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ABSTRACT 

Virtual brain twins are personalized, generative and adaptive brain models based on data from an 
individual’s brain for scientific and clinical use. After a description of the key elements of v irtual brain tw ins, 
we present the standard model for personalized whole-brain network models. The personalization is 
accomplished using a subject’s brain imaging data by three means: (1) assemble cortical and subcortical 
areas in the subject-specific brain space; (2) directly map connectivity into the brain models, which can be 
generalized to other parameters; and (3) estimate relevant parameters through model inversion, typically 
using probabilistic machine learning. We present the use of personalized whole-brain network models in 
healthy ageing and five clinical diseases: epilepsy, Alzheimer’s disease, multiple sclerosis, Parkinson’s disease 
and psychiatric disorders. Specifically, we introduce spatial masks for relevant parameters and demonstrate 
their use based on the physiological and pathophysiological hypotheses. Finally, we pinpoint the key 
challenges and future directions. 
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elements, propose a unified framework from the per- 
spective of personalized whole-brain network mod- 
eling and deliver concrete examples for different clin- 
ical applications. 

Figure 1 i l lustrates a human brain and its vir- 
tual brain twin, as well as their relationships. From 

a human brain, we can obtain multimodal data, 
denoted D . These data might be anatomical such 
as T1-weighted MRI (T1-MRI), diffusion-weighted 
MRI (DW-MRI), computed tomography (CT) and 
positron emission tomography (PET) scans; func- 
tional such as electroencephalogram (EEG), mag- 
netoencephalography (MEG), stereo EEG (SEEG) 
and functional MRI (fMRI); or of other types 
such as demographics, genetics and behavioral data. 
These multimodal data are typically integrated into 
a personalized model to perform informed predic- 
tions about brain function. The equations of a virtual 
brain twin are 

ψ̇ (x, t ) = F (ψ(x, t ) , { k} , ˆ u ) , (1a) 

˜ D (t ) = O (ψ(x, t )) . (1b) 

©The Author(s) 2024. Published
Commons Attribution License (h
work is properly cited. 
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IRTUAL BRAIN TWINS 

 virtual brain twin is a special case of a ‘digital
win’, which originated in the realm of industry [1 ,2 ],
nd is a personalized, generative and adaptive brain
odel, adequately representing an individual’s brain
t the system level of description. The model is in-
ormed by subject-specific data, and aims to guide
ecision making in diagnostics, prognosis and ther-
py. The aim is thus not to resemble a biological
rain in as much detail as possible, but rather to be
ble to mechanistically explain and capture the most
elevant data features, answering a specific research
r clinical question. In other words, one wishes to
eep the individual’s brain twin as simple as possible,
ut as complex as necessary [3 ]. 
Several review papers on digital twins in health-

are and various brain disorders [4 –6 ] have offered
igh-level descriptions of concepts and technolo-
ies. In this paper, we present a more formalized and
omprehensive conceptual framework as the starting
oint for virtual brain twins. Specifically, we provide
 formal definition of a virtual brain twin and its key
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Prediction

Data

Human brain
Virtual brain twin

P(k | D, F, O)

D(t) = O(ψ(x, t)
ψ(x, t) = F(ψ(x, t), {k}, u)

P(D l k, F, O, u)

Figure 1. The key elements of virtual brain twins. The brain activity, denoted ψ at po- 
sition x at time t , of virtual brain twins can be computed using model F and the set of 
control parameters { k }. Simulated brain activity data are mapped on sensor data ˜ D (t ) 
through the forward solution O . We map real-world data D , observed in the human 
brain, onto the space of the virtual brain and personalize its control parameters k . Clin- 
ical interventions ˆ u represent any external operation capable of influencing the brain 
dynamics. Virtual brain twins generate predictions by simulating ˜ D (t ) under various 
conditions. 
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Equation 1a prescribes the evolution of neural ac-
ivity in time and in brain space. Equation 1b de-
cribes how the recorded signal derives from cur-
ent neural activity. The separation into generative
rain dynamics (Equation 1a ) and observer (Equa-
ion 1b ) is well established in full brain network
odeling [7 ] and inference frameworks such as dy-
amical causal modeling [8 ]. Let ψ( x , t ) be the
eural activity at time t and position x . The dot
laced above ψ( x , t ) indicates its first derivative
ith respect to time. Here F describes the neural
eld as a function of neural activity ψ( x , t ), a set of
ontrol parameters { k } and clinical interventions ˆ u .
stimated ˜ D (t ) can be calculated from forward so-
ution O as a function of brain activity ψ( x , t ).
he set of control parameters { k } is a subset of all
odel parameters and, in the context of this article,

s specific and causal to a disease and the healthy
geing process. Each control parameter k can be de-
ived from its posterior distribution given the ob-
erved or recorded data D , the brain dynamic model
 and the forward solution O , i.e. P ( k | D , F , O ).
he virtual brain twin is predictive for individual
atients by generating simulated data ˜ D (t ) using
he patient-specific framework described by { k }, F ,
 and ˆ u , which captures inter-subject variability,
isease specificity, sensor placements and clinical
nterventions. 
Mathematically, the intervention ˆ u can represent

ifferent operations, as indicated by the hat opera-
or, influencing the brain dynamics, such as stimu-
ation [9 ], surgical intervention, medication effects
nd even lifestyle change. For instance, ˆ u may corre-
pond to therapeutic electric stimulation in epilepsy,
Page 2 of 15
given certain stimulation parameter settings such as 
location of electrodes, stimulation frequency and 
amplitude. Given an objective function, we can then 
optimize a set U of the ̂  u for the patient’s brain model
and transfer the solutions with preferred outcome as 
a recommendation to the real world. Note that while 
the virtual brain twin can generate functional signals 
resembling those of the human brain, the external in- 
tervention ̂  u is not just a simple replication, owing to 
the intricate interaction between biological, physical 
and the model processes [10 ]. We can further adapt 
the personalized model in the next iteration of the 
virtual brain twin loop. If ̂  u has qualitatively changed 
the physical brain responses, we can improve and 
adapt the virtual brain using the new recordings of 
the physical brain. 

Standard model of the virtual brain twin 

We introduce the term ‘standard model’ in reference 
to a generic virtual brain model, which serves as 
a starting point for the process of personalization. 
The standard model integrates the various concepts 
and methods of virtual brain modeling of the past 
20 years in the same modular framework, provid- 
ing a large degree of adaptability and emphasizing 
methods of neural mass and neural field large-scale 
modeling [11 –15 ], nonlinear dynamics [16 ,17 ] and 
network science [18 –21 ]. As a starting point, we ex-
pand the neural activity Equation 1a into the Jirsa–
Haken equation comprising its three components, 
that is, local node dynamics, and local and global net- 
work interactions [22 ,23 ], establishing the standard 
model as follows: 

ψ̇ (xi , t ) = L (ψ(xi , t )) 

+
∫ 

�l 

gi j S (ψ(x j , t − τi j )) dx j 

+
∫ 

�g 

Gi j ηi j S (ψ(x j , t − τi j )) dx j + w(t ) . 

(2) 

Let ψ( xi , t ) be the neural activity at time t and posi-
tion xi . Here L describes the local dynamic field as a
function of local activity ψ( xi , t ). Local neural activ-
ities are also influenced by incoming input through 
its connections, either from nearby tissue (local con- 
nectivity gij ) or from distant brain regions (global 
connectivity Gij ). Within the local domain �l , each 
vertex i is connected locally through homogeneous 
connections. Local connections, described by gij , are 
defined as the geodesic distance along the cortical 
surface between vertices i and j . Function S is a
nonlinear function of ψ at a space point x and a time
point t − τ . The spatial domain �g is defined on the 



Natl Sci Rev, 2024, Vol. 11, nwae079

w  

t  

b  

m  

f  

g  

m  

r  

l
a
r  

s  

s  

t  

t  

f  

b  

n  

n  

b  

g  

e  

c  

i  

p  

a  

A  

t  

o  

a  

c  

τ  

t  

w
 

t  

t  

b  

t  

l  

r  

n  

t  

o  

g  

m

P
m
P  

s  

v  

T  

u  

s  

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/11/5/nw

ae079/7616087 by guest on 16 July 2024
hole brain and global connections between ver-
ices xi and xj , through white matter tracts, weighted
y the corresponding element Gij of the connectivity
atrix and delayed by τ ij . We also introduced the
actor ηij modulating the connection weight from re-
ion i to the target region j . Although Gij and ηij share
athematically equivalent roles in the equation, they
epresent different physiological and pathophysio-
ogical concepts. The global connection weights Gij 
re estimated from white matter fibers, whereas ηij 
epresents their pathophysiological modulation. In
ome brain disorders such as Parkinson’s disease and
chizophrenia, anomalies in neurotransmission and
he associated pathways can influence communica-
ion between certain brain regions, affecting the ef-
ective connection weight. This influence is captured
y ηij . In cases where neurotransmitter pathways are
ot affected, ηij = 1. The term w ( t ) denotes the dy-
amical noise. The dynamic range of Equation 2 has
een discussed in detail for various forms of local and
lobal connectivity [12 ]. The set of control param-
ters { k } (see Equation 1a ) is comprised in various
omponents of Equation 2 as a function of inter-
ndividual variabi lity, as wel l as differences between
hysiological and pathological conditions. For ex-
mple, the local dynamics is affected in epilepsy and
lzheimer’s disease, such that { k } is related to epilep-
ogenicity of local dynamics and to accumulation
f amyloid β , respectively; in ageing, Parkinson’s
nd multiple sclerosis, { k } can be related to global
onnectivity Gij , connectivity weights or time delay
ij ; and in psychiatric disorders, { k } can be related
o both local dynamics and global connectivity
eights. We discuss these topics in detail below. 
In this article, we describe virtual brain twins and

heir standard model at two levels of spatial resolu-
ion. The first is a detailed, high-resolution model
ased upon neural fields (as Equation 2 with spa-
iotemporal dynamics) and a certain degree of bio-
ogical plausibility. The second features fewer nodes
epresented by neural masses and a more parsimo-
ious parameterization, which renders it computa-
ionally lighter and more suitable for model inversion
r fitting. In this case, local connectivity is ignored,
ij = 0, and assumed to be absorbed in the neural
ass dynamics. 

ersonalized whole-brain network 

odeling 

ersonalized virtual brain modeling relies on
ubject-specific parameters extracted from an indi-
idual’s (typically multimodal) brain imaging data.
hree-level personalization introduces the individ-
al’s recorded data into personalized models in three
tages. The first level is to build a whole-brain model
Page 3 of 15
on the subject-specific brain space, which considers 
the individual unique brain anatomical structures. 
One typically constructs the virtual brain twin as a 
network of regions, with each region represented 
as a node in the brain network. These regions are
usually defined by atlases and the corresponding 
locations of regions are derived from T1-MRI. 
The second level is to directly map connectivity 
and other parameters into the brain models. The 
connectivity between nodes is inferred from either 
functional or structural data. Functional connec- 
tivity describes the statistical dependencies (such 
as correlation, coherence, etc.) between measured 
brain activity signals [24 ,25 ], and is thus limited
to the measured regions and spatial resolution. 
Structural connectivity is derived from DW-MRI, 
which has been extensively used to map white matter 
tractography in the brain. In the personalized whole- 
brain network model, we directly map structural 
connectivity into parameters Gij of the standard 
model (Equation 2 ). In the same way different 
data modalities can be mapped onto the model, as, 
for example, PET loadings can be used to inform 

regional neural parameter variability. The third 
level is to infer the clinically relevant parameters by 
model inversion or data fitting. Model inversion uses 
functional data, in which the choice of data features 
is important as it wi l l determine the identifiability of
the underlying causes parameterized by parameters 
k . A related issue is degeneracy, which is linked to
identifiability and more systematically discussed in 
the Degeneracy subsection below. 

Data features summarise valuable information 
from human brain data and are the primary in- 
put into the personalized modeling process. The 
selection of an appropriate data feature in multi- 
modal data depends on both the purpose of the vir-
tual brain twin and the functional consequence of 
a hypothetical cause of a disease. For instance, in 
epilepsy the power envelope of stereotactic electro- 
physiological data, which characterize seizure gen- 
eration and propagation patterns, has been success- 
fully used in the estimation of the epileptogenic 
network [26 ,27 ]. For non-invasive epileptogenicity 
estimation, the spike rate in MEG or EEG can serve
as a pertinent data feature [28 ]. Another example 
is given by the different data features that can be
derived from resting-state fMRI for healthy ageing 
and schizophrenia. In the context of healthy age- 
ing, not only the static functional connectivity be- 
tween brain regions is informative, but also the dy- 
namic change of functional connectivity, which is 
age related, should be included [29 ]. In schizophre- 
nia, the frequency-specific functional connectivity 
proves meaningful. A study found differences be- 
tween patients with schizophrenia and a control 
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Table 1. Parametrization of virtual brain twins for clinical uses. 

Topic Hypothesis Control parameter { k } Data Usage 

Epilepsy Excitability Regional parameter ei T1-MRI, DW-MRI, CT, 
SEEG, EEG, MEG 

Estimation of EZN* , 
medication, surgery, 
stimulation 

Alzheimer’s disease Amyloid β , tau Regional variability β i T1-MRI, PET, DW-MRI, 
fMRI, EEG, MEG 

Stage diagnosis, 
medication 

Ageing Deteriorated fiber Structural 
connectivity 

Gij T1-MRI, DW-MRI, fMRI Early diagnosis, 
neurostimulation 

Multiple sclerosis Slower conduction 
velocities 

Propagation delays τ ij T1-MRI, DW-MRI, EEG, 
MEG 

Clinical monitoring 

Parkinson’s disease Dopamine concentration Link weights ηij T1-MRI, LFP, PET, 
DW-MRI, MEG, fMRI 

Neurostimulation 
(tuning) 

Schizophrenia Excitation/inhibition 
balance, 
neuromodulatory 
pathways 

Regional parameter, 
link weights 

σ i , ηij T1-MRI, PET, DW-MRI, 
fMRI, EEG, MEG 

Early diagnosis, 
medication, 
stimulation 

* EZN: epileptogenic zone network. 

g  

v
 

m  

n  

o  

c  

i  

i  

[  

b  

e  

M  

t  

d  

w  

u  

t  

(  

o  

c  

r  

s  

p  

p  

d  

p  

p  

m  

M  

f  

a  

p  

l  

t  

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/11/5/nw

ae079/7616087 by guest on 16 July 2024
roup that were most salient in the frequency inter-
al 0.06–0.125 Hz [30 ]. 
Parameters can be inferred using probabilistic
achine learning and artificial intelligence tech-
iques. Bayesian inference offers a natural way to
btain the posterior distribution of parameters by
ombining prior knowledge (collected before see-
ng the data) with information provided by empir-
cal data, through the so-cal led li keli hood function
31 ,32 ] (which represents the conditional proba-
ility of observed data given parameters and mod-
ls). As the gold-standard technique, Markov chain
onte Carlo (MCMC) algorithms sample the pos-

erior distribution of model parameters through ran-
om simulations and evaluation of the consistency
ith empirical data [26 ,33 ,34 ]. Bayesian inference
sing MCMC provides full information about pos-
erior densities rather than a single point estimate
maximum likelihood [35 ] or maximum a posteri-
ri [36 ]). This allows for the quantification of un-
ertainty, hypothesis testing and finding optimal pa-
ameter settings while preserving their correlation
tructure. Adaptive and gradient-based MCMC sam-
ling in automatic tools allows for unbiased and
recise estimations [33 ,34 ,37 ], especially in high-
imensional parameter spaces, which is crucial for
recision medicine [26 ,32 ]. Because of the com-
lexity of personalized brain models and high di-
ensionality of the data, Bayesian inference using
CMC can be challenging. Indeed, the analytical

orm of the likelihood function is often unavail-
ble and numerical evaluation is computationally ex-
ensive [38 ]. In such cases, probabilistic machine
earning algorithms, such as neural density estima-
ors [38 ,39 ], can efficiently estimate the posterior of
Page 4 of 15
the parameters given low-dimensional data features. 
For instance, the simulation-based inference frame- 
work [40 ,41 ] applies Bayesian inference with the use 
of deep neural density estimators to efficiently esti- 
mate the posterior distribution of model parameters, 
while reducing the computational challenges for the 
calculation of li keli hood [42 ,43 ]. 

CLINICAL USE OF VIRTUAL BRAIN TWINS 

Virtual brain twins aim to improve the diagnosis, 
treatment and prognosis of patients with brain dis- 
orders. They can also help to further our under- 
standing of diseases by testing potential pathologi- 
cal mechanisms. Next, we describe the applications 
of personalized whole-brain network models from a 
clinical perspective. We start with a mature example: 
the virtual epileptic patient (VEP) [26 ,32 ,44 ], a per- 
sonalized whole-brain network model in epilepsy. 
We then present state-of-art concepts using person- 
alized whole-brain network modeling in Alzheimer’s 
disease, healthy ageing, multiple sclerosis, Parkin- 
son’s disease and psychiatric disorders. A summary 
of the parametrization of v irtual brain tw ins for the
above clinical uses is shown in Table 1 . We introduce 
the term ‘spatial mask’ to describe a spatial filter im- 
posed on brain networks (nodes or links). A spatial 
mask is related to the control parameter by capturing 
its spatial distribution for different brain conditions. 
Figure 2 presents an overview of spatial masks used 
in personalized whole-brain models for healthy age- 
ing and five clinical diseases. Potential applications 
of virtual brain twins may find utility in other clini- 
cal domains, such as the brain-computation interface 
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(a) Epilepsy (b) Alzheimer's disease (c) Ageing

Epileptogenic
networks 

(e) Parkinson's Disease(d) Multiple sclerosis (f) Schizophrenia

regional excitability of the brain region regional β-amyloid
and hyperphosphorylated tau 

time delay between two regions

global connectivity

weight imposed on a given link weight imposed on a given link 
regional synaptic features 

Figure 2. The spatial masks of six clinical uses and their control parameters { k } = { ei , β i , Gij , τ ij , ηij , σ i }. (a) In epilepsy, 
the control parameter set is composed of regional excitability ei of the local dynamics. The nodes in red with high ei belong 
to an epileptogenic network. (b) In Alzheimer’s disease, the control parameter set is composed of the regional parameter β i 

of the local dynamics. The nodes in different colors and sizes show that β i depends on amyloid β or tau depositions (Braak 
stages). (c) In ageing, the control parameter set is composed of the structural connectivity Gij , illustrated by the network links 
in white. (d) In multiple sclerosis, the control parameter set is composed of time delays τ ij . The affected links are colored 
blue. (e) In Parkinson’s disease, the control parameter set is the link weight ηij imposed to link from region i to region j . The 
affected links are illustrated in blue and the affected nodes in red represent the basal ganglia-thalamocortical circuit. (f) In 
schizophrenia, the control parameter set is composed of both the link weight ηij and the regional parameter σ i . The affected 
links are illustrated in blue and the regional parameter σ i in different colors is determined by the balance of excitation and 
inhibition of region i . 
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45 ] and stroke recover y [4 6 ]. These topics are not
ithin the scope of this paper. 

pilepsy 
pilepsy is characterized by recurrent spontaneous
eizures that have complex spatiotemporal dynam-
cs involving several connected brain structures and
ultiple patterns of temporal spread (with changes

n frequency, latency and synchrony). Epilepsy af-
ects around 50 mi l lion people worldwide and can
ause long-term disability. VEP targets patients with
rug-resistant focal epilepsy (around 30% of cases)
nd candidates for surgical treatment as a curative
ption. Presurgical evaluation is performed to estab-
ish whether and how surgical treatment might stop
eizures without causing neurological deficits. Pre-
Page 5 of 15
cise estimates of epileptogenic network s are cr ucial 
for planning intervention strategies. 

The first version of VEP uses personalized brain 
models and machine learning methods to estimate 
epileptogenic networks and to aid surgical strategies 
[26 ,32 ,44 ] (see Fig. 3 ). The structural scaffold (162
whole-brain regions and its network) of the patient- 
specific whole-brain network model is constructed 
from anatomical T1-MRI and DW-MRI using the 
VEP atlas [47 ]. Each network node is equipped with 
a mathematical dynamical model (defined in Equa- 
tion 2 ) to simulate seizure activities. We used the
Epileptor [16 ] to define the local dynamic L ( ψ( xi ,
t ), { k }) in Equation 2 . The control parameter k is
the excitability ei on each brain region, for which we 
define a threshold eθ . If ei ≥ eθ , the corresponding 
brain region i is part of the epileptogenic network 
(red nodes in Fig. 3 ) where seizures may start from.
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Data

T1-MRI

DW-MRI

SEEG, EEG, MEG

R1-2
TB2-3
TB1-2
TP6-7
TP5-6
TP4-5
TP3-4
TP2-3
TP1-2

B5-6
A1-2
B3-4
B2-3
B1-2

OF4-5
OF5-6

R6-7
0 20 40 60 80 100 120

regional excitability,

Epilepsy: VEP

Virtual stimulation 

Virtual surgery

Epileptogenic
networks 

Diagnosis

Treatment

Estimation of 
epileptogenic networks

Figure 3. A workflow of a virtual brain twin in epilepsy: virtual epileptic patient (VEP). In the middle is a personalized whole- 
brain network model, defined by the network of regions. The computational neuronal source activity model in Equation 2 
works on each brain region (blue and red spheres) defined by the VEP atlas. The brain regions are connected through the 
connectome (yellow lines). The brain geometry data from T1-MRI defined distinct brain regions according to the VEP atlas. 
Tractography was used to estimate the length and density of white matter fibres from DW-MRI (yellow lines in the virtual 
brain model), which establishes the connectome that specifies the connection strength and time delays via signal propagation 
between two brain regions. The control parameter { k } is the excitability of brain region ei . The probabilistic machine learning 
methods are able to obtain the control parameters from SEEG, EEG or MEG. The healthy regions are shown as blue squares 
and epileptogenic networks as red squares. The VEP can be used for epileptogenic network estimation, virtual surgery and 
virtual stimulation. 
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he regions with ei < eθ (blue nodes in Fig. 3 ) are
utside the epileptogenic network. The threshold eθ
s dependent on other personalized parameters such
s the structural connectivity. Its spatial mask is high-
ighted in Fig. 2 (a). Probabilistic machine learning
ethods (such as Hamilton Monte Carlo [33 ,34 ]
nd simulation-based inference algorithms [38 ]) are
sed to sample and optimize [36 ] the control param-
ters of the personalized model based on functional
EEG recordings of patients’ seizures. These control
arameters together with the personalized model
etermine a given patient’s epileptogenic networks
26 ]. Personalized models were further used to pre-
ict the outcome of surgical interventions using vir-
ual surgeries. We evaluated the VEP workflow retro-
pectively using 53 patients with drug-resistant focal
pilepsy [26 ,48 ]. VEP reproduced the clinically de-
ned epileptogenic networks with a precision of 0.6,
here the physical distance between epileptogenic
egions identified by VEP and the clinically defined
pileptogenic networks was small. Compared with
he resected brain regions of 25 patients who un-
erwent surgery, VEP showed lower false discovery
Page 6 of 15
rates in seizure-free patients (mean of 0.028) than 
in non-seizure-free patients (mean of 0.407) [26 ]. 
VEP is now being evaluated in an ongoing prospec- 
tive clinical trial (EPINOV: clinical trial identifier 
NCT03643016) with 356 epileptic patients. 

The second generation of VEP uses a high- 
resolution neural field model (HR-VEP), where the 
neural models in Equation 2 are built on each of 
the 260 0 0 0 vertices representing the brain with 
a mm2 spatial resolution. The HR-VEP simulates 
neural activity continuously in space and time, and 
takes into account the electrical dipole orientation 
normal to the surface for more accurate mapping 
of brain activity to the recording sensors such as 
SEEG, EEG and MEG. For clinical use, we started 
to seek a non-invasive diagnosis such as the estima- 
tion of epileptogenic networks using EEG and MEG, 
and a non-invasive treatment such as temporal in- 
terference stimulation [49 ] and transcranial direct- 
current stimulation [50 ]. We can introduce the 
stimulation intervention (both invasive, such as 
SEEG-induced stimulation or deep brain stimula- 
tion, and non-invasive) through external input ˆ u in 
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he standard model (Equation 2 ). Both VEP and
R-VEP can simulate different stimulation strate-
ies to make virtual stimulation modes, which have
apabilities to (1) provide optimized stimulation pa-
ameters [51 ] and (2) predict the stimulation ef-
ect(s) at both the local and global scales [52 ]. The
EP framework has also been further applied to
tudy the dynamics of status epilepticus, and in par-
icular how the propagation depends on the struc-
ural connectivity and the global state of the brain
etwork [53 ]. 

lzheimer’s disease 

lzheimer’s disease is a devastating neurodegener-
tive disease characterized by a progressive decline
n cognitive function. It is estimated that 51 mi l lion
eople worldwide suffered from the disease in 2019
27 ] and this number is expected to triple by the
ear 2050 [54 ]. This emphasizes the need for fur-
her understanding of the disease mechanism and
he development of novel therapies. The two patho-
hysiological hallmarks of the disease are the accu-
ulation of amyloid- β plaques and neurofibri l lary
angles of hyperphosphorylated tau protein that lead
o neuroinflammation, cell damage and ultimately
euronal death [55 ]. Recent studies have shown
hat disease-modifying drugs capable of removing
myloid- β plaques have the potential, even debat-
ble, to decelerate the disease progression [56 ], indi-
ating the need for an early detection of the disease
o maintain cognitive ability. In addition to molec-
lar and cellular pathomechanisms, disease effects
an also be observed at the mesoscale circuit and the
hole-brain level. On the level of EEG and MEG
ecordings, a diffuse slowing of the osci l lations and
ltered event-related potentials have been observed
57 ]. Furthermore, altered spreading of large-scale
periodic activities is predictive of clinical impair-
ent [58 ]. In structural MRI, a precise pattern of at-
ophy was reported [59 ] and also in fMRI discon-
ections in resting-state networks [60 ]. 
Brain network models have already been used to

xplain and predict the spatiotemporal propagation
attern of misfolded amyloid- β [61 ] and tau pro-
eins [62 ] along the disease trajectory. Furthermore,
rain network models have been used to test the
ink between the patient-specific amyloid- β plaque
istribution, hyper-excitation and slowing of neu-
al osci l lations [63 ] in patients with Alzheimer’s dis-
ase. The simulated features of the brain network
odel have then been used to improve classifica-
ion performance between patients with Alzheimer’s
isease, mild cognitive impairment or healthy con-
rols [64 ]. As mentioned, the goal of brain network
Page 7 of 15
models is to further our understanding of the path- 
omechanism of the disease, to bridge the gap be- 
tween structural and functional data and to make 
predictions for the individual patient. In the case 
of Alzheimer’s disease, we define the regional vari- 
ability β i as the control parameter k in the standard 
model (Equation 2 ). The regional variability β i is 
related to the spatial pattern of atrophy, amyloid- β
or tau depositions (Braak stages) for each region. 
The spatial mask of Alzheimer’s disease is i l lustrated 
in Fig. 2 (b). The parameter β i reflects the patho- 
physiological process induced by amyloid β or tau 
within the local model that is used to represent neu-
ral activity in node i of the network, which links
to parameters of increased neural excitability or de- 
creased inhibitory function [65 ]. Estimating each 
control parameter involves utilizing patient-specific 
data and informed constraints derived from biology 
[66 ]. Imaging data used to infer and estimate control
parameters could be fMRI and tau–amyloid- β PET 

[67 ], a combination of DW-MRI and tau–amyloid- 
β PET [68 ], and a combination of amyloid- β , tau
and fluorodeoxyglucose PET [69 ]. Frequency fea- 
tures and functional connectivity are estimated from 

EEG and MEG functional recordings [70 ] and com- 
plexity analysis from EEG, MEG and fMRI [71 ]. 

Both structural connectivity and functional con- 
nectivity are linked to the patterns of amyloid- β and 
tau accumulation and spread [72 ,73 ]. Connectomes 
derived from patient-specific DW-MRI can be in- 
tegrated into a personalized model, aiding in pre- 
dicting the patient’s cognition [74 ] and facilitating 
a better understanding of the roles of connectivity 
in the progression of Alzheimer’s disease pathology. 
Network connectivity plays a vital role in various 
brain orders, such as epilepsy, Alzheimer’s disease 
and schizophrenia, by influencing the brain dynam- 
ics; however, it is not labeled as a control parameter
here because it is not specific to one disease. 

Ageing 

Healthy ageing is accompanied by a decline of cog- 
nitive abilities with substantial variations among the 
individual ageing trajectories, in particular at later 
stages in life [75 ,76 ]. Many studies have shown that
this variability is associated with the organizational 
changes of ageing in both structural [77 ,78 ] and 
functional connectivity [29 ,79 ], but without testing 
the possible causality between the two. Fiber con- 
nections are expected to deteriorate [80 ], particu- 
larly with respect to the number of inter-hemispheric 
fibers within tracts and fiber density [42 ,81 ]. In
addition, time delays due to white-matter propa- 
gation are also affected by demyelination during 
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geing [82 ,83 ]. Time delays have been shown to sup-
ort age-related functional alterations in the human
rain [81 ], together with the dynamical compen-
ation for the white-matter degradation, in particu-
ar causally linked to interhemispheric white-matter
egradation in the virtual ageing brain (VAB) frame-
ork [42 ]. There, we built a personalized whole-
rain network model and defined Gij to be the con-
rol parameter k in the standard model (Equation 2 ),
 l lustrated in Fig. 2 (c). The structural connectivity
an be directly mapped from subject-specific DW-
RI data. In VAB, a mask applied to interhemi-

pheric connections of a younger subject is used to
eproduce the process of functional dedifferentia-
ion during ageing. By virtually ageing younger and
lder subjects, the VAB showed that the decrease
n fluidity of functional connectivity dynamics with
ge is likely driven by interhemispheric white-matter
egradation. VAB was also able to predict cognitive
erformance in older adults, using simulation-based
nference [42 ] to estimate the scaling of Gij . The VAB
hus offered the first direct evidence of dedifferenti-
tion in ageing leading to adverse effects of cognitive
ecline in a large cohort. 
The virtual brain twin of a healthy ageing brain

an also help identify brain states and early signa-
ures of brain disorders and then develop possible in-
erventions such as neurostimulation to improve de-
lining cognitive functions. Another study [84 ] uses
 whole-brain computation model to simulate fMRI
ctivity and predict functional connectivity. Based
n longitudinal studies that have shown an associa-
ion between altered resting-state functional connec-
ivity and decreased cognitive functions [85 ,86 ], this
tudy [84 ] shows that in silico stimulation of each
ode was able to induce transitions from the brain
tate profile of the older- to the middle-aged group.
hey found that the precuneus was the best stimula-
ion target to achieve this functional reconfiguration.

ultiple sclerosis 
ultiple sclerosis is a chronic, autoimmune and de-
enerative disease of the central nervous system
hat affected a total of 2.8 mi l lion people world-
ide in 2020 [87 ]. The immune system attacks the
yelin sheath, which coats nerve fibers (axons) and
upports saltatory conduction, responsible for var-
ous motor and cognitive symptoms. Virtual brain
wins might be particularly useful for patient strat-
fication (given the heterogeneous nature of the
isease) as well as for predicting the effect of ther-
peutic changes (e.g. therapy switch). The increas-
ng number of treatment options on the one hand,
nd the availability of large multimodal datasets on
he other hand, bear promises for the deployment
Page 8 of 15
of personalized models in the near future [4 ]. The 
existing prediction models have investigated the in- 
dividual response of patients with multiple sclero- 
sis to disease-modifying therapies, using generalized 
linear models [88 –90 ]. These studies aimed to pre- 
dict individual clinical responses from large, multidi- 
mensional datasets. However, the models did not at- 
tempt a direct mechanistic account of the emergence 
of patient-specific clinical disabilities [4 ]. 

Here, we introduce a personalized whole-brain 
network model for patients with multiple sclerosis. 
The rationale of this approach is based on the idea 
that symptoms in multiple sclerosis are caused by 
slower conduction velocities. These cannot be di- 
rectly measured across the whole brain and, as a con- 
sequence, structural lesions are typically used to as- 
sess damage accumulation. The virtual brain twins 
might allow us to directly infer the conduction veloc- 
ities. In fact, multiple sclerosis patients demonstrate 
greater functional delays across the whole brain, as 
compared to healthy subjects, and all the more so 
for tracts affected by structural lesions [91 ]. Also, 
changes in myelination can alter the timing of the 
interactions among brain regions [78 ], thus leading 
to symptoms. Thus, the control parameter k for this 
disease is the time delay τ ij as defined in the stan- 
dard model (Equation 2 ), and its spatial masks are 
shown in Fig. 2 (d). The time delay τ ij in virtual 
brain twins can be inferred from a functional data 
feature such as the power spectrum density of pa- 
tient’s MEG recordings, while structural connectiv- 
ity Gij is inferred from DW-MRI recordings directly. 
Fur thermore, vir tual brain twins can predict clinical 
disability and the activity of pathophysiological 
mechanisms by inferring subject-specific conduc- 
tion delays. 

Parkinson’s disease 

Parkinson’s disease is the second most common 
neurodegenerative disease causing motor symptoms 
such as tremor, rigidity and bradykinesia, as well as 
other non-motor symptoms [92 ]. The prevalence of 
Parkinson’s disease is strongly age dependent, rang- 
ing from 0.04% to 2% in the age groups 40–49 and 
older than 80, respectively [93 ]. The pathological 
hallmark of Parkinson’s disease is the accumula- 
tion of misfolded α synuclein in Lewy bodies and 
the degeneration of dopamine-producing neurons 
in the substantia nigra [92 ]. Loss of dopamin- 
ergic nigrostriatal neurons along the nigrostriatal 
pathways and a more modest loss along the mesolim- 
bic and mesocortical can be implemented in a 
personalized whole-brain network model by in- 
troducing ηij —a spatial mask modulating the 
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onnectivity weight between region i , the source
f the neuromodulator, and region j , the target.
he link weights ηij can be considered as control
arameter k . Anomalies in neurotransmitter path-
ays can influence communication between brain
egions, while the white matter fibers connect-
ng these regions remain unaffected. The spatial
ask in Parkinson’s disease is shown in Fig. 2 (e),
here the affected links are i l lustrated in blue
nd the affected nodes in red represent the basal
anglia-thalamocortical circuit. The control param-
ter can be mapped and inferred from a patient’s
pecific invasive and/or non-invasive recordings.
ome studies combine invasive and non-invasive
odalities, for example, MEG is combined with
ubthalamic local field potential recordings [94 ,95 ]
nd fMRI with deep brain stimulations [96 ]. The
onnection between the cortex and subthalamic
ucleus can also be investigated using simultaneous
8F-FDG-PET and fMRI [97 ]. 
In addition to the molecular and cellular patho-

ogical mechanisms, larger-scale dynamical phenom-
na are observed. Altered dynamics in the basal gan-
lia causes anomalous bursts of activities in the beta
requency range, which are related to the clinical dis-
bility [98 ]. The presence of stereotyped large-scale
ynamics has also been linked to clinical disability
99 ]. Deep brain stimulation in subcortical nuclei
s used to ‘desynchronize’ neural activity and thus
mprove the symptoms [100 ]. Computational mod-
ling studies have investigated this phenomenon
n neural network models [101 ,102 ] as well as in
asal ganglia-thalamocortical circuit models [103 ],
n which pathological osci l lations may arise due to
ltered connectivity. Brain network models can be
sed to predict the optimal stimulation paradigm in
ilico, represented by u in our standard model. Ad-
itionally, the brain network can help in distinguish-
ng different kinds of Parkinsonism. A recent study
as shown that complementing empirical functional
onnectivity of fMRI recordings with simulated data
rom patient-specific whole-brain network models
ould enhance the classification of Parkinson’s pa-
ients [104 ]. Another computational model investi-
ated changes in the basal ganglia pathway inferred
rom resting-state fMRI [105 ]. 

sychiatric disorders 
sychiatric disorders are a heterogeneous group of
isorders, characterized by a clinically significant dis-
urbance in an individual’s cognition, emotional reg-
lation or behaviour. According to a report from
he World Health Organization, psychiatric disor-
ers affected 970 mi l lion people around the world
Page 9 of 15
in 2019 before COVID-19 [106 ]. To date, most 
psychiatric disorders lack precise biomarkers, and 
their main pathophysiological hypotheses are sti l l 
debated [107 ,108 ]. In the case of schizophrenia, 
affecting approximately 24 mi l lion people world- 
wide, the classical hypothesis involves a dysfunction 
in neurotransmission and neuromodulation. Low 

dopamine levels within the mesolimbic pathway, 
extending from the ventral tegmental area to the lim- 
bic areas, are thought to be responsible for posi- 
tive psychotic symptoms [109 ]. Low dopamine lev- 
els within the mesocortical pathways, which extend 
from the ventral tegmental area to the cortex, are 
thought to cause the negative symptoms and cog- 
nitive deficits [109 ]. The neuromodulatory path- 
ways can be implemented via the spatial mask ηij 
modulating the connectivity weight between region 
i , the source of the neuromodulator, and region j ,
the target. The spatial mask ηij can be formalized 
as a system variable changing in time according to 
the fluctuations of dopamine release and its impair- 
ments. Further evidence shows a disruption of the 
cortical excitation/inhibition balance, whether it is 
through synaptic pruning [110 ] or under the effect 
of gamma-aminobutyric acid transmission or of N- 
methyl-D-aspartate receptor plasticity [111 ]. These 
changes in local dynamics are introduced by region- 
specific parameters σ i that can represent the bal- 
ance between excitation and inhibition in region i 
or even synaptic density. Parameters σ i plus ηij be- 
come the control parameters { k } of the standard 
model (Equation 2 ), and its spatial mask is shown
in Fig. 2 (f). These two subsets of control parameters
can be mapped directly and inferred from personal 
structural and functional recordings. MRI record- 
ings have shown impaired gyral formation in the an- 
terior cingulate cortex [112 ] and the frontal cortex 
[113 ] in patients with schizophrenia. MRI record- 
ings have also provided evidence that schizophre- 
nia is associated with lower gray matter volumes, in 
particular in the frontal cortex [114 ]. In schizophre- 
nia patients, [11C] UCB-J PET imaging shows sig- 
nificantly lower synaptic vesicle protein 2A density 
in frontal and anterior cingulate cortices, indicating 
lower synaptic density [115 ]. Genetic studies [110 ], 
EEG, MEG [116 ] and fMRI [117 ] have provided
evidence for altered E/I balance in schizophrenia. 
These patient-specific in vivo recordings can pro- 
vide the input data for training virtual brain twins in
schizophrenia. 

Other studies using multiregion network mod- 
eling demonstrate consistently increased self- 
inhibition in frontal areas and dis-inhibition in 
auditory areas in schizophrenia. Here the compu- 
tational model contains six brain regions, each of 
which includes pyramidal, spinal stellate cells and 
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nhibitory interneurons [118 ]. The local parameters
nd regional connections are inferred and compared
sing dynamic causal modeling based on EEG and
MRI features. Similar approaches, not exclusive
o schizophrenia, have already been experimented
n several studies, to explore the dysconnection
ypothesis [119 ,120 ], the neuromodulatory effect
f a psychoactive drug on brain function in healthy
ubjects [121 ] or in a stimulation paradigm [122 ].
he advent of multiscale brain models wi l l add
urther granularity to the control parameters and
ring hope in disentangling the complex interplay
f mechanisms responsible for the emergence of
sychiatric disorders. 

EY CHALLENGES AND FUTURE 

IRECTIONS 

iven all the existing and envisioned clinical use
ases explained above, there are certain aspects and
ossible pitfalls that are common to any application
f virtual brain twins. In the following subsections
e highlight those challenges, such as degeneracy
nd overfitting, and we also give an outlook for fu-
ure model improvement using high-resolution, co-
imulation and deep generative models. 

egeneracy 
egeneracy refers to the ability of structurally dif-
erent elements to produce the same function or be-
avior, and is a natural property of the brain [123 –
25 ] due to its multiscale nature. From a biological
erspective, degeneracy underpins the resilience of
he brain. However, from an inference perspective,
dentifying and disentangling degeneracy is a signif-
cant challenge, as it involves deciphering how var-
ous model configurations can lead to similar func-
ional outcomes [126 ], associated with an increase
n computational cost. Challenges regarding iden-
ifiability in inference thus arise from two aspects:
1) insufficient data or oversimplified models and
2) degeneracy. The first aspect is technical and can
e addressed by incorporating additional informa-
ion such as multimodal imaging data, integrating
ultiscale models and co-simulation, and introduc-

ng reparameterization techniques within the model
onfiguration space. The coexistence of models with
ifferent levels of description from the most biophys-
cal ly detai led to the most phenomenological may
lso help to address this challenge [127 ]. The second
spect is intrinsic to the brain and needs to be con-
eptually integrated and dealt with as an important
rain characteristic when we design personalized
Page 10 of 15
brain models and make interpretations in clinical 
use [26 ]. 

Overfitting versus precision medicine 

Precision medicine can be defined as an approach 
that delivers the effective treatments to a specific pa- 
tient at the optimal time [128 ]. The complex biolog- 
ical disease needs to be reduced to its components 
from which the most relevant features can be iden- 
tified and measured to choose an optimal interven- 
tion [129 ]. When these measures greatly outnum- 
ber the amount of samples they are made on, there 
is a risk of overfitting. When a model is fitted to a
specific dataset, known as the ‘training’ set, it may 
perform exceptionally well, to the extent that it cap- 
tures detailed but irrelevant features, such as noise. 
This causes accuracy issues when a new dataset is 
introduced (the ‘test’ set), because the model can- 
not generalize to unseen data [129 ]. Model regu- 
larization techniques are a common approach for 
dealing with such issues. For instance, imposing con- 
straints (such as connectivity) on the model com- 
plexity can effectively prevent overfitting and en- 
hance the model’s generalizability, making them reli- 
able in a probabilistic data analysis (and eventually in 
a multicentric context). Traditional evidence-based 
medicine relies on randomized clinical trials in or- 
der to determine the most effective treatment for a 
particular class of patients. The challenge of preci- 
sion medicine is that of making predictions based on 
subject-specific features without losing clinical rele- 
vance in nosographic terms. 

Crossing multiscale models and 

co-simulation 

Scale integration in computational brain model- 
ing involves bridging various levels of complexity, 
from single neurons to whole-brain models. On 
the one hand, the bottom-up approach begins with 
models capturing single neuron excitability, serv- 
ing as fundamental building blocks for spiking neu- 
ral networks. Network complexity can be man- 
aged through mean-field approaches, which simplify 
large-scale network dynamics by considering average 
population behavior. These mean fields thus repre- 
sent neural masses. With respect to the whole-brain 
perspective, each brain region is represented by a 
neural mass model. On the other hand, the top-down 
approach may help identify possible minimal mech- 
anisms needed for the emergence of whole-brain 
dynamics. The co-contribution of these approaches 
helps build relevant models for specific digital twin 
applications. Once the whole-brain network is built, 
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ne or multiple regions can be replaced by their cor-
esponding lower-scale model. In such a case, known
s co-simulation, a neural mass is replaced by the
orresponding spiking neural network. It allows test-
ng specific hypotheses about cross-scale communi-
ation, between the cellular or sub-cellular scale (for
 region of interest) and the whole-brain level. Meth-
ds based on machine learning techniques (such
s neural ordinary differential equations [130 ] and
olynomial regression) can also be used to learn
he behavior of microcircuit models for which we
ack mean-field derivations. These learned paramet-
ic manifolds of neuronal activity can then be trans-
erred to a whole-brain network model, allowing for
he traversing of scales. 

eep generative models for prediction 

n brain disorders 
enerative models are unsupervised machine learn-
ng algorithms that learn complex data distributions
nd generate new data samples, often in the form of
mages, texts or other structured data. The deep gen-
rative models are neural network-based algorithms
hat are primed to predict the occurrence, progres-
ion or outcomes of neurological or psychiatric con-
itions by learning from relevant data, enabling po-
ential applications in diagnosis, prognosis and treat-
ent planning. Normalizing flows [131 ,132 ], which
re employed to transform a simple probability dis-
ribution into a complex one, have proven to be ef-
ective and efficient for probabilistic inference, in
pilepsy [38 ], ageing [42 ] and focal interventions
chemogenetics and lesions) [43 ]. Recently, vari-
tional autoencoders for nonlinear dynamical sys-
em identification demonstrated their capacity to
nfer both the neural mass model and the region-
nd subject-specific parameters from the functional
ata, while respecting the known network structure
133 ,134 ]. In the near future, these advanced mod-
ls can be harnessed for precise, accurate and end-to-
nd automatic inference on brain diseases from big
nd multimodal data, with different spatio-temporal
cales. 

igh resolution 

ost of the clinical applications we discussed made
se of virtual brain twins at low resolution ( ∼10 cm2 

er brain region). In theory, representations of the
tandard model (Equation 2 ) at high spatial resolu-
ion ( ∼1 mm2 ) can significantly improve the simu-
ation and predictive power. The change from low to
igh resolution can increase the precision of source-
o-sensor mapping, and also allows for complex
Page 11 of 15
intra-regional dynamics with consequences for the 
overall network organization. In practice, only high- 
resolution models can simulate some empirically 
observed signals such as the traveling waves along the 
cortical surface [135 ], and guarantee high fidelity of 
electromagnetic fields in brain stimulation. The con- 
trol parameters and spatial masks remain the same 
in each clinical use case, when changing from low 

to high resolution. Our ongoing work has shown 
the application of high-resolution simulation [26 ] 
and feasibility of high-resolution model inversion in 
epilepsy. In the near future, the personalized whole- 
brain network models in high-resolution can be ex- 
tended to other clinical use cases. 

CONCLUSION 

Virtual brain twins are computational models of 
human brains that are informed by subject-specific 
data, enabling individual prediction of neural pa- 
rameters and interventions. We gave an overview 

and perspective of the current and possible future 
use of virtual brain twins for clinical applications. 
We focused on the process of personalization and 
identified the control parameters and spatial masks 
in each clinical use. Currently, the furthest devel- 
oped example is the VEP for epilepsy. Future devel- 
opment should tackle the challenges of model de- 
generacy and overfitting, as well as seek to improve 
accuracy through higher-resolution and multiscale 
models. 
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