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Abstract

The process of making inference on networks of spiking neurons is crucial to
decipher the underlying mechanisms of neural computation. Mean-field theory sim-
plifies the interactions between neurons to produce macroscopic network behavior,
facilitating the study of information processing and computation within the brain.
In this study, we perform inference on a mean-field model of spiking neurons to
gain insight into likely parameter values, uniqueness and degeneracies, and also to
explore how well the statistical relationship between parameters is maintained by
traversing across scales. We benchmark against state-of-the-art optimization and
Bayesian estimation algorithms to identify their strengths and weaknesses in our
analysis. We show that when confronted with dynamical noise or in the case of
missing data in the presence of bistability, generating probability distributions us-
ing deep neural density estimators outperforms other algorithms, such as adaptive
Monte Carlo sampling. However, this class of deep generative models may result in
an overestimation of uncertainty and correlation between parameters. Nevertheless,
this issue can be improved by incorporating time-delay embedding. Moreover, we
show that training deep Neural ODEs on spiking neurons enables the inference of
system dynamics from microscopic states. In summary, this work demonstrates the
enhanced accuracy and efficiency of inference on networks of spiking neurons when
deep learning is harnessed to solve inverse problems in neural computation.

Keywords: Mean-field models, Bayesian inference, Deep neural networks,
Simulation-based-inference, Hamiltonian Monte Carlo, Optimization, Bistability

Abbreviations:
MF, Mean-Field; QIF, Quadratic Integrate-and-Fire; SBI, Simulation-Based Inference;

SNPE, Sequential Neural Posterior Estimation; MCMC, Markov Chain Monte Carlo; HMC,
Hamiltonian Monte Carlo; MAP, Maximum a Posteriori; DE, Differential Evolution; PSO,
Particle Swarm Optimization; BO, Bayesian Optimization; ODEs, Ordinary Differential
Equations; SDEs, Stochastic Differential Equations; Neural ODEs, Neural Ordinary Differ-
ential Equations

∗Corresponding author
Email addresses: viktor.jirsa@univ-amu.fr (Viktor K. Jirsa †),

meysam.hashemi@univ-amu.fr (Meysam Hashemi †)
†These authors contributed equally.

Preprint submitted to bioRxiv January 26, 2024

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 26, 2024. ; https://doi.org/10.1101/2024.01.26.577077doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.26.577077
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction

Neural computation involves the complex information processing performed by spiking
neurons, where their interactions within neural circuits contribute to higher-level compu-
tations and cognitive functions. Consequently, the cornerstone of theoretical neuroscience
lies in the use of mathematical models to understand the intricacies of neural computation
(Dayan and Abbott, 2005; Hertz, 2018). This approach enables researchers to explore the
complexities of neural processes, thereby revealing insights into the mechanisms that drive
brain function and behavior. These mathematical models can range from simple ideal-
ized representations of single neurons (Hopfield, 1982; Izhikevich, 2003) to complex network
models that simulate the interactions within neural circuits (Marder, 1998; Sussillo, 2014;
O’Leary et al., 2015; Bittner et al., 2021). The biological neural computation forms the
basis for the brain’s ability to execute various inference tasks, such as recognizing patterns,
making decisions, and generating responses to stimuli. This capability relies on the col-
lective behavior of spiking neurons, where the interactions and coordination among these
neurons within neural circuits enable the brain to process, integrate, and interpret sensory
information, ultimately leading to higher-level cognitive functions and adaptive behavior
(Kandel et al., 2000; Gerstner et al., 2014; Friston and Kiebel, 2009; Friston et al., 2017).

Mean-Field (MF) models serve as effective computational abstractions that represent the
collective behavior of large populations of neurons, while maintaining a degree of mathemat-
ical tractability (Amari, 1977; Wilson and Cowan, 1973; Jirsa and Haken, 1996; David and
Friston, 2003; Deco et al., 2008; Hutt et al., 2015; Coombes and Byrne, 2018; Bandyopad-
hyay et al., 2021; Cook et al., 2022). Hence, MF models facilitate the study of information
processing and computation within the brain, which underlie cognitive processes such as
perception, memory, and learning. Nevertheless, deriving and validating MF models from
spiking neural networks present many challenges, particularly when assessing how the in-
teraction between individual neurons and parameters leads to macroscopic behavior that
aligns with the averaged activity of neural populations.

Recently, an analytically-driven MF model of spiking neurons has been formulated,
which can effectively describe all potential macroscopic dynamical states of the network,
including states of synchronous spiking activity (Montbrió et al., 2015). However, the op-
eration of such complex systems (governed by coupled nonlinear differential equations) is
determined by the selection of (biological or phenomenological) parameters, which when set
in a specific configuration, give rise to a measurable signature of a computation (Achard
and De Schutter, 2006; Sussillo, 2014). Analyzing MF models and comparing their emer-
gent dynamics against a network of neurons involves solving inverse problems to ascertain
the optimal parameter setting. This process requires swift and robust outcomes to inform
real-time decisions and also to deal with observation and dynamical noise. Yet, even in
the simplest models, there can be a degenerate relationship between the model parameters
and its overall emergent function (Edelman and Gally, 2001; Prinz et al., 2004; Alonso and
Marder, 2019), making the inverse problem more challenging.

Maintaining the inter-dependency between parameters by traversing across scales adds
an additional layer of complexity to the validation process. It is crucial to distinguish
between genuine, biologically relevant correlations, and artificial correlations that may arise
from the inference process or modeling assumptions. Furthermore, due to the intricate
nature of computation within neural circuits, it becomes intractable to analytically derive
MF models that include more biological realism (such as adaption, neuromodulation, extra-
synaptic transmission, and E/I ratios). Statistical inference offers an efficient and adaptable
approach to solving the inverse problem by identifying approximate parameter distributions
that are responsible for generating computations in a biologically realistic model (Achard
and De Schutter, 2006; Liepe et al., 2014; Lueckmann et al., 2017; Gonçalves et al., 2020;
Bittner et al., 2021; Młynarski et al., 2021).

The performance of statistical inference algorithms depends on the task, and there is
no universally best algorithm for different inverse problems. Therefore, we conducted a
benchmarking analysis against state-of-the-art optimization and Bayesian estimation algo-
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rithms to discern their respective advantages and limitations. In practice, optimization
methods are commonly used to quickly determine unknown quantities through a single
point estimate (Mendes and Kell, 1998; Nocedal and Wright, 1999; Kelley, 1999; Floudas
and Gounaris, 2009). These methods involve iteratively adjusting parameters to minimize
or maximize an objective function, scoring the model’s performance against observed data
(e.g., through minimizing distance errors or maximizing correlation; Banga and Balsa-Canto
(2008); Tashkova et al. (2011); Svensson et al. (2012); Hashemi et al. (2018)).

The Bayesian approach offers a principled method for making inferences, predictions,
establishing relationships between parameters, and quantifying uncertainty in the decision-
making process (Gelman et al., 1995; Bishop, 2006; Gelman et al., 2020; van de Schoot
et al., 2021). In Bayesian modeling, all model parameters are treated as random variables
and their values are subject to variation based on their underlying probability distributions.
Such probabilistic techniques provide the full posterior distribution of unknown quantities
hidden in the underlying data generating process. The uncertainty and inter-dependency
in Bayesian estimation are naturally quantified by assigning a probability distribution to
each parameter (known as the prior distribution), which is then updated based on the
information provided by the data (referred to as the likelihood function). To conduct a fully
Bayesian procedure, the state-of-the-art MCMC method is adaptive Hamiltonian Monte
Carlo (HMC; Duane et al. (1987); Neal (2010); Hoffman and Gelman (2014)), which utilizes
gradient information to avoid random walk behavior. This enables efficient sampling from
high-dimensional distributions that may exhibit strong correlations (Betancourt, 2017).

Simulation-Based Inference (SBI; Cranmer et al. (2020); Brehmer (2021)) or likelihood-
free inference (Papamakarios and Murray, 2016; Brehmer et al., 2020) leverages deep gener-
ative models to conduct approximate Bayesian estimation, using low-dimensional data fea-
tures that are generated by random simulations (Gonçalves et al., 2020; Lueckmann et al.,
2021; Boelts et al., 2022). In this efficient approach, a simple base probability distribution
(prior) is transformed into a more complex distribution (posterior), through a sequence of
invertible transformations (i.e., Normalizing Flows; Rezende and Mohamed (2015); Papa-
makarios et al. (2019a)). Notably, it allows for direct estimation of joint posterior distribu-
tions, bypassing the need for MCMC sampling (Greenberg et al., 2019; Papamakarios et al.,
2019b). Moreover, expressive deep generative models have the potential to capture param-
eter nonlinear relationships between parameters and multi-modalities in the distributions
(Hashemi et al., 2023).

Data-driven methods for learning dynamical models from time-series data have been
extensively researched for several decades (Juang, 1994; Ljung, 1998; Brunton et al., 2016;
Linderman et al., 2017; Duncker et al., 2019; Koppe et al., 2019; Sip et al., 2023). Instead of
relying on discretized maps, Neural Ordinary Differential Equations (Neural ODEs; Chen
et al. (2018)) form a new family of deep neural network models for modeling continuous-time
dynamics. Neural ODEs define the vector fields and ODE solution as a black-box differential
equation solver, allowing for uncovering the dynamics of a system even when the governing
equations are unknown (Dupont et al., 2019; Biloš et al., 2021). This data-driven approach
involves parameterizing system dynamics as continuous functions, enabling smooth and
uninterrupted modeling of temporal evolution (Yan et al., 2019; Kim et al., 2021). Neural
ODEs naturally adapt to varying time intervals and can accommodate fluctuations in the
frequency of data observations (Zhu et al., 2022; Goyal and Benner, 2023).

Through an exploration of the aforementioned methods, we demonstrate that global op-
timization algorithms, such as Differential Evolution algorithm, offer fast and accurate point
estimation of the true generative parameters when the dynamical noise is absent. However,
when dealing with dynamic evolution that are subject to noise, SBI using deep neural den-
sity estimators emerges as the superior approach, outperforming other algorithms, such as
adaptive HMC sampling. Additionally, when dealing with missing data (such as popula-
tion firing rate) in state-space modeling, HMC fails to capture the dynamics of bistable
switching behaviour. Instead, SBI is able to accurately recover the diverse dynamics in
the phase-space representation. Nevertheless, this approach may lead to an overestimation

3

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 26, 2024. ; https://doi.org/10.1101/2024.01.26.577077doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.26.577077
http://creativecommons.org/licenses/by-nc-nd/4.0/


of uncertainty and correlation between parameters, which can be mitigated by using time-
delay embedding technique to improve the results. We validate this by employing a MF
model of quadratic integrate-and-fire (QIF) neurons, which demonstrates that the inter-
dependencies between parameters are maintained when traversing across scales. Finally, we
demonstrate that training deep Neural ODEs on spiking neurons enables the inference of
vector fields at macroscopic level. This allows for the prediction of emergent behaviors and
system dynamics based on the microscopic state of the spiking neurons.

2. Materials and methods

2.1. A mean-field model of spiking neurons
The quadratic integrate-and-fire (QIF) neurons are a class of simplified computational

models that are extensively used to study the dynamics of spiking neurons (Gerstner and
Kistler, 2002; Izhikevich, 2007). In the QIF model, the membrane potential of neuron
evolves according to a quadratic differential equation until it reaches a threshold, at which
point the neuron emits a spike and the potential is reset.

Montbrió et al. (2015) have proposed a MF model that accurately describes macro-
scopic states of populations of firing neurons. This mechanistic model derives the firing rate
equations for networks of heterogeneous, all-to-all coupled QIF neurons, which is exact in
the thermodynamic limit, i.e. for large numbers of neurons. Specifically, when considering
specific distributions of heterogeneity, the Lorentzian ansatz yields a nonlinear system of
two ordinary differential equations for the firing rate r and mean membrane potential v of
the neuronal population:

ṙ = 2rv +∆/π (1a)

v̇ = v2 − π2r2 + Jr + η + I(t) (1b)

where η is the average excitability, J denotes the synaptic weight, and ∆ indicates the
spread of the neuronal excitability distribution in the neural population. Depending on
the parameter settings, the phase diagram exhibits three qualitatively distinct regions: a
single stable node, which represents a low-activity state; a single stable focus (spiral), which
generally corresponds to a high-activity state; and a region of bistability, where both low
and high firing rates can coexist (see Figure S1). This model has succeeded in establishing
an exact correspondence between the time evolution of firing rate of the network and the
underlying microscopic state of the spiking neurons (Montbrió et al., 2015).

2.2. Inference methods
We validate the mean-field approximation by comparing it against detailed spiking neu-

rons, using various parameter estimation inference methods. To evaluate these methods, we
use synthetic data generated from the MF model and a network of QIF neurons. Inference
methods investigated in this work can be broadly divided into two classes:

(i) Optimization methods that return a point estimate of best fit based on the minimizing
of a cost function, such as chi-squared error criterion defined by

χ2(θ) =

Nt∑
i=1

(x̂(ti, θ)− x(ti))
2
, (2)

where x(ti) denotes the observed data at time points ti with i ∈ {1, 2, . . . , Nt}, and x̂(ti, θ)
represents the corresponding model prediction. Here θ ∈ {η, J,∆} is the set of unknown
parameters, and the set of observation combines activity of both r, v (unless it is missing).
Assuming no prior information and a Gaussian likelihood function with uncorrelated noise,
this casts as a Maximum Likelihood Estimation (MLE) problem (Hashemi et al., 2018).
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(ii) Bayesian methods return a posterior distribution of parameters, p(θ | x), which
represents an ensemble of parameter sets that are plausible given the observed data. Given
the data x and model parameters θ, Bayes rule defines the posterior distribution as

p(θ | x) = p(θ)p(x | θ)
p(x)

. (3)

The prior information p(θ) is typically determined before seeing the data (through beliefs
and previous evidence). The likelihood function p(x | θ) represents the probability of some
observed outcomes given a certain set of parameters (the information provided by the ob-
served data). The denominator p(x) =

∫
p(x | θ)p(θ)dθ represents the model evidence or

marginal likelihood, which amounts to simply a normalization factor.
From the optimization methods, we use the global search algorithms that incorporate a

bio-inspired random search principle: Differential Evolution (DE; Storn and Price (1997);
Price (1999)), and Particle Swarm Optimization (PSO; Kennedy and Eberhart (1995); Eber-
hart and Kennedy (1995)). These algorithms do not require an initial guess for the param-
eters or the gradient information of the objective function. We also consider Bayesian Op-
timization (BO; Snoek et al. (2012); Shahriari et al. (2015)), an algorithm that constructs
a probabilistic model for the objective function using Gaussian processes. This approach
allows for the integration of uncertainty in the optimization process.

From the Bayesian methods, we compare the results of two state-of-the-art Bayesian
computation algorithms: Hamiltonian Monte Carlo (HMC; Duane et al. (1987); Neal (2010))
which is unbiased and exact in infinite runs, and a Simulation-Based Inference (SBI; Cran-
mer et al. (2020); Brehmer (2021)) which approximates the posterior using deep generative
models. Here, generative modeling is an unsupervised machine learning method to model
a probability distribution based on the samples drawn from that distribution. From the
Bayesian methods, we also report the results of Maximum a Posteriori (MAP) estimation.

2.3. Hamiltonian Monte Carlo
Markov Chain Monte Carlo (MCMC) is a powerful class of computational algorithms

used for sampling from a distribution, in which the sampling process does not require knowl-
edge of the entire distribution, making it a versatile tool. (Andrieu et al., 2003; Murphy,
2022; McElreath, 2020). MCMC is unbiased and asymptotically exact, in the limit of infinite
runs. Hamiltonian Monte Carlo (HMC; Duane et al. (1987); Neal (2010)) is a gradient-based
MCMC designed to avoid random walk behaviour, and it can efficiently sample from high-
dimensional distributions that may exhibit strong correlations (Betancourt, 2017). However,
the efficiency of HMC is sensitive to the algorithm parameters.

In this study we use a self-tuning variant of HMC (known as the No-U-Turn Sam-
pler; Hoffman and Gelman (2014)) from a high-level statistical modeling tool called Stan
(Carpenter et al., 2017). In particular, the NUTS calibrates the number of steps and step-
size of the leapfrog integrator (in solving the Hamiltonian equations of motion) during a
warm-up phase to achieve a target Metropolis acceptance rate. For more details see Be-
tancourt (2013); Baldy et al. (2023). Moreover, Stan offers alternative methods such as
MAP estimation using L-BFGS optimization, automatic differentiation for efficient gradi-
ent computation, and various diagnostics to assess the convergence of the inference process
(see https://mc-stan.org).

2.4. Simulation-Based Inference
Simulation-Based Inference (SBI) conducts efficient Bayesian inference for complex mod-

els when the calculation of the likelihood function is either analytically or computationally
intractable (Cranmer et al., 2020; Brehmer, 2021). In computational models, where the
data can be generated through stochastic simulations, SBI leverages repeated simulations
from the generative model and employs probabilistic machine learning to estimate a target
probability distribution. Instead of directly sampling from distributions using MCMC or
explicitly evaluating the likelihood function, SBI overcomes these challenges by using deep
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neural density estimators, such as Masked Autoregressive Flows (MAF; Papamakarios et al.
(2017)). These density estimators learn an invertible transformation between the distribu-
tions of parameters and low-dimensional data features at a very low computational cost, to
efficiently sample from distributions.

Taking the prior distribution p(θ) over the parameters θ, a limited number of N simula-
tions are generated for training step from the generative model i.e., {(θi, xi)}Ni=1 ∼ p(θ, x).
After the training step, we are able to quickly estimate the approximated posterior qϕ(θ | x)
with learnable parameters ϕ, so that for the observed data xobs: qϕ(θ | xobs) ≃ p(θ | xobs).
For more details see Gonçalves et al. (2020); Hashemi et al. (2023).

The methods for SBI often include a sequential training procedure, which adaptively
guides simulations to yield more informative estimates (Papamakarios et al., 2019b; Lueck-
mann et al., 2019; Durkan et al., 2020; Wiqvist et al., 2021; Deistler et al., 2022). In par-
ticular, Sequential Neural Posterior Estimation (SNPE; Greenberg et al. (2019); Gonçalves
et al. (2020)) dynamically refines the proposals, network weights, and posterior estimates
to learn the relationship between model parameters and the observed summary statistics
of the data. In this study, we used SNPE with a single round to take advantage of an
amortized strategy; After incurring an initial computational cost for the simulation and
training steps to learn all the joint posterior distributions, then the posterior can be quickly
estimated from any new observations (by a forward pass through neural networks) without
any additional computational overhead or further simulations.

2.5. Time-delay embedding
Time-delay embedding is a commonly used technique for characterizing dynamical sys-

tems based on limited measurements, time-series analysis, and prediction (Takens, 1981).
In time-delay embedding, the reconstruction of a latent high-dimensional system relies on
incorporating incomplete measurements along with a temporal history of preceding mea-
surements to create a comprehensive representation (Kennel et al., 1992; Hirsh et al., 2021).
In a subsequent analysis, we challenge the inference process by assuming that the firing
rate activity r is not directly observed (missing data problem). Instead, to improve the
inference, we recovered the latent time-series rrec from the observed activity v, which is
coupled to r according to Eq. 1. By expanding on a method introduced by Abarbanel et al.
(1994), which primarily focuses on predicting physical variables in time-delay embedding,
we removed the assumption that we have the access to training data points from the hidden
time-series. Instead, we leverage our understanding of the generator to simulate data pairs
(r, v) that can be used for training purposes.

Time-delay embedding requires the setting of hyperparameters, such as the delay (time
lag), T , and the dimension of the embedding space, d. These hyperparameters are typically
set prior to training, often based on the minimization of mutual information to determine
the appropriate delay and the false nearest neighbors method to determine the number
of embedding dimensions (Kennel et al., 1992; Tan et al., 2023). However, in the present
application, we have found that the hyperparameters suggested by these methods were
not the most effective in achieving an accurate fit. Instead, we select hyperparameters
that minimize the mean square error of the fit to simulated data, with T = 160 points
(i.e., 0.16 sec) and d = 12. To do this, a set of 100 pairs of coupled time-series (r, v)
was simulated, with an observation noise intensity of 0.1 and varying parameters (∆, η, J).
These pairs were then used to infer regression coefficients that closely match r to the delay
embedding space representation of v.

2.6. Neural ODEs
Neural ODEs are a set of machine learning techniques that allow to reconstruct the

phase-space of a dynamical system from a training set of observations (Chen et al., 2018).
In a first analysis, we trained a Neural ODE on time-series from the MF model, and then
applied the same method to the data generated by a network of QIF spiking neurons. If
x(t) is the vector of state variables governed by the dynamical system ẋ = f(x, θ, Iext), one
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can use a Neural ODE to approximate the function f with an artificial neural network Fϕ,
yielding the corresponding dynamical equation ˙̂x = Fϕ(x̂, θ, Iext). Fϕ is learned through
backpropagation, minimizing the loss function for each training example of length T :

Lϕ(x̂, x) =
T∑

t=0

(x̂(t, θ)− x(t))2

where x̂ and x are times-series generated by Fϕ and f , respectively, with the same integration
scheme (e.g., Heun’s method). In this study, a Neural ODE was implemented in JAX
(Bradbury et al., 2018) by constructing a multi-layer-perceptron (MLP) with one hidden
layer of 16 units, and with hyperbolic tangeant activation functions. The cost function was
the average loss functions across training examples Lϕ = 1

N∗T
∑N

n=1 Lϕ,n. At each training
iteration, the initial (r, v) values of each segment is fed to the Neural ODEs and the forecast
trajectory according to current state of the Fϕ enters the cost function, then minimized
through backpropagation using the Adam optimizer.

2.7. Software and algorithmic setup
We use Python implementations of the optimization and Bayesian algorithms: DE from

SciPy (Virtanen et al., 2020), PSO from the toolkit PySwarms (Miranda, 2018), and BO
from the package Bayesian Optimization (Nogueira et al., 2014). DE is set with population
size of 10, and the maximum iterations of 500. PSO is set with 10 particles, and 500
iterations. BO is set with 50 random initialisation, 500 iterations, and kappa=100 (higher
values increase exploration).

The MAP estimation is obtained using a quasi-Newton L-BFGS optimizer from Python
interface to Stan (Carpenter et al., 2017), an open-source probabilistic programming lan-
guage for Bayesian modeling and statistical inference. We also use Stan’s implementation
of the NUTS for fully Bayesian estimation by HMC, with Metropolis acceptance rate of 0.8,
maximum tree depth of 10, warm-up iterations of 1000, and 500 sampling phase iterations.

Finally, for SBI we used SNPE from the PyTorch-based SBI toolkit (Tejero-Cantero
et al., 2020). SNPE was run for a single round with 100,000 simulations, unless specified
otherwise. For training step, we used a MAF, with 5 autoregressive layers, each with two
hidden layers of 50 units. The set of data features includes the statistical moments of time-
series up to the fourth order (mean, standard deviation, skewness, and kurtosis), and the
peak properties (number and location of first peak, as shown in Figure S2).

Parameter bounds for optimization, and uniform prior for Bayesian inference, were set
as: ∆ ∈ [0.1, 5], η ∈ [−10,−3], J ∈ [5, 20]. For the simulation of Eq. 1, we used Euler-
Maruyama integration for t = 100 sec with a time step of dt = 1 msec. The ground truth
parameters were set as η = −4.6, J = 14.5, and ∆ = 0.7, ensuring that the system is in
a bistable regime, unless specified otherwise. Moreover, a step current with amplitude of
3 v from time 30 sec to 60 sec was added to the v variable. Each simulation took around
0.01 sec to run using a Just-In-Time (JIT) compiler. To generate stochastic dynamics, a
zero-mean Gaussian noise with σ = 0.1 was added to the both r, and v variables. The prior
on dynamical noise was set as σ ∈ [0, 1]. For comparison with the MF model, we ran a
network of 104 all-to-all connected QIF neurons using the Brian simulator (Stimberg et al.,
2019).

The model simulation and parameter estimation were performed on a Linux machine
with 3.60 GHz Intel Core i7-7700 and 8 GB of memory.

3. Results

We present the results of the optimization and Bayesian algorithms for three cases: (i)
inferring from exact deterministic synthetic data, (ii) inferring from stochastic synthetic
data driven by dynamical noise, and (iii) inferring with stochastic synthetic data when
the activity for r is unknown (missing data). We report and compare the goodness-of-fit
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using the root mean square error (RMSE) to the true (observed or hidden) time-series and
parameters, the variance in the estimation process, and the computational cost.

Before running inference process, we conduct a sensitivity analysis to assess the struc-
tural identifiability of the parameters. This analysis involves calculating local sensitivity
coefficients, which measure the effect of small adjustments in a parameter on the model’s
output while keeping all other parameters constant. A small change in a sensitive parameter
leads to a significant alteration in the model output, indicating its identifiability. Conversely,
when there are no alterations in the model output despite adjustments in a parameter, it
suggests the parameter’s non-identifiability. To assess the identifiability of the parameters,
we used the profile likelihood (Raue et al., 2009; Wieland et al., 2021) and Hessian matrix,
a metric describing the local curvature of a function based on its second partial derivatives
(Hashemi et al., 2018, 2023). Our results indicate that all three parameters ∆, η, and J
can be identifiable, however, the profile likelihood obtained using Eq. 2 reveals the presence
of numerous local minima (see Figure S3). This highlights the difficulty in attaining the
global minimum during the inference process.

3.1. Inference on deterministic data
Here, we compare the inference results of different algorithms when we have complete

observations of both state variables (r, v), and the system operates without any noise (see
Figure 1). The observed time-series and trajectories in phase-plane, which exhibit a bistabil-
ity between a stable node and a stable focus, are illustrated in Figure 1A. From the results
demonstrated in Figure 1B, it can be seen that all the algorithms qualitatively reproduce
the bistability behaviour in the phase-plane. However, when evaluating their performance
by estimating the true generative parameters, all optimization methods, except DE, get
stuck in a local minima (Figure 1C). The results indicate that DE, SBI and HMC algo-
rithms correctly recover the ground-truth parameters, the former as an almost exact point
estimate (Figure 1C, top panels), while the latter two, SBI and HMC, yield full posterior
distributions (Figure 1C, bottom panels). In terms of uncertainty quantification, HMC
offers a slightly more informative posterior distribution compared to SBI (see Figure S4).

When it comes to matching the observed time-series, the optimization algorithms such as
PSO and BO deviate significantly from true values, while other approaches equally retrieve
an almost perfect fit to the observed time-series (see Figure 1D, top panel). Nevertheless,
MAP largely fails to accurately estimate model parameters due to overfitting (Figure 1D,
bottom panel). This type of overfitting emphasizes the importance of quantifying uncer-
tainty to verify the reliability of inference, going beyond a point estimation. Note that
for HMC and SBI, we report the results using posterior predictive check i.e., re-generating
data using random parameters drawn from the estimated posterior and then comparing
simulations with the observed data.

In terms of computational cost for inference, DE has a clear advantage with its rapid
performance, typically taking less than a minute to complete (Figure 1E). Despite a high
precision, the computational cost of HMC in this example is prohibitively expensive, taking
almost a hundred hours to complete the inference process. On the other hand, SBI was
terminated in nearly one and a half hours (including 100k random simulations, training, and
sampling), making it approximately 60 orders of magnitude faster than HMC. Additionally,
due to the amortized approach adopted by SBI, each sampling process takes less than one
minute to estimate the joint posterior distributions from new data.

In summary, DE demonstrates superior speed and accuracy, but it only provides a point
estimate. Among Bayesian methods, HMC is exact and provides certain estimates, but it is
computationally prohibitive. On the other hand, SBI effectively provides accurate estimates
along with associated uncertainties at a reasonable computational cost (see Table 1, Movie
1, and Movie 2).

3.2. Inference on stochastic data
The inherent randomness in stochastic systems introduces uncertainty into the behavior

of the system under study, which makes it challenging to accurately identify its underlying
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Figure 1. Inference on deterministic data. (A) The trajectories in phase-plane exhibiting bistable
dynamics, and the corresponding time-series of firing rate (r) and membrane potential (v), used as
the observations for inference (ground truth: ∆ = 0.7, η = −4.6, J = 14.5). (B) The estimated
trajectories in phase-plane, along with the corresponding parameters displayed in the top panels.
All the algorithms capture the bistable dynamics in a qualitative manner. (C) For parameters ∆,
η, and J , the point estimations are displayed in the top panels along with the profile likelihood (in
grey), while the full posterior distributions are shown in the bottom panels. HMC leads to more
precise parameter estimates with lower uncertainty compared to SBI. (D) Accuracy in estimation
based on the sum over RMSE values. The bootstrap uncertainty is calculated for time-series
(top panel) and parameters (bottom panel) through multiple runs. (E) Computational cost for
each inference algorithm. Overall, DE excels in both speed and accuracy, but it offers only a point
estimate. HMC is exact and provides informative posterior estimates, but it is very computationally
prohibitive. Rather, SBI effectively provides accurate estimates along with associated uncertainties
at a reasonable computational cost. DE, Differential Evolution; PSO, Particle Swarm Optimization;
BO: Bayesian Optimization; MAP, Maximum a Posteriori; HMC: Hamiltonian Monte Carlo; SBI:
Simulation-Based Inference; RMSE: Root Mean Square Error.
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dynamics. In particular, the presence of dynamical noise significantly increases the complex-
ity of the inference process and necessitates the use of robust probabilistic methodologies
that can effectively account for and handle the stochastic nature of the data.

Here, we report the results of inference on synthetic data with zero-centered Gaussian
dynamical noise, where the intensity is σ = 0.1 (see Figure 2). The observed noisy time-series
and trajectories in phase-plane, exhibiting a bistable behavior between a stable node and a
stable focus, are illustrated in Figure 2A. From the results demonstrated in Figure 2B, we
can see that all the algorithms qualitatively replicate the bistability behavior in the phase-
plane. Yet, when assessing how well they recover the true parameters, only DE yields an
accurate point estimate among the optimization algorithms (Figure 2C, top panels).

In terms of uncertainty quantification, SBI generates posteriors that are tightly centered
on the ground-truth parameters, in comparison to the HMC sampling (see Figure 2C, bot-
tom panels, and Figure S5). A detailed comparison of convergence diagnostics indicates that
both SBI and HMC methods provide ideal Bayesian estimation (see Figure S6). Regarding
the proximity to the observed time-series and true parameters, both HMC and SBI offer a
closer match compared to the other algorithms (Figure 2D). This highlights the challenges
inherent in inferring stochastic systems via optimization algorithms, as the error metrics
such as RMSE used to define the objective function may not reliably gauge accuracy.

In terms of computational efficiency for inference, the running time of all algorithms
increases when the noise is present, except for HMC (Figure 2E). Nevertheless, when con-
sidering the entire process (including random simulations, training, and sampling), SBI
remains approximately 8 orders of magnitude faster than HMC. Interestingly, SBI is also
able to accurately and efficiently estimate the dynamical noise in the system (see Figure S7).

In summary, these results demonstrate that when considering overall accuracy in the
presence of noise and bistability, uncertainty quantification, and computational cost, the
SBI outperforms all other algorithms, including HMC (see Table 2, Movie 3, and Movie 4).

Next, we investigate how varying the intensity of dynamical noise impacts the inference
on stochastic data. Our results indicate that the overall quality of fit to the noisy data
(Figure 3A) and the accuracy of recovered parameters (Figure 3B) remain stable up to
σ ≤ 10−1 for all algorithms. However, both metrics exhibit a significant increase beyond
this threshold, particularly for optimization methods.

The MAP estimation is robust with regard to the amount of dynamical noise, but it
tends to overfit. This is because the MAP estimation consistently provides the least accurate
inference on parameters, even though its fit to the time-series data is almost perfect. In
contrast, Bayesian inference methods such as HMC and SBI are overall more accurate and
significantly more robust compared to optimization methods. Both HMC and SBI exhibit
significantly lower error than others, even at high noise levels (e.g., σ = 1).

Interestingly, SBI appears to be more resilient to high levels of noise compared to HMC.
Given a sufficient number of simulations for training (e.g., 100k), SBI demonstrates the most
accurate and robust fit to the data, consistently staying close to a perfect fit across various
noise values. See Figure S8 for a systematic investigation on the impact of the number of
simulations on the performance of SBI. Overall, these results indicate that SBI is the most
accurate and robust algorithm in our benchmark.

3.3. Inference on missing data in the state-space
Here, we explore the performance of inference methods in situations where data is

available for only one of the variables in the state-space modeling. We consider the mean
membrane potential v as the observed data, which is simulated with dynamic noise of
intensity σ = 0.1, while the firing rate r remains latent (Figure 4A). The noise intensity is
fixed for inference process.

From Figure 4B, we observe that only DE and SBI were capable of retrieving the true
dynamics in the phase-plane when r was missing. As shown in Figure 4C (top panel),
among optimization algorithms, only DE correctly estimates the true parameters. Notably,
HMC fails considerably in this problem by proposing over-confident posterior distributions
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Figure 2. Inference on stochastic data. (A) The generated bistable dynamics in the phase-
plane and the corresponding time-series of firing rate (r) and membrane potential (v) used as the
observations for inference (ground truth: ∆ = 0.7, η = −4.6, J = 14.5). (B) The estimated
trajectories in the phase-planes, along with the corresponding parameters displayed in the top
panels. All the algorithms qualitatively capture the bistable behavior. (C) The point estimation
along with the profile likelihood (top panels) and the full posterior (bottom panels) for parameters
∆, η, and J . SBI leads to more precise parameter estimates with lower uncertainty compared to
HMC. (D) Accuracy in estimation based on the sum over RMSE values for the time-series (top
panel) and parameters (bottom panel). The bootstrap uncertainty is calculated through multiple
runs. (E) Computational cost for each inference algorithm. When evaluating overall accuracy,
uncertainty quantification, and computational cost, then SBI outperforms all other algorithms.
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Figure 3. The performance of inference algorithms with increasing the intensity of dynamical
noise using the sum over: (A) RMSE of the time-series, and (B) RMSE of the model parameters.
Overall, with a sufficient number of simulations for training, the SBI emerges as the most accurate
and robust method in our algorithmic benchmark.

that are far from the ground truth (Figure 4C, bottom panel). In contrast, the estimated
posteriors using SBI are centered on the ground-truth parameters, but they exhibit a more
diffuse uncertainty compared to the previous results (see Figure S9). Note that HMC
fails to accurately reconstruct the latent variable r from observed v (see Figure S10), even
though its error on the fitted trajectories is comparable to that of SBI (Figure 4D, top
panel). Nevertheless, the unreliability in the results produced by HMC becomes evident
when observing the RMSE values for model parameters (Figure 4D, bottom panel).

In terms of computational cost for inference (Figure 1E), optimization by DE still has
a clear advantage with its rapid performance. Interestingly, SBI remains efficient, approx-
imately 68 orders of magnitude faster than HMC (see Table 3, Movie 5, and Movie 6).
Overall, SBI outperforms HMC in the recovery of the bistable dynamics, including the hid-
den firing rate. However, this approach can lead to an overestimation in the associated
uncertainty, when compared to the full observed state-space dynamics (see Figure 2 versus
Figure 4).

3.4. Phase-space reconstruction
As demonstrated in the previous section, the inference process posed a challenge when

only the membrane potential v was observed and the firing rate r was missing. To improve
the inference in such cases, we approximately reconstruct the hidden r from the observed
counterpart v, using the time-delay embedding technique (Figure 5).

As it can be seen from Figure 5A, the reconstructed firing rates closely follow the orig-
inal time-series (RMSE=0.151). This leads to accurately capturing the bistable switching
behavior in the phase-plane, as shown in Figure 5B. We subsequently explored how the
access to the trajectories of state variables influences the statistical relationship between
parameters. When both the firing rate (r) and membrane potential (v) are observed, both
HMC and SBI algorithms reveal a strong correlation between the average excitability η, and
the synaptic weight J (ρη,J ≈ −0.78), while the other parameters exhibit no codependency
(see Figure 5C).

When the firing rate is latent and only the membrane potential is observed, the corre-
lation between parameters is more pronounced, as estimated by HMC, while SBI tends to
overestimate this co-dependency as fully degenerate (see Figure 5D). This highlights the
challenges in the inference or parameter estimation process when lacking access to complete
knowledge of the system dynamics. This issue can be improved by using time-delay em-
bedding to reconstruct the full phase-space dynamics and inform the inference process, as
shown by the reduced correlation between parameters in Figure 5E.
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Figure 4. Inference on noisy observation with missing data. The generated bistable dynamics in
the phase-plane and the corresponding time-series of observed membrane potential (v) and hidden
firing rate (r), with ground truth: ∆ = 0.7, η = −4.6, J = 14.5. (B) The estimated trajectories in
the phase-planes, along with the corresponding parameters displayed in the top panels. Only DE
and SBI provide a close agreement with the observed bistable trajectories. (C) The point estimation
along with the profile likelihood (top panels), and the full posterior (bottom panels) for parameters
∆, η, and J . (D) The accuracy of estimation is evaluated by summing the RMSE values for both
the true time-series (top panel) and parameters (bottom panel), while considering the bootstrap
uncertainty through multiple iterations. (E) The computational cost for each inference algorithm.
Overall, DE and SBI outperform other algorithms in inferring the bistable dynamics when dealing
with missing data.

13

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 26, 2024. ; https://doi.org/10.1101/2024.01.26.577077doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.26.577077
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5. Reconstruction of firing rate r from mean membrane potential v, and comparison
of inter-dependency between parameters. (A) Original and reconstructed mean firing rate. (B)
Observed (left) and reconstructed (right) system dynamics in phase-plane. Correlations between
estimated joint posterior distributions, using HMC (left) and SBI (right), when: (C) Both r and
v are observed, (D) Only v is observed and r is hidden, (E) Reconstructed r from the observed v
using time-delay embedding.

3.5. Inter-dependency between generative parameters
In the previous sections, we performed inference against the system dynamics derived

from the MF model given by Eq. (1). We now aim to investigate how the inference of
the posterior distribution and the relationships between parameters remains consistent by
traversing across scales. This can be achieved by conducting inference using observed data
generated by QIF neurons (at the microscopic level) versus the data generated by MF model
(at the macroscopic level).

First, we compared the simulated membrane potential v and firing rate r using a MF
model given by Eq. (1) to the averaged activities of a network of 104 all-to-all connected
QIF neurons (see raster plot shown in Figure 6(A)). Figure 6(B) demonstrates that the
MF model can accurately generate the (smoothed) transient dynamics that emerge from
an ensemble of spiking neurons. However, the first spike emitted by the MF model after
stimulation may exhibit a short lag compared to the averaged QIF neurons. Then, we used
the data generated by MF and QIF models as the observation, and conducted inference using
the MF model through Bayesian estimation algorithms, such as HMC and SBI. Specifically,
we compared the correlations between the estimated joint posteriors of model parameters
in each case, as shown in Figure 6(C).

We observed consistent correlations between parameters across the two types of datasets
(macroscopic MF and microscopic QIF) when fitted using the MF model. Our results
indicate that the strong negative linear correlation between excitability and synaptic weight
(ρη,J ≈ −0.78) persists when using HMC and SBI against both datasets. Considering the
agreement between HMC and SBI across two datasets, we can conclude that the consistent
high correlation between parameters η and J is intrinsic and not induced by the inference
process or model assumptions.

3.6. SBI on the stimulus current
Here, we challenge SBI approach in inferring system dynamics while also accounting

for an unknown input current, which plays a crucial role in emerging the bistable behavior.
Given only the position or waveform of input currents, we estimate the intensity or angular

14

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 26, 2024. ; https://doi.org/10.1101/2024.01.26.577077doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.26.577077
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6. Comparing the transient dynamics of a MF model with the emergent dynamics of a
network of QIF neurons, and exploring the interdependency between parameters. (A) Raster plot of
QIF neurons. (B) The membrane potential v (top panel) and firing rate r (bottom panel) generated
by MF model (in cyan) versus averaged activities of QIF neurons, as the raw simulations (in light
gray) and smoothed (dark grey). At time t = 30 sec, a current I0 = 3 mv is applied to all neurons,
and set to zero again at t = 60 sec. (C) The Pearson correlation coefficients between parameters
in the MF model, estimated using Bayesian algorithms (HMC and SBI), against data generated
by different models (MF and QIF). The strong negative linear correlation between excitability and
synaptic weight (ρη,J ≈ −0.78) persists across algorithms and datasets.

15

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 26, 2024. ; https://doi.org/10.1101/2024.01.26.577077doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.26.577077
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7. SBI on the stimulus current. (A) Step current as I(t) = I0 · 1stim(t). (B) Sinusoidal
current as I(t) = sin(ω0t) · 1stim(t). Dashed red line represents a perfect fit.

velocity across various ground-truth values: I0 in a step current as I(t) = I0 · 1stim(t)
and ω0 in a sinusoidal current as I(t) = sin(ω0t) · 1stim(t), as shown in Figure 7(A), and
(B), respectively. Our results demonstrate that in both cases, the SBI approach accurately
recovers the unknown parameters in the input currents. The posterior credibility intervals,
visualized as error bars, indicate certain estimates that are close to a perfect fit (y = x, in
red) across all different values. See Figure S11 for the observed and predicted time-series.
This validates the capability of SBI in accurately estimating the system dynamics, even
when the characteristics of the input current are unknown.

3.7. SBI on stability of system dynamics
Here, we show that SBI can be used to investigate the stability of system dynamics

from low-dimensional summary statics of observed time-series. Figure 8 shows a phase
diagram of the system as a function of the mean η and synaptic weight J , both normalized
by the width of the input distribution ∆. Using linear stability analysis, there are three
qualitatively distinct regions of the phase diagram: (i) A single stable node corresponding
to a low-activity state (shown in blue), (ii) A single stable focus generally corresponding to
a high-activity state (shown in red), and (iii) A region of bistability between low and high
firing rate (shown in cyan).

Interestingly, a similar basin of bi-stability in phase diagram can be readily reproduced
using deep neural density estimators (such as MAF model) in SBI approach. By training
on the low-dimensional data features extracted from the time-series (such as the presence
or absence of damped oscillations before, during, and after stimulation), the generated pos-
terior samples display a very close agreement with the results obtained from linear stability
analysis. This demonstrate the capability of SBI in accurately estimating system dynamics
from summary statics, including the presence of bi-stability in the phase diagram.

3.8. Neural ODEs on system dynamics
In this section, our aim is to infer the collective dynamics of QIF neurons without making

any assumptions about the underlying generating dynamics. To achieve this, we used Neural
ODEs as a powerful tool for modeling continuous-time dynamics without assuming any prior
knowledge of the underlying equations governing the system. Unlike traditional discrete-
time models, Neural ODEs parameterize the continuous-depth formulation, allowing for
seamless interpolation between observed data points.
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Figure 8. SBI over the stability of system dynamics in phase diagram. In the wedge-shaped region
(shaded in cyan), bistability exists between a high and a low activity state. On the right side, a
stable focus is indicated (shaded in red), while on the left side, a stable node is depicted (shown in
blue). By training a deep neural density estimator on data features, the posterior samples generated
using SBI accurately capture the bistable dynamics (shown in yellow), aligning closely with results
from linear stability analysis. The black asterisk denotes the observation point used for inference.
The insets display observed (dark blue) and predicted (light blue) time-series in different regimes:
(A) Bistability, (B) Stable focus, and (C) Stable node.

We first validate Neural ODEs using the data garnered by MF model described by
Eq. (1). We generated 3 different datasets using the MF model given by Eq. (1), with a
set of parameters corresponding to a bistable regime: {∆ = 1, J = 15, η = −5}. For each
datasets, we sampled the phase-space by varying initial conditions according to a regular
grid so that r0 ∈ [0.1, 3] and v0 ∈ [−2, 2]. We then solved the system for 1000 time points
(with an integration time step of dt = 0.01 sec). To speed up training, each trajectory was
downsampled by a factor of 10 and divided into 10 segments, each consisting of 10 time
points. The training and test data were randomly split, with 75% of the data used for
training and 25% used for testing.

The first training set, comprising of N = 100 deterministic trajectories, was generated
(see Figure 9A). The results indicate that the Neural ODE almost perfectly reconstructed
the phase-space (see Figure 9B). In the second training set, which had the same size, a dy-
namical noise with a standard deviation of σ = 0.1 was added during the integration process
(Figure 9C). In this case, the estimated nullclines suffered from overfitting although with-
out affecting the overall reconstructed dynamics, as the predicted trajectories were still very
similar to the original data (as shown Figure 9D). Increasing the size of the training dataset
(see Figure 9E) significantly reduces overfitting. As a result, the reconstructed nullclines
show a very close agreement with those obtained from the deterministic data (Figure 9F).
To illustrate overfitting, Figure S12 shows the loss functions for the different scenarios, as
well as snapshots of phase-space reconstruction during training. Overall, the Neural ODE
successfully reconstructs the underlying deterministic system, even in the presence of noise
(see Movie 7).

We then trained Neural ODEs using data generated by 104 QIF neurons with a uniform
stimulus (see Figure 10). The data was partitioned using the first 400 points for training and
predicting the remaining 1600 points. The results indicate that using derivatives dynamics,
we can achieve a reliable understanding and prediction of the complex behavior of a network
of spiking neurons, as illustrated in Figure 10. The emergent dynamics vary based on
different parameter settings, resulting the stable node, stable focus, and bistable regime.
See Figure S13 for the loss function in the training and test sets.
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Figure 9. Example of training data generated from the MF model set in a bistable regime (top
row). The trajectories are displayed after the 10-fold split, without the downsampling step for better
visualization. Corresponding fit obtained with the Neural ODE for the same initial conditions and
estimated phase-plane (bottom row) after 45000 training iterations. Either (A, B) using a training
set of 100 deterministic trajectories, (C, D) using a training set with dynamical noise, (E, F) or
a larger dataset. The red and green curves represent the nullclines of r and v, respectively. The
dots represent the initial values for each trace, while the dashed lines correspond to the Neural
ODE trajectories. The neural ODE is prone to overfitting when noise is introduced in the training
data, although it still preserves the overall dynamics. A larger dataset helps in recovering smoother
nullclines.

Figure 10. Reconstruction and extrapolation on QIF data with various parameters and dynamic
regimes, using Neural ODEs. (A) Stable nodes, (B, C) Stable foci, (D, E) Bistability. The grey
dots represent sparse observations, blue lines represent predictions (400 points), and orange lines
represent extrapolations (1600 points). We can see that our Neural ODE has learned the system
dynamics and provides accurate predictions based on data generated at the microscopic level.
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4. Discussion

In the ever-evolving field of computational neuroscience, accurately estimating parame-
ters that consistently govern the collective behavior of neural networks is a crucial endeavor,
especially within the framework of recurrently coupled spiking neurons. In this study, we
emphasize the use of mean-field (MF) theory to streamline the inference process for networks
of spiking neurons. This choice is driven by the computational challenges in the calculation
of the likelihood function—an essential ingredient for both frequentist and Bayesian infer-
ence methods—that becomes computationally prohibitive when attempting inference using
these spiking networks in forward modeling.

The needs and objectives of researchers in the field of computational neuroscience are
as diverse as the neural systems they aim to understand. Some studies may prioritize rapid
point estimation through optimization, seeking quick outcomes to inform real-time decisions
(Vattikonda et al., 2021; Penas et al., 2023). On the other hand, some studies find value
in exploring the full distribution of parameters, which provides a nuanced understanding of
parameter uncertainty for reliable decision making (Hashemi et al., 2020; Jha et al., 2022).
This paper offers a comprehensive, yet non-exhaustive, benchmarking of the state-of-the-
art inference methods applied to a MF model of spiking neurons (see Figure 1, Figure 2,
and Figure 4). Our comparative analyses offer practical guidance, assisting researchers
in selecting the most suitable method for their specific datasets and research inquiries.
Note that the comparison of computational cost and accuracy in parameter estimation can
heavily depend on the selection of hyperparameters, such as population size in DE, warm-
up phase in HMC, or the number of simulations and features in SBI. To make an unbiased
assessment, we used optimal values for these hyperparameters in each algorithm, tailored
to the dynamical model used in this study. Nevertheless, these optimal values may vary for
different inverse problems, depending on parameter space and data dimensions, nonlinearity,
sparsity, and the mapping function to measurements.

While the optimization method can construct a confidence interval for the estimation
based on a threshold for accepting or rejecting the estimates, the results are highly de-
pendent on the chosen threshold value (Beaumont et al., 2002; Cranmer et al., 2020). In
contrast, Bayesian inference naturally provides uncertainty quantification by placing a dis-
tribution over parameters and treating them as random variable. Following Bayes’ rule, this
distribution is updated with evidence from observed data to form the posterior distribution,
which furnishes comprehensive information for inference and prediction.

Our results indicated that evolutionary algorithm for solving global optimization prob-
lems, such as DE, provide rapid and accurate point estimation of the true generative param-
eters when there is no dynamical noise present. Challenges arise when using optimization
methods in the presence of noisy data, mainly due to the lack of an efficient form of the
objective function. The selection of the objective function plays a crucial role in determining
the estimation through optimization methods (Svensson et al., 2012; Hashemi et al., 2018).
The error explanation with distance metrics such as RMSE is limited in accurately capturing
the underlying data generation process (Baldy et al., 2023). This is because when generative
parameters remain unchanged but when dynamic noise is introduced, the time-series can
show large fluctuations, resulting in deviations from the observed data. In particular, the
presence of noise can easily lead to unreliable estimations, increasing the risk of overfitting,
where the model fits to the noise rather than capturing the true underlying relationship.
Consequently, it becomes more conspicuous to conduct inference using distributions in the
Bayesian framework, particularly when dealing with dynamical noise. Diagnosing of overfit-
ting, as shown using MAP estimation (see Figure 2 and Figure 4), can be better understood
through uncertainty quantification.

Furthermore, Bayesian inference reveals the relationships between parameters, capturing
degeneracy in the data (Edelman and Gally, 2001; Hashemi et al., 2023). For example,
when we assess the agreement between HMC and SBI on different datasets (as shown in
Figure 5, Figure S4, Figure S5, and Figure S9), it can be concluded that the persistent strong
correlation between parameters η and J is inherent and not influenced by the inference
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procedure or model assumptions. This is in line with previous findings that have reported
a strong and robust correlation between firing rates and synaptic weights across different
brain states, environments and situations (Buzsáki and Mizuseki, 2014).

Using high-performance computing, model simulations can be run independently, cre-
ating a large training dataset for training deep neural density estimators in SBI approach
(Hashemi et al., 2023). In contrast, HMC is limited to embarrassingly parallel execution
with only independent chains on computational nodes (Hashemi et al., 2021). Moreover,
when dealing with bistability in the state-space representation, HMC methods require sig-
nificant computational time to detect state transitions in the latent space (see Table 1,
Table 2, and Table 3) or need to be augmented with generative models such as normalizing
flows (Hoffman et al., 2019; Gabrié et al., 2022). On the other hand, SBI offers efficient
Bayesian estimation, even without detailed knowledge of the system’s state-space represen-
tation. This aligns with findings from recent studies that highlight the efficiency of SBI
across various challenging inverse problems (Gonçalves et al., 2020; Deistler et al., 2022;
Boelts et al., 2022, 2023; Hashemi et al., 2023; Lavanga et al., 2023; Yalccinkaya et al.,
2023; Rabuffo et al., 2023; Sorrentino et al., 2023). By benchmarking and addressing ques-
tions such as computational cost, uncertainty quantification, inter-dependency exploration,
and data availability, we conclude that SBI is more efficient than alternatives in making
informed choices from microscopic states to emergent dynamics at the macro scale.

One of the main findings of this study is the effectiveness of deep neural networks
in generating probability distributions for parameters of networks of spiking neurons. This
approach outperforms other computational algorithms, such as MCMC, particularly in real-
world applications involving missing data in bistable systems (see Figure 4). The effective-
ness of deep generative models for inference from the mechanistic model of networks of
spiking neurons is confirmed by the robustness of the estimation under significant dynamic
noise (Figure 3, and Figure S7), as well as the precise estimation of input current (Figure 7)
and the consistency with linear stability analysis (Figure 8). However, it is important to
acknowledge that the use of deep generative models can result in an overestimation of un-
certainty and correlations between parameters. To address this challenge, incorporating
time-delay embedding is an effective remedy (Figure 5).

This study highlights the use of deep Neural ODEs in inferring vector fields at a macro-
scopic level, enabling the prediction of system dynamics from microscopic states. This
approach has the potential to make interpretable predictions at larger scales from simula-
tions at a detailed level, aiding in the prognosis and diagnosis of brain diseases. Recently,
Sip et al. (2023) introduced a method using variational autoencoders for nonlinear dynam-
ical system identification at the whole-brain level to infer both the neural mass model and
the region- and subject-specific parameters from the functional data while respecting the
known network structure. The scalability of Neural ODEs at the whole-brain network level
remains to be investigated in future studies. In addition, symbolic regression applied to
the outcomes from Neural ODEs may unveil closed-form equations for neural mass models,
offering promising avenues for future research. This approach may lead to the discovery of
concise data-driven mean-field representations of complex neural dynamics, contributing to
our understanding of brain function.

In conclusion, this work highlights the improved accuracy and efficiency that deep learn-
ing techniques bring to the inference from networks of spiking neurons. It opens up exciting
possibilities for future research in neural computation, where the trade-off between accuracy
and uncertainty needs to be carefully considered. As we continue to explore the capabilities
of SBI and Neural ODEs at larger scales, this study serves as a valuable step forward in our
quest to unravel the complexities of neural networks and their computational mechanisms.

Information Sharing Statement

All code is available at GitHub (https://github.com/ins-amu/Inference_MFM).
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5. Supplementary

Figure S1. The phase-plane analysis of a mechanistic model of a network of all-to-all connected
QIF neurons, using linear stability analysis. The stability of the system depends on the mean
excitability (η) and synaptic weight (J), both normalized by the width of the input distribution
(∆). (A) A single stable node corresponding to a low-activity state. (B) A single stable focus
(spiral) corresponding to a high-activity state. (C) A bistability between low and high firing rates
(stable node and stable focus, respectively). The upper section between v- and r-nulclines (in dark
and light yellow, respectively) corresponds to an unstable focus.

Figure S2. Data features extracted from mean membrane potential data. Additional data features
that are not represented on this diagram include skewness and kurtosis.
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Figure S3. Sensitivity analysis on model parameters. The profile likelihood is calculated using
the root-mean-squared error (RMSE) between the observed and generated data, considering either
a single parameter (represented by black curves) or multiple parameters to vary (represented by
colored surfaces), while keeping the other parameters fixed. The true parameters are shown in
gray, represented by a dashed vertical line (for a single parameter) or 2D coordinates (for multiple
parameters). The value of the Hessian matrix at the global minimum is displayed in the bar plot.
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Figure S4. Paired posterior samples of model parameters inferred from deterministic data, using
(A) HMC and (B) SBI. Samples do not exhibit significant pair-wise correlation in parameter couples
(∆, η) and (∆, J). HMC manifests high linear correlation in sampling from joint parameters (η,
J). In terms of uncertainty quantification, HMC offers a more informative posterior distribution
compared to SBI. In terms of computational cost, SBI is approximately 60 orders of magnitude
faster than HMC.
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Figure S5. Paired posterior samples of model parameters inferred from noisy data, using (A)
HMC and (B) SBI. Both algorithms provide uncorrelated samples for parameter couples (∆, η)
and (∆, J) but exhibit the same level of strong linear correlation in sampling from joint parameters
(η, J). Compared to HMC, SBI generates posteriors that more tightly center around the ground-
truth parameters. Moreover, SBI remains approximately 8 orders of magnitude faster than HMC.
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Figure S6. Posterior z-scores versus shrinkage, as a diagnostic for the reliability of Bayesian
inference. An ideal Bayesian inference yields small z-scores (indicating less error) and high posterior
shrinkage (indicating more contraction with respect to the prior distribution after learning from
data). Therefore, their concentration lies in the right-bottom corner of the plot. When no data
is missing, both HMC (red) and SBI (blue) perform near-optimally. However, SBI is significantly

faster than HMC (at least 8 orders of magnitude). The posterior z-scores is defined as z = | θ̄ − θ∗

σpost
|,

where θ̄ and θ∗ are the posterior mean and the true values, respectively, whereas σprior, and σpost

indicate the standard deviations of the prior and the posterior, respectively. The posterior shrinkage

defined as s = 1−
σ2
post

σ2
prior

, where σprior, and σpost indicate the standard deviations of the prior and

the posterior, respectively.
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Figure S7. SBI over noisy data. (A) The time-series prediction of membrane potential (v) and
firing rate (r). (B) Estimated posteriors of parameters ∆, η, J , and the intensity of dynamical
noise σ. The true values are shown by vertical red lines. The priors and estimated posteriors using
SBI are shown in green and blue colors, respectively. Given the low-dimensional data features
of time-series, SBI is able to accurately and efficiently estimate the MF parameters including the
dynamical noise in the system.
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Figure S8. Performance of SBI as a function of the number of simulations for the training step. (A)
The tendency of shrinkage towards one indicates that all the posteriors are well-identified. While
the shrinkage of the posterior is significantly improved when increasing the number of simulations
from 1k to 10k, further increasing it beyond 100k only results in a marginal improvement. (B) The
computational cost for SBI, which includes the simulation, training, and sampling steps, increases
exponentially with respect to the number of simulations.

Figure S9. Paired posterior samples of model parameters inferred from noisy observation with
missing data, using (A) HMC and (B) SBI, when only one variable (mean membrane potential v)
is available. HMC samples deviate considerably from the true values, while SBI samples prove still
reliable under such conditions, although accompanied with high correlation. Interestingly, SBI is
approximately 68 orders of magnitude faster than HMC.
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Figure S10. Fit to the noisy observation with missing data, i.e., when only one variable (mean
membrane potential v) is available: observation v (top, black) and hidden r (grey, bottom). The
time-series fit provided by the different inference algorithms is plotted in colors.
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Figure S11. Exemplifying observed (v in blue and r in red) and predicted (v in cyan and r in
yellow) time-series using SBI on (A, B) Deterministic data, (C, D) Stochastic data, given the input
as (E, F) Step current with I(t) = I0 ·1stim(t), and sinusoidal current with I(t) = sin(ω0t)·1stim(t),
respectively.
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Figure S12. Loss functions for the training and test data using Neural ODEs on MF model. (A,
B) For the deterministic training set of size 100, the phase-space estimation is performed at the
22000th iteration. (C, D) Training set of size 100 with dynamical noise. (E, F) Training set of
size 400 with dynamical noise. The blue line represents the training error, while the orange line
represents the test error. The vertical red line indicates the iteration at which a snapshot of the
training is provided in the plot below.

Figure S13. The loss function by training Neural ODEs on QIF data. The train and test quadratic
loss function is calculated, when the train set is made of (A) 300 first points and (B) 400 first points.
In each case, 10, 000 iterations were used for training the model.
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Method RMSE parameters RMSE time-series Running time
mean std mean std

DE 5.256098e-16 1.662124e-15 6.757684e-19 1.114034e-18 0:0:51
PSO 7.181840e-01 8.508900e-01 3.221500e-04 2.887217e-04 0:0:35
BO 6.516364e-01 2.919346e-01 5.639526e-04 1.182884e-04 0:23:14
MAP 4.033716e+00 6.842649e-02 4.545021e-09 4.865735e-10 0:2:29
HMC 1.114323e-03 3.530420e-04 3.989852e-07 1.493006e-08 98:33:13
SBI 1.332644e-02 7.094355e-03 2.866951e-07 2.034953e-07 1:36:21

Table 1. Benchmark on deterministic data.

Method RMSE parameters RMSE time-series Running time
mean std mean std

DE 0.672351 0.617302 0.000533 9.850079e-05 0:2:50
PSO 1.362540 0.852908 0.000717 1.116449e-04 0:1:8
BO 1.021078 0.519784 0.000888 8.232933e-05 0:15:36
MAP 3.883882 0.302616 0.000250 1.228436e-04 0:3:23
HMC 0.121416 0.081035 0.000004 1.427944e-08 15:56:28
SBI 0.052948 0.024310 0.000002 2.178518e-07 1:47:37

Table 2. Benchmark on stochastic data.

Method RMSE parameters RMSE time-series Running time
mean std mean std

DE 0.426 0.388 0.218 0.102 0:4:7
PSO 1.495 0.720 0.406 0.054 0:1:0
BO 0.716 0.407 0.384 0.050 0:17:52
MAP 3.539 0.029 1.838 0.185 0:0:30
HMC 3.181 1.271 0.545 0.179 100:6:57
SBI 0.427 0.296 0.609 0.213 1:27:34

Table 3. Benchmark on missing data.
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