
HAL Id: hal-04649946
https://hal.science/hal-04649946v1

Submitted on 16 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Remote interactive walkthrough of city models
Jean-Eudes Marvie, Julien Perret, Kadi Bouatouch

To cite this version:
Jean-Eudes Marvie, Julien Perret, Kadi Bouatouch. Remote interactive walkthrough of city mod-
els. 11th Pacific Conference on Computer Graphics and Applications, Oct 2003, Canmore, Alberta,
Canada. pp.389-393, �10.1109/PCCGA.2003.1238281�. �hal-04649946�

https://hal.science/hal-04649946v1
https://hal.archives-ouvertes.fr

Remote Interactive Walkthrough of City Models

Jean-Eudes Marvie, Julien Perret, Kadi Bouatouch
IRISA

Campus de Beaulieu
35042 Rennes cedex, France�

jemarvie,juperret,kadi � @irisa.fr

Abstract

This paper presents a new navigation system built upon
our client-server framework named Magellan. With this
system one can navigate through a city model represented
with procedural models transmitted to clients over a low
bandwidth network. The geometry of these models is gen-
erated on the fly and in real time at the client side. The
navigation system relies on different kinds of preprocessing
such as space subdivision, visibility computation as well as
a method for computing some parameters used to efficiently
select the appropriate level of detail of objects. These two
last kinds of preprocessing are automatically performed by
the graphics hardware.

1. Introduction and Related work

Transmission and real-time visualization of massive 3D
models such as cities are constrained by the networks band-
width and the graphics hardware performances. These con-
straints have led to two research directions that are progres-
sive 3D model transmission over Internet or a local area net-
work and real-time rendering of massive 3D models.

With regard to progressive 3D model transmission, many
papers suggest the use of geometric levels of detail (LODs)
that also speed up the rendering. In [12], the LODs to be
downloaded are selected according to their distance from
the viewpoint. In [14] the available bandwidth, the client’s
computational power and its graphics capabilities are also
used. In [15], the expected improvement in image quality
that is achieved by transmitting an object is used to obtain
better results. In [13] the amount of data to be transmitted
over the network is reduced by using procedural models.

As for real time rendering of massive 3D models on a
single computer, the most commonly used solution consists
in subdividing the scene into cells and computing a poten-
tially visible set (PVS) of objects for each view cell. Dur-
ing walkthrough, only the PVS of the cell containing the

current viewpoint is used for rendering. Many systems for
interactive building walkthrough [1, 16, 5, 8, 10] make use
of this approach. For these systems the view cells are, most
of time, the rooms of the buildings. City models can also
be visualized using such a method [3, 17] where view cells
are extruded road footprints. For a more general type of
complex scenes, occluder fusion [11] or extended projec-
tions [4] methods allow for conservative visibility compu-
tation. Finally, in [2] the authors distinguish fully visible
sets from hardly visible sets (HVS) of objects. Using the
HVS classification, an appropriate LOD is selected for each
hardly visible object.

2. Overview

We present a system which allows real-time walkthrough
of 3D city models located on a remote machine and trans-
mitted over a low bandwidth network, using TCP/IP proto-
col. The server provides access to several city models, each
one being represented by one database, each database be-
ing a set of VRML97 files describing the 3D city model.
Each remote client machine can connect to the server to
walk through a city model using its associated database. So
far, there is no interaction between clients, and each client
renders its own representation of the city model.

The 3D city models we use are outputs of the generator
described in [7]. Each model contains a set of roads, cross-
roads and buildings. With this generator, one can choose
the type of models to be used for each of these objects. In
addition, the generator produces some additional data such
as the street network (coded as a graph) and the adjacency
relationships between buildings.

In order to optimize transmissions and the rendering pro-
cess, we combine visibility calculation with LODs gener-
ated on the client side by procedural models transmitted
over the network. We have also developed a new method
that makes use of the visibility computation results to select
the appropriate LOD for each object during the rendering
process.

With this aim in view, the navigation space (roads and
crossroads) is subdivided into view cells and a PVS of ob-
jects (roads, crossroads, buildings) is computed for each
cell. In addition, we determine the adjacency relationship
between cells. During walkthrough the next visited cell,
adjacent to the current one, is found using motion predic-
tion and prefetched [5] as well as its PVS. In this way, the
database is progressively transmitted to the client and the
geometry used for rendering is the PVS of the visited cell.

Although the database is progressively transmitted, some
PVSs may still require too much network bandwidth, which
causes a latency time that cannot be compensated for by
prefetching. Therefore, we use procedural models for roads,
crossroads and buildings to avoid geometry transmission.
The server database contains a library of procedural models
as well as some sets of input parameters. Each of these sets
is used by one procedural model to generate the geometry
of one object. Whenever a client receives a set of input pa-
rameters related to a procedural model, it generates the as-
sociated geometry. To generate different geometric objects
corresponding to the same procedural model, the client just
needs to download the procedural model as well as the sets
of input parameters for these geometric objects.

With regard to the rendering process, a PVS might still
contain too many polygons to get an interactive frame rate
(say, 25 frames per second). In order to reduce the amount
of polygons to be rendered, the geometry of the PVS’s ob-
jects is represented with LODs that are generated by proce-
dural models. Usually, the suitable LOD is selected using
an euclidian metric giving the distance between the view-
point and the object center. In our implementation, we pro-
pose a different method which takes advantage of the vis-
ibility computation results. While computing visibility for
one cell, the system computes an ACH (average coverage
hint) for each visible object. The ACH of an object repre-
sents the average surface area of this object when projected
onto the projection plane of any viewpoint within the cell.
During rendering, the ACH of each object is used as a per-
centage of covered pixels to select it’s polygon budget in
order to match a target frame rate.

2.1. Visibility computation

Our visibility preprocessing consists in finding build-
ings, roads and crossroads potentially visible from each
cell. As the objects are procedural models, their geometry is
also generated during the preprocessing. In our algorithm,
which is not conservative, we compute a PVS for each cor-
ner of the cell and the union of the obtained PVSs gives the
PVS of the cell. The PVS of a cell corner is computed in
screen space by rendering the scene for six cameras having
the same COP (center of projection). The view direction of
each camera is perpendicular to one face of an axis aligned

box. Such a box will be called rendering box from now on.
The COP shared by the six cameras is the center of the ren-
dering box and the FOV (field of view) of each camera is
equal to ��� degrees. The projection plane of a camera is a
face of the rendering box. The eight rendering boxes of a
cell are not exactly centered at the corners. Rather, a box
center is placed close to a corner so that the box be inside
the borders of the cell that are supported by the frontages
of the buildings. In this way, the frontages of the buildings
become occluders which reduces the size of the PVSs.

For each camera of each rendering box, all the geomet-
ric objects are rendered, which gives ��� images. In order to
accelerate the rendering we use an OpenGL graphics hard-
ware and we perform a frustum culling on the bounding box
of each object. If the bounding box intersects the frustum,
the highest LOD (because it avoids occlusion errors) is ren-
dered for this camera. Each procedural model is loaded us-
ing a main root file that refers to it and is displayed with a
unique color which is assigned to the memory pointer point-
ing to it. Consequently, the contents of all the ��� images
gives the memory pointers to the objects that makes up the
PVS of the cell. Note that one could use the OpenGL oc-
clusion query extension to speed up this process.

In addition, for each camera �	� (of the ��� cameras asso-
ciated with a cell), we count the number of pixels
��� cov-
ered by each visible object ��� . The total number of pixels
����������� covered by a visible object ��� is then:

 ���������� � ������ ��� �� �!
"��
Let
 �$# � be the number of objects visible for the ��� cam-
eras. The total number of covered pixels
%���������& �('*) �,+ for the ���
cameras is then:

 ���-�����& �,'.) �,+ � ��/��� ��� 02143657!
 ���-������
The ACH (Average Coverage Hint), denoted 89�;: � , asso-
ciated with each visible object � � is computed as:

8<�;: � �
 ����������
 ���������& �('*) �(+
The properties of the ACH values are the following:=?>�@BADC,EGF
 �H# ��I F 8<�;:J� ADC � FKE IL �/��� ��� 0 14365 ! 89�;:"� � E

Although our visibility computation method is not con-
servative, it provides good results and is fast since it exploits
intensively the capabilities of the graphics hardware. Fur-
thermore, if one needs a conservative result, he can first ap-
ply a conservative visibility algorithm to compute the PVSs

and then utilize our algorithm, using the resulting PVSs, to
compute only the ACHs values.

During the process, the list of potentially visible objects
as well as the ACHs values are stored in their respective
cells. Each cell is saved into one distinct file and a root file
that contains a set of viewpoints at which the user can start
navigations is generated. In order to find quickly the cell
that contains the current viewpoint, each viewpoint refers to
its parent cell. If a viewpoint is used, its parent cell becomes
the current cell.

3. Procedural models

The procedural model for generating buildings, that we
have implemented for our tests, is coded using our exten-
sion [7] of the L-system [9] language that allows to gener-
ate VRML97 3D models and scene graph structures. This
model takes as input the building footprint, its number of
floors and the height of its adjacent building in order to
handle party walls. Using these input parameters, it pro-
vides the geometric representation of each level of detail. In
this model we generate three LODs per building. Figure 3
shows these levels for a given building using a certain set of
input parameters. Each level is divided into two parts which
are the frontages and the roofs. We use pattern repetition to
describe each part. A ground floor is modeled using a row
of windows, a door as well as another row of windows. The
other floors (including roofs) are modeled using one row
of windows. The model uses adjacent building heights to
generate party walls. As a party wall does not contain any
door or window, we make it start from the adjacent build-
ing height to reduce the number of polygons to be rendered.
The frontage’s wall is the same for level two and level three,
so the geometry is shared by the two levels.

4. Rendering algorithm

The goal of the rendering algorithm is to render the
scene (on the client side) at an interactive frame rate with
a minimum number of visual artifacts. Our system is de-
veloped using our client-server framework named Magel-
lan [7]. With this framework, the network accesses are
automatically handled and different modules that access a
generic scene graph handler can be implemented (on the
client side). In this generic scene graph handler the nodes
are generic and visual nodes are responsible for their dis-
play.

Thus, our rendering algorithm, which is coded in a ren-
dering module, only computes the amount of polygons to be
used for the next rendering to maintain a given frame rate
(MONQP) given by the user. This amount of polygons will be
called polygon budget. Using an average frame rate value

estimated from the rendering time of some of the last com-
puted frames and the last polygons budgets used for gener-
ating these frames, the algorithm determines the new poly-
gon budget to be used to maintain the frame rate MONQP given
by the user. Once this polygon budget has been computed,
the algorithm passes it to the current cell rendering algo-
rithm.

The current cell rendering algorithm makes use of two
methods. The computeVS method utilizes the polygon bud-
get
 & ���SR and the ACHs to make the potentially visible ob-
jects of the cell share out the polygon budget. The display
method simply invokes the display method of the visible
objects. The interesting point of the process is the poly-
gon budget sharing which is performed by the computeVS
method of the cell. In this method, we first performs frus-
tum culling using the bounding boxes of the potentially vis-
ible objects of the cell. For each visible object, its ACH
is normalized using the number of objects that are visible.
We compute the polygon budget
 & �-�SR� to assign to a vis-
ible object T using its normalized ACH denoted 89�;: � as
follows:
 & �-�SR� � 89�;: �VU
 & ���SR . Then, the visible object
uses this budget to select its best suitable LOD and returns
 & �-�,RW +)-X which is the exact number of polygons of the selected
LOD. The budget of polygons used for the rest of the visi-
ble objects is now
 & �-�,RJYZ
 & ���SRW +)-X polygons. This process
is repeated for each visible object, starting from the object
having the highest ACH and ending with the object having
the lowest one. Note that this budget assignment method is
interesting for any system using level of details.

5. Results

5.1. Database size

In our system, all the files of the databases are encoded
using our compressed VRML97 binary format presented
in [7]. Although the compressed binary format offers fast
parsing possibilities and good compression ratios (around�O[O\ of the size of the UTF8 text files), the main compres-
sion is achieved when using procedural model parameters to
describe the geometry of the models. To compute the com-
pression ratios, we have compared the size of six different
city models when stored in compressed binary format with
the size of these same models when their geometry is com-
pletely reconstructed using our L-system rewriting system.
The results shows that a

E.]G] [G�G�G^`_ model takes
E �ba KB in

compressed format instead of
]�E � MB when geometry is re-

constructed and that a �����G���G�c^ _ model takes [d�] KB in-
stead of

EGe(E
GB. Thus, the size of a database is around � e �Oa %

the size of the reconstructed model. This results confirms
the fact that procedural models are of high interest in re-
mote navigation because of their small size which makes
them well suited to low bandwidth networks.

5.2. Transmission quality

In order to analyze the transmission quality, we have
recorded a walkthrough path (called fhg) at a navigation
speed of

E [km/h. This path passes through the streets of aad�G� m square model. Then, we have performed two walk-
throughs (with and without prefetching) using the path fig
and a simulated bandwidth of [Gj Kb/s. During these walk-
throughs, we count, for each new frame, the number of ob-
jects that are in the PVS of the current cell. Among these
objects, we count those that have not been already down-
loaded and those whose geometry has not been already gen-
erated (rewritten) by a rewriting thread. This allows us to
compute the percentage of needed objects that have been
downloaded (called downloading quality) and those that
have been rewritten (called rewrite quality). If both values
are equal to

E �G� %, the transmission quality is perfect for the
new frame.

Figure 1 shows how these two percentage values evolve
over time and the size of each of the objects downloaded
during the walkthrough, when using or not prefetching.
When looking at the downloading plot, we can observe
higher values at the beginning of the walkthrough because
of the texture maps used in our test scene. To overcome
this problem, one could use Progressive Textures Maps [6]
that fits well with our system. Nevertheless, downloading
is low thanks to our procedural models and our compressed
binary format. Finally, the downloading and rewriting qual-
ity plots show that prefetching allows to obtain a perfect
transmission quality (

E �G�b\) most of the time.

5.3. Interactivity

Recall that our system relies on the frame rate history to
compute the polygon budget to be used for each new frame
construction. To show that our system adapt to different
kinds of computer to achieve interactivity, we have simu-
lated a walkthrough using a path (called flk) on two dif-
ferent computers. For each computer, we have performed
this walkthrough twice, noting that for the second time all
the downloaded data were kept into memory. Figure 1
shows the frame rate and the polygon budget over time,
measured for a Pentium XEON 1.7Ghz (1GB RAM, Nvidia
Quadro2 Pro) and a Pentium III 800Mhz (512MB RAM,
Nvidia TNT2). For these two tests, we have used a min-
imum target frame rate of 25fps and a frame rate history
based upon the four last frames. On the frame rate plot, we
can see that the target frame rate is always reached with a
very small latency. On the polygon budget plot, we can see
that for a same target frame rate, we obtain a much higher
polygon budget with the more powerful computer. Note that
the lower the target frame rate, the higher the visual quality
(Figure 4).

0

20

40

60

80

100

120

0 100 200 300 400 500
0

10

20

30

40

50

60

Q
ua

lit
y

(P
er

ce
nt

ag
e)

Time (seconds)

Downloads
Downloads quality

Rewrite quality

0

20

40

60

80

100

120

0 100 200 300 400 500
0

10

20

30

40

50

60

D
ow

nl
oa

ds
 (

K
B

yt
es

)

Time (seconds)

Downloads
Downloads quality

Rewrite quality

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500

Fp
s

Time (seconds)

XEON 1.7Ghz Quadro2 Pro
PIII 800Mhz TNT2

0

20

40

60

0 100 200 300 400 500

Po
ly

go
n

nu
m

be
r

/ 1
00

0

Time (seconds)

XEON 1.7Ghz Quadro2 Pro
PIII 800Mhz TNT2

Figure 1. Top left: downloading over time,
downloading quality and rewriting quality us-
ing path fhg , without using prefetching. Bot-
tom right: same, using prefetching. Mid-
dle: Frame rate over time for walkthrough fik
played twice. Bottom: Polygon budget over
time for the same tests.

6. Conclusion

In this paper we have shown that procedural models are
of high interest when the aim is networked walkthrough
of large scenes such as cities. Indeed, their size is very
small, so they can be transmitted quickly over a network.
These procedural models where coded with our modified
version of the L-system language. The geometry of proce-
dural models is generated on the fly at the client side. Re-
mote real time navigation has been made possible thanks to
the visibility preprocessing that have been performed using
the graphics hardware and the use of LODs selected using
our ACHs. Our ACH-based method is original and more
efficient than the commonly used one consisting in compar-
ing with a threshold the distance between the viewer and
the objects within the scene. Moreover, this method allows
on-line selection of visual quality and interactivity.

Figure 2. Bird’s eye view of a city model.

Figure 3. LODs generated for a building.

Figure 4. Walkthrough views. Top: target fps
set to 25fps, obtained 26.2fps, using 56194
polygons. Bottom: target fps set to 40fps,
obtained 41.7fps, using 5703 polygons.

References

[1] J. M. Airey, J. H. Rohlf, and F. P. Brook. Toward image real-
ism with interactive update rates in complex virtual building
environements. In Symposium on interactive 3D graphics,
pages 41–50, 1990.

[2] C. Andujar, C. Saona-Vazquez, I. Navazo, and P. Brunet.
Integrating occlusion culling and levels of details through
hardly-visible sets. Computer Graphics Forum, 19(3), 2000.

[3] D. Cohen-Or, G. Fibish, D. Halperin, and E. Zadichario.
Conservative visibility and strong occlusion for viewspace
partitioning of densely occluded scenes. In Computer
Graphics Forum, pages 17(3):243–253, 1998.

[4] F. Durand, G. Drettakis, J. Thollot, and C. Puech. Conserva-
tive visibility preprocessing using extended projections. Pro-
ceedings of SIGGRAPH 2000, July 2000. Held in New Or-
leans, Louisiana.

[5] T. Funkhouser. Database management for interactive display
of large architectural models. In Proceedings of Graphics
Interface, pages 1–8, May 1996.

[6] J. E. Marvie and K. Bouatouch. Remote rendering of mas-
sively textured 3D scenes through progressive texture maps.
In The 3rd IASTED conference on Visualisation, Imaging
and Image Processing, volume 2, pages ?–?, Sept 2003.

[7] J. E. Marvie, J. Perret, and K. Bouatouch. Remote in-
teractive walkthrough of city models using procedural ge-
ometry. Technical Report PI-1546, IRISA, July 2003.
http://www.irisa.fr/bibli/publi/pi/2003/1546/1546.html.

[8] D. Meneveaux, E. Maisel, and K. Bouatouch. A new par-
titioning method for architectural environments. Journal of
Visualization and Computer Animation, May 1997.

[9] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic
Beauty of Plants. Springer Verlag, 1991.

[10] C. Saona-Vasquez, I. Navazo, and P. Brunet. The visibility
octree. a data structure for 3d navigation. Technical report,
Universitat Politechnica de Catalunya, Spain, 1999.

[11] G. Schaufler, J. Dorsey, X. Decoret, and F. X. Sillion. Con-
servative volumetric visibility with occluder fusion. In
K. Akeley, editor, Siggraph 2000, Computer Graphics Pro-
ceedings, Annual Conference Series, pages 229–238. ACM
Press / ACM SIGGRAPH / Addison Wesley Longman, 2000.

[12] D. Schmalstieg and M. Gervautz. Demand-driven geometry
transmission for distributed virtual environments. Computer
Graphics Forum, 15(3):C421–C432, Sept. 1996.

[13] D. Schmalstieg and M. Gervautz. Modeling and rendering
of outdoor scenes for distributed virtual environments. In
D. Thalmann, editor, ACM Symposium on Virtual Reality
Software and Technology, New York, NY, 1997. ACM Press.

[14] B. Schneider and I. Martin. And adaptive framework for 3d
graphics over networks. Computer and Graphics, 23:867–
874, 1999.

[15] E. Teler and D. Lischinski. Streaming of complex 3D scenes
for remote walkthroughs. In Computer Graphics Forum, vol-
ume 20(3), pages 17–25, 2001.

[16] S. Teller and C. H. Séquin. Visibility preprocessing for in-
teractive walkthroughs. In Computer Graphics (Proceedings
of SIGGRAPH 91), pages 61–69, 1991.

[17] P. Wonka, M. Wimmer, and D. Schmalstieg. Visibility pre-
processing with occluder fusion for urban walkthroughs. In
Eurographics Workshop on Rendering, pages 71–82, June
2000.

