
patient’s data typically
rendered on ECG, respiratory,
and ANI pain monitors in a
live environment.

* ANI = analgesia nociception index; ECG = electrocardiogram.
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3.5. Measurements

We recorded use errors during each test. We first interviewed two anesthesiologists
and created a reference standard of acceptable behaviors and answers for each scenario.
In the high-fidelity condition, we asked participants to behave in each scenario as they
would in real life. In the low-fidelity condition, we instructed them to tell the observer
what they would do for each task. During testing, a usability professional compared test
subject behaviors and answers to the reference standard. For double-pass verification, a
second usability professional reviewed all recordings and scored behaviors or answers.

3.6. Procedures

After determining the eligibility and consent of each participant, we explained the test-
ing procedure. Then, participants completed all five scenarios in one condition (i.e., either
high- or low-fidelity) and, after a short break, completed the next five scenarios in the other
condition. We determined the order of scenarios in each condition using a randomization
table. After the tests, we held debriefing sessions using a semi-structured interview guide
to explore participants’ perspectives on the technology (e.g., perceived usefulness and
usability) and the root cause(s) of their errors. The total test duration was approximately
70 min.

3.7. Statistical Analyses

For each test and each participant, we counted the total number of errors and scored
each by type and severity (i.e., mild, moderate, severe). We calculated descriptive statistics
for errors at each level of fidelity. We calculated the overall frequency of error occurrence
and the frequency by ecological level. Due to the small sample size and the rarity of the
errors, we could not calculate inferential statistics. Statistical analyses were performed with
Jamovi software (version 2.3.21, The Jamovi project).

3.8. Ethical Considerations

This study was conducted in France and is categorized as human and social science
research. In accordance with French biomedical research law, our study protocol was
exempt from ethical board approval or oversight [38,39]. This study was conducted in
accordance with the Declaration of Helsinki.

We recruited all participants voluntarily and provided financial compensation of 150€
(approximately 160 U.S.$) for participation.

4. Results

Both groups were similar in age and sex (Table 3).

Table 3. Demographic characteristics of the participants.

Profile Number (Females; Males) Mean Age in Years (SD)

Anesthesiologists 15 (9; 6) 28.26 (2.54)
Nurses 15 (9; 6) 31.93 (6.14)

Total 30 (18; 12) 30.01 (5.05)

Across both conditions, we identified thirty-one errors (Figure 3); there were seven
moderate and twenty-four severe errors. We saw users commit five of the eight possible
error types (Figure 3 and Table 4) listed in our risk analysis (Table 1). Four error types
appeared in both conditions (#2, #6, #7, and #8), and one only appeared in the low-fidelity
condition (#4). We did not identify any unexpected errors (i.e., errors that defied catego-
rization according to our risk analysis) in either condition.
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Table 4. List of use errors, severity, and the number (percentage) of participants who committed them.

Type No Error Type Description of the Error Severity Level Low-
Fidelity

High-
Fidelity

1 ANI *-ECG * confusion Participant confuses ECG with ANI Mild 0 (0%) 0 (0%)

2 No detection of overdosage
The participant does not recognize when
an ANIm value over 80 for an unconscious
patient represents a medication overdose

Moderate 4 (13%) 2 (7%)

3 Focus on ANI
The participant only uses the ANI index
and neglects other data sources to evaluate
the patient’s discomfort level

Moderate 0 (0%) 0 (0%)

4 Considering poor-quality
data

The participant does not consider the
quality of signal acquisition and bases
her/his decision on poor-quality data

Moderate 1 (3%) 0 (0%)

5 Considering out-of-date
data

The participant does not reset the ECG
signal and bases her/his decision on
out-of-date or erroneous data

Moderate 0 (0%) 0 (0%)

6 High ANI
misunderstanding

The participant erroneously interprets the
meaning of a high ANI on the screen Severe 3 (10%) 1 (3%)

7 Low ANI
misunderstanding

The participant erroneously interprets the
meaning of a low ANI on the screen Severe 6 (20%) 7 (23%)

8 Considering other patient
data

The participant does not reset the values
from the previous patient and bases
her/his decisions on erroneous data

Severe 3 (10%) 4 (13%)

* ANI = analgesia nociception index; ECG = electrocardiogram.

Across both conditions, participants made, on average, 1.03 errors (range = 0–7) out of
16 possible errors (8 errors × 2 conditions). They made 0.57 (range = 0–4) out of 8 possible
errors in the low-fidelity tests and 0.47 (range = 0–3) in the high-fidelity tests. Sixteen
participants (53%) did not commit any errors in either condition. Three participants did not
commit any errors in the low-fidelity condition (10%), and one participant did not commit
any errors in the high-fidelity condition (3%).

Overall, we observed 17 errors in low-fidelity conditions compared to 14 errors in the
high-fidelity conditions. There were no differences between the number of mild or severe
errors. By contrast, we identified five moderate errors in the low-fidelity condition and two
in the high (Figure 4 and Table 5).
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Table 5. Number of errors committed in each condition according to their severity.

Error Severity Low-Fidelity High-Fidelity

Mild (1 possible error type) 0 0
Moderate (4 possible error types) 5 2
Severe (3 possible error types) 12 12

Total (8 possible error types) 17 14

5. Discussion
5.1. Principal Findings

While we saw some variation in the number and type of errors as a function of test
fidelity and ecological validity, the difference was relatively modest (i.e., three additional
errors in low-fidelity conditions) and inconsistent across severity levels. We observed
more moderate errors in the low-fidelity condition but the same number of severe errors in
both conditions. Overall, we observed the same error types in both conditions; increasing
ecological validity did not improve our ability to detect specific types of usability issues.
Nonetheless, given the small number of participants, scenarios, and observations, we
hesitate to generalize to other technology evaluations or make broad testing recommenda-
tions. Instead, we believe there is a need for more comparative studies to identify subtle or
specific effects of ecological validity on performance.

We propose several hypotheses to explain why participants made similar errors in both
testing conditions. First, technology display screenshots (low-fidelity) looked like the live
monitor (high-fidelity). Since the display did not include interactive features or affordances,
the user experience may have been the same. Second, downstream participant behaviors
were primarily cognitive (i.e., interpreting a display). There may have been insufficient
task depth or breadth to see more cascading errors in workflow or ripple effects in complex
adaptive systems. We might have seen more severe errors if we required participants to
act on the data by adjusting medications or communicating with other clinicians. Finally,
low-fidelity conditions may create a kind of “interference effect.” The artificial conditions
of low-fidelity mock-ups and the absence of contextual cues in a laboratory setting may
create interface usability issues—for example, the inability to recognize system status—or
limit a participant’s situational awareness and response time.
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5.2. Comparison to the Literature and Implications of Findings

While we did not see more errors or usability issues in the high-fidelity test conditions,
we believe the interaction between test fidelity and error detection is complex. Increasing
the fidelity of each dimension may not invariably increase test sensitivity or the ability
to identify potential errors [40]. However, we cannot conclude that low-fidelity tests
are always better or more sensitive than high-fidelity tests. On the contrary, it is still
possible that high-fidelity simulations may identify significant and potentially severe
usability issues that are complex, context-dependent, and otherwise hidden during tests
with low ecological validity. Thus, low-fidelity usability tests should not be used in lieu
of high-fidelity evaluations. Instead, they should be used earlier and potentially more
frequently throughout the development and testing lifecycle. When selecting test fidelity,
we believe the deciding factors to consider include the technology features of interest, the
anticipated interaction between technology and the environment characteristics [40], the
most important user goals, and the context of use. Nevertheless, this study’s findings
suggest that low-fidelity tests are an efficient and cost-effective way to identify and mitigate
many issues impacting ease of use, effectiveness, and safety. These findings also align
with recommendations from leading usability experts to test early and often [41–43]. High-
fidelity tests may offer deep insights into future implementation challenges, but we should
also embrace “discount” testing to operate and innovate at the pace of healthcare.

There are four unresolved issues that demand further study. First, if ecological validity
can influence the sensitivity of tests to detect usability errors, we must know where to
apply our efforts. In resource-constrained settings, how do usability professionals predict
what level of fidelity is needed to identify all important errors? Perhaps only some test
dimensions must be high-fidelity to meet testing goals. Second, when there are so many
dimensions of ecological validity—and within each dimension, so many levels of fidelity—
professionals need a framework to know (1) which dimensions are associated with specific
error types and (2) what fidelity level is sufficient to test a product’s performance thresholds.
A starting point for developing this framework could be Kushniruk and Turner’s User–Task–
Context matrix, which lists three dimensions relevant to HIT design and example attributes
for each dimension [44]. Attempts to build a similar model for each of van Berkel’s seven
dimensions would be more challenging. An ideal product would list the relevant attributes
for each dimension and suggest strategies for creating low and high-fidelity versions. Third,
we must know if there are certain dimensions that should always be high-fidelity. We
presume testing participants should always possess knowledge of the clinical subject matter
and use context. However, there may be other dimensions critical to safety or other key
performance measures. Fourth, when designing tests with fidelity in mind, how low can
you go? Jensen and colleagues proposed that extremely low-fidelity tests without a priori
scenarios, functional prototypes, or patient data still provide valuable information [45].
These tests can foster discussion when identifying technology requirements, edge cases, or
implicit user knowledge about the use context.

To address these issues, usability professionals should work towards a consensus on
the minimum number of dimensions and attributes to consider when designing tests. One
strategy that usability professionals can use when designing and reporting usability studies
is to leverage—and expand—existing frameworks and guidelines [46–48]. Standardized
reporting would enable researchers to strategically close gaps in our understanding of
ecological validity and the effect specific dimensions have on the accuracy of findings.

5.3. Strengths and Limitations

There are several strengths of this work that deserve mention. First, we believe this is
one of the first studies to use van Berkel’s theoretical framework as a scaffolding to build a
usability testing protocol. In doing so, we are building the empirical database to explain
how decisions of ecological validity influence usability testing findings, technology design
decisions, and implementation outcomes. We also provide an extensible model to guide
future testing in this arena. Second, this is one of the first studies to compare the effect of test
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fidelity in multiple dimensions (i.e., environment, scenario breadth, user behavior, patient
involvement, and software). We compared two modalities of ecological validity in the lab,
whereas most published reports compare the laboratory to the real world [24–26,29,30].
Third, we incorporated a HIT risk analysis into our protocol to develop a pre-identified list
of errors. This increased the precision of our “testing forecast” and the instrumentation to
search for these issues. At the same time, we could still identify and classify new error types.

There are also important study limitations affecting the explanatory power and gen-
eralizability of our results. First, we did not conduct comparative tests across all seven
dimensions of van Berkel’s model. We could have included levels for user roles, user
training, scenario urgency, and scenario typicality. Second, we configured fidelity at only
two levels when, in fact, every dimension of fidelity exists on a continuum. For example, for
patient involvement, our high-fidelity condition included a mannequin. This could have
been a “mid-fidelity” condition, and we could have also included a standardized patient or
an actual patient for the “high-fidelity” condition. As we noted above, the static screenshots
of the interface look very similar to the actual device. The similarity in exposures may have
caused a Type II (i.e., false negative) error. Third, we did not conduct naturalistic testing.
Healthcare systems are complex adaptive systems with emergent properties, changing
actors, and widely distributed workflow and cognition. This makes it extremely difficult
to know what other usability issues went undetected. Fourth, we only tested one HIT. It
would be informative to know how the technology, target user, and context-of-use interact
with fidelity and testing outcomes. Fifth, we recruited 30 users—and only 15 per role. We
do not know if this was the correct number to surface all usability issues. Deciding on the
correct power for summative usability testing is a hotly debated topic in the literature [49].
While it has been argued that as few as 5 participants can identify over 80% of usability
issues, research has shown that many more participants may be needed depending on the
heterogeneity of users, the complexity of the product, and the goals of testing (e.g., for-
mative testing for iterative re-design or summative testing for user acceptance) [50–52].
However, our sample size is in line with recommendations for summative evaluations
of medical devices [53]. Sixth, there was a risk of contamination between dimensions or
the order of exposure. For example, the onscreen data may have improved situational
awareness, promoted new behaviors like cross-checking signals, and thereby decreased
“high ANI misunderstanding” errors (#6).

6. Conclusions

More ecological validity does not always seem to be better when evaluating the
usability of HIT. Our results suggest that high ecological validity does not consistently
provide more information about the quality and defects of HITs. Low-fidelity testing can be
an effective and cost-effective way of identifying and mitigating many problems associated
with ease of use, efficiency, and safety. However, we do not recommend replacing all
high-fidelity testing with low-fidelity testing. Instead, low-fidelity testing can be used
early and more often so that usability researchers can better anticipate problems and guide
development and implementation teams at the pace of healthcare.
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