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The oxygen evolution reaction (OER) is the bottleneck to energy-efficient water-based 

electrolysis for production of H2 and other solar fuels. In proton exchange membrane 

water electrolysis (PEMWE), precious metals have generally been necessary for stable 

catalysis of this reaction. Here, we report that delamination of cobalt tungstate enables 

high activity and durability via the stabilization of oxide and water-hydroxide networks 

of the lattice defects in acid. The resulting catalysts achieve lower overpotentials, a 

current density of 1.8 A‧cm–2 at 2 V, and stable operation up to 1 A‧cm–2 in a PEMWE 

system at industrial conditions (80ºC) at 1.77 V; a three-fold improvement in activity; 

stable operation at 1 A‧cm–2 over the course of 600 h.  
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The increasing global energy demand, combined with the urgent need to abate climate change, 

has accelerated the development of sustainable and clean energy technologies alternative to 

fossil fuels. Water electrolysis (WE) to synthesize hydrogen (H2), has emerged as a promising 

strategy to produce clean energy vectors from water and low carbon electricity, offering a path 

to decarbonize global industries such as energy, transport, manufacturing, and agriculture, 

among others (1–3). 

Amongst the different water electrolysis technologies, the proton exchange membrane 

(PEMWE), in  which cathode and anode electrodes are intimately connected through a proton 

conductive membrane, exhibits advantages compared to diaphragm and anion transport-based 

alternatives in terms of productivity (high current density operation), energy efficiency, 

stability, and levelized cost of hydrogen (4–6). 

In this context, the efficient and sustainable large-scale production of H2 through water 

electrolysis still faces important challenges. These are associated to the sluggish kinetics of the 

oxygen evolution reaction (OER) and the reliance on scarce, critical raw materials, such as 

iridium (Ir) – so far, the prevalent anode catalyst material based on its stability, but one of the 

least abundant metals on Earth (7–9). 

Alternative approaches based on ruthenium (Ru) have shown promising activity, but suffer 

from a strong metal dissolution in acid media intrinsic to lattice oxygen evolution reaction 

mechanisms (10–12). There is, thus, an urgent need to develop efficient and stable Ir- and Ru- 

free anodes for PEMWE (13–17). 

Transition metal oxides are interesting catalyst candidates for the OER, as their multiple 

oxidation states could promote activity in a wide pH range (18, 19). First row transition metal 

oxides have shown promising activity in the acidic OER (20–25). Among them, Co-, Ni- and 

Mn-based anodes, have received special attention considering their relative abundance and 
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activity prospects (26, 27). Based on theoretical calculations, the OER activity of Co-based 

oxides should be comparable with that of Ru- and Ir-oxides (28). 

However, such prospective activity is challenged by the limited stability of CoOx in acid due 

to higher Co-ion dissolution (Fig. 1A), even at open circuit potential (29, 30). Several strategies 

have been proposed to stabilize cobalt oxides in highly concentrated proton environments. 

Fundamental progress in this direction has mostly been pursued in low-current H-cells 

controlling the valence and ratio of active species (e.g., Co2+/Co3+) through doping with higher 

valence metals (Cr, Mn) (22, 24, 25, 31); controlling catalyst reconstruction (32); doping with 

hydrophobic carbon (33); and addressing the substrate-catalyst interaction (29). 

Unfortunately, translating these findings into active and stable PEMWE based on more 

abundant alternatives to Ir and Ru remains an open challenge (34). In Mn systems, phase control 

(γ-MnO2) led to stability improvements (12 h at 100 mA‧cm−), which gradually decreases as 

the γ-MnO2 phase becomes permanganate (MnO4
−) (26). Mn-oxybromide species resulted 300 

h stability at 100 mA‧cm− (0.41 mV·h−1 degradation) (23). In Co-based electrodes, La and Mn 

doping has enabled a ⁓0.6 A‧cm− current density at 2 V, and 110 h stability at 210 mA‧cm− 

(~1.65 V at 80°C) (25). These experimental observations showcase the challenges in achieving 

Ir/Ru-free PEMWE anodes that break the activity-stability trade-off through conventional 

doping schemes. 

Recent works have highlighted the potential of controlling the other half of the electrochemical 

interface (i.e., water structure and adsorbed oxide species), to improve the OER. The 

participation of oxygen from adsorbed water in the OER, as opposed to lattice-mediated, would 

decrease metal dissolution and increase stability (25). In general, the interaction of adsorbed 

bridging oxygen (Obri) species with water could open new reaction pathways (35). Theoretical 

studies have shown the critical role of H−bonding network of interfacial water and their impact 

on proton-electron transfer steps (36, 37). Decreasing the degree of H−bonding of interfacial 
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water (n−HB‧H2O), has been predicted to reduce the activation energy needed to dissociate 

water (38). The role of interfacial water and hydrogen bonding network, already studied for the 

hydrogen evolution reaction (39), is largely overlooked for acidic OER. 

This prompted us to jointly address the water and oxide structure, a so far underexplored path, 

seeking to improve activity and stability in non-Ir PEMWE anodes. 

Here, we demonstrate control over the OER reaction by modulating the interfacial water 

structure and intermediate species in a delaminated CoW-oxide lattice (Fig. 1B-D), resulting 

in active and stable PEMWE. We achieve this by implementing a delamination strategy 

whereby high-valence sacrificial elements such as W, when incorporated in a CoWO4 (CWO) 

crystal structure, could be selectively eliminated in a subsequent water/hydroxide-WO4
2− anion 

exchange process (Fig. 1C). This results in structural delamination and in the subsequent 

trapping and stabilization of water and hydroxide species in a Co-oxide defect network. Such 

water-hydroxide shielding renders the Co ion dissolution thermodynamically unfavorable for 

the delaminated CWO in contrast to Co3O4 (Fig. 1D and Table S1) showing a drastic decrease 

in Co ion dissolution in acid (Fig. S1). 

The delaminated (CWO−del) catalysts achieve remarkable performance in a PEMWE, with a 

1.8 A‧cm− current density at 2 V – up to a three-fold improvement compared the previous best 

performance for non-Ir/Ru (25, 40) – and stable operation of 608 h at the current density of 

1 A‧cm−2 (Fig. 1E, F).  
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Anion-exchange delamination controls water structure in acid  

To incorporate and stabilize OH−/H2O into the lattice of MM´xOy (M: Mn, Co, Ni, Cu), we 

devised an anion exchange strategy whereby lattice oxyanions (e.g., M'xOy
z−, M': S, Mo, W), 

would be delaminated and exchanged by OH−/H2O species as follows: 

𝑀𝑀′𝑥𝑂𝑦 + 𝑚 𝐻2𝑂 + 𝑛 𝑂𝐻−  → 𝑀(M′𝑥𝑂𝑦)
1−𝑞

(𝐻2𝑂)𝑚(𝑂𝐻)𝑛 + 𝑞 𝑀′𝑥𝑂𝑦
𝑧− (1) 

The design principles require that such oxyanions have adequate binding energies with OH− 

and water species, conditions that promote their sacrificial leaching (41), and that the host 

lattice could accommodate OH−/H2O species to saturate the resulting oxyanion vacancies 

(suppl. Section 4, Table S4-S6). Our initial theoretical calculations predicted that WO4
− ions, 

compared to other anions such as molybdate or sulfate, provide more favorable defect energy 

to meet these criteria: The energy associated with defect formation upon removing WO4
2− from 

the CoWO4 is the lowest energy among SO4
2− and MoO4

2− removal from CoSO4 and CoMoO4, 

respectively (suppl. Section 4, Fig. S2). 

We thus synthesized CWO using a hydrothermal reaction (suppl. Section 1, Fig. S3). The sharp 

peaks in X-ray diffraction (XRD) patterns from different batches indicate a highly crystalline 

structure matching a monoclinic CoWO4 phase, and the high reproducibility of the synthesis 

procedure (Fig. S4, S5).  

To perform the WO4
2− → OH−/H2O anion exchange, we explored a base treatment dispersing 

the resulting CWO material in an 0.1 M KOH aqueous solution for different time periods 

(suppl. Section 3, Fig. S6, S7). We studied the effects of cation (Li+ to Cs+), solvent (H2O, 

DMSO, NMP), and pH (both experimental and theoretical) in the process (suppl. Section 3, 

Fig. S8-S13). This study revealed the critical role of K+ to balance the delamination and the 

need for H2O to enable the anion exchange. CWO−del samples retained structural stability after 

72 h immersion in 0.5 M H2SO4, as opposed to Co controls (Fig. S14). 
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Powder XRD patterns show a regular shift in the most intense 1̅11 peak (Table S7), indicating 

the generation of defects/strain in the crystal structure while the bulk monoclinic crystal phase 

remains intact. These are consistent with optoelectronic, magnetic and x-ray absorption 

spectroscopy studies, showing the increased formation of vacancies and defects (Fig. S15-S19). 

Transmission electron micrographs (TEM) and scanning transmission electron micrographs 

(STEM) show a shape transition from a cube-like CWO (Fig. S20, S21), to a delaminated, 

flake-like shape, after KOH treatment (Fig. S22, S23). The size of the particles after 

delamination remains comparable to CWO (Fig. S24).  

High resolution-TEM (HRTEM) images reveal the missing regular (010) crystal plane in 

CWO–del–48 (Fig. S22, S25), indicative of defects arising from WO4
2– leaching. High annular 

angle dark field STEM images (HAADF-STEM), and respective energy-dispersive X-ray 

spectroscopy (EDS) mapping of Co and W, show the uniform distribution of Co and W 

throughout the pristine and delaminated nanocrystals (Fig. S26, S27). The electron energy loss 

spectra (EELS) indicate a reduction in the Co/W atomic ratio after delamination (Fig. S28). 

Additionally, atomic force microscopy (AFM) reveals missing planes and corresponding 

defects in CWO–del–48 (Fig. S29-31), in agreement with HRTEM and STEM results.  

To assess the atomic arrangement of Co and W sites, we performed integrated differential phase 

contrast (iDPC) STEM images (Fig. S32). CWO samples exhibit a regular atomic arrangement 

of Co, W and O atoms consistent to a monoclinic phase. CWO–del–48, on the other hand, 

reveals a substantial amount of vacancies due to WO4
2– leaching (Fig. S33). 

To get more insights on the dynamics of the oxyanion exchange, we performed ex situ Raman 

measurements at different delamination times. These reveal a bathochromic shift (⁓5–10 cm−1) 

for both Co–O (⁓690 cm−1) and W–O (⁓886 cm−1) peaks with increasing delamination time 

(Fig. 2A). The intensity ratio of Co–O to W–O peaks increases up to 48 h, and then saturates 

(Fig. 2A, inset; Fig. S34 and Table S8). This suggests a kinetic limitation of W-leaching from 
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the CWO-matrix. Inductively-coupled plasma optical emission spectroscopy (ICP-OES) 

measurements confirm increasing W leaching over time, but negligible change in Co 

concentration (Fig. S35 and Table S9). The optimal Co/W ratio and OH−/H2O trapping 

considering initial electrochemical studies is achieved for 48 h-delaminated samples (details in 

later sections). DFT simulations show that (010) is the most thermodynamically favorable 

crystal facet for delamination process which is exothermic only at high pH (Fig. S36-S38 and 

Table S10, S11, Movie S1). 

Water trapping and hydroxide bridging 

To assess the presence of water and − ions in the delaminated samples, we carried out a 

series of characterizations. Thermogravimetric analysis coupled with mass spectroscopy 

(TGA-MS) revealed a ⁓16% weight loss for CWO−del−48 over a 166°C to 396°C range due 

to water and/ or OH– ions, which is negligible for CWO and Co3O4 (Fig. 2B and S39). Four 

distinct peaks in this range suggest the presence of different water coordination environments 

(42). 

To assess these differently coordinated water populations, we initially performed Fourier-

transform infrared (FTIR) measurements. These reveal HO–H stretching and H–O–H bending 

vibrational modes with increasing intensity upon delamination, suggesting a higher density of 

trapped and bridged water and hydroxide groups within the crystals (Fig. S40). Further, the 

narrow single H−OH stretching peak present in the ex situ Raman spectrum of CWO−del−48, 

indicates the presence of highly H-bonded water (Fig. 2B inset and Fig. S41) (43).  

Additionally, we replaced H2O with D2O during the delamination process and subjected the 

samples to mild annealing. This resulted in distinct spectral features corresponding to a D−OD 

stretching mode, confirming the trapping of D2O/H2O in the delaminated materials (Fig. S42) 

(44). 

ACCEPTED MANUSCRIPT / CLEAN COPY



 8 

We studied the resulting oxygen modes using x-ray photo electron spectroscopy (XPS) 

(Fig. 2C). The O 1s peak of non-delaminated samples deconvolutes into two peaks at 528.55 

eV and 530.33 eV, which correspond to metal oxygen (OM) and lattice oxygen (OL) (25). 

CWO–del–48 spectra, on the other hand, require deconvolution into two additional peaks 

corresponding to hydroxide (OOH, at 531.6 eV) and water species (OH2O, at 533.1 eV) (35). The 

OM and OL peaks blue shift in this case, which is consistent with the leaching of W in the form 

of WO4
2− and associated atomic-vacancies (OM) (45); also supported by UV-Vis, EPR and 

XANES spectra (Fig. S15-S19). The amplitude of OOH and OH2O signals further suggests the 

presence of hydroxide and bonded water in the delaminated compound. 

To gain insights on the role of delamination and water-hydroxide trapping in rendering catalyst 

stability, we carried out DFT studies considering water trapping and hydroxide bridging from 

WO4
2− sites transformation (Movie S1, Fig. S12). As the size of water trapped structures can 

also vary, various combinations of structures with different numbers of water molecules and 

OH− were calculated. Among the different combinations of CWO-water-hydroxide, Co(WO4)1-

x(H2O)2(OH)2 is the thermodynamically most favorable delaminated species, with a –4.5 eV of 

Gibbs free energy change for the transformation (Fig. 2D, Table S12, S14). The calculated 

Pourbaix diagram (Fig. 2E) confirm the stability of this phase over other structures at pH 0. 

The blue shift observed in XANES and distinct EXAFS spectra imply a higher oxidation state 

of Co and a modified coordination environment in CWO–del–48 compared to CWO (Fig. S18, 

S19). The corresponding Co–O and Co−Co bond distance of CWO–del–48 structure is shorter 

than that in CWO (Fourier-transformed EXAFS, Fig. S19 and crystal structure, Fig. S43), 

which could facilitate higher valence Co-species, such as CoOOH, Co-peroxide, in OER (20, 

31, 46). 

In situ Raman spectroscopy in 0.5 M H2SO4 electrolyte reveals three oxide peaks at 1.7 V (vs. 

RHE) (suppl. Section 6, Table S2, S3), some of which are not visible in ex situ Raman (Fig. 
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2F). These correspond to layered ꞵ–CoOOH (⁓502 cm–1), –CoOOH (⁓571 cm–1), and higher 

oxidation CoIV−O (⁓840 cm–1), and Co–peroxide (⁓1080 cm–1) sites (46–48), in agreement with 

EXAFS, XPS and DFT findings (Fig. 2C, S19, and S44). 

Structural influence on the OER mechanism  

To gain more insights into the peroxide species and the nature of the active sites ensuing from 

OH−/H2O trapping, we performed additional operando Raman spectroscopy studies before and 

after OER onset potential (Fig. 3A, Fig. S43). Both −CoOOH and Co-peroxide peak 

intensities steadily increase from open circuit potential (OCP) to 1.9 V vs. RHE, and vanish as 

the potential is cycled back to OCP from 1.9 V vs. RHE (Fig. 3A). This suggests that both 

−CoOOH and Co-peroxide are active sites for the OER.  

To investigate the role of the surface-oxides and water-hydroxide trapping in the OER activity, 

we carried out a suite of pH-dependent electrochemical studies and operando interfacial water 

structure evaluation using Raman. 

Delaminated samples display a very strong pH-dependence during the OER, with a reaction 

order (𝜌) of –0.84, nearly 2.5 times than that for CWO (Fig. 3B). This can be explained by the 

presence of trapped water and a higher OH− coverage, in agreement with both XPS (Fig. 2D) 

and FTIR studies (Fig. S40). The calculated cross-sectional crystal structure (Fig. S43) and 

XPS analysis (Fig. S45), suggest a CoOOH-rich arrangement where water is bonded with Co 

atoms through the oxygen. This is consistent with Raman findings and methanol oxidation 

reaction (MOR) experiments, showing a dominance of MOR over water dissociation in CWO–

del–48 across different pH values, in line with the higher amount of surface oxides (Fig. 3C) 

(49). 

Next, we studied the role of interfacial H−OH using operando Raman (Fig. S46, S47), 

deconvoluting three different water structures depending on the number of H−bonds: 4-

H−bonded water (~3200 cm−), 3-H−bonded water (~3400 cm−) and 0-H−bonded water 
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(~3600 cm−). The activation energy required for water dissociation is predicted to decrease 

with decreasing degree of H-bonding (39). As the potential increases from 0.4 V to 1.9 V vs. 

RHE, the relative presence of 4−HB‧H2O in CWO−del−48 decreases from 35% to 5%, whereas 

0−HB‧H2O increases from 4% to 68% (Fig. 3D). In contrast, these remain unchanged for CWO 

throughout the applied potential window. This observation suggests the involvement of 

interfacial water in the RDS for CWO−del−48 catalyst. Moreover, the significant change in the 

Stark slope explains the higher sensitivity of interfacial water structure after OER onset 

potential (Fig. S48).  

Based on these experimental observations, we performed DFT calculations to assess the energy 

landscape of the OER mechanisms using the computational hydrogen electrode (CHE) 

formalism (Fig. 3E). We denote the paths where the confined water fragments can also 

participate as confined paths. The oxide path mechanism (OPM) has a common RDS (*OH−O* 

to *O−O*) for both CWO and for the confined water fragments in CWO−del−48 without 

involving interfacial water. The RDS for CWO−del−48 is 0.09 eV smaller for the OPM 

pathway than for the adsorbate evolution mechanism (AEM), making it thermodynamically 

more plausible. In the AEM pathway (suppl. Section 4), the RDS is however different: OH*-

to-O* for CWO vs. the confined system cAEM, O*-to-OOH* for CWO–del–48 (Suppl. Table 

S14-S17). The higher pH dependence and change of the interfacial water structure with 

increasing applied potential for CWO–del–48, suggests that CWO–del–48 benefits from the 

kinetically favorable AEM mechanism (Fig. 3F, S17). 

To gain insights into the improved acid resistance under electrolytic conditions, we revisited 

the surface Pourbaix diagram of CWO−del (Fig. 2E). This diagram is divided into five distinct 

regions: I: CWO(H2O)2(OH)2, II: CWO(H2O)3OOH*, III: CWO(H2O)3OH*O*, IV: 

CWO(H2O)3*OO*, and V: CWO(H2O)3O* (details in suppl. Fig. S49). In conditions of low 

pH, the H+ ions from the acidic environment interact with H2O−OH cluster in 
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CWO(H2O)2(OH)2 (region I), which transforms into CWO(H2O)3OH*O* (region III). When 

the potential lies between 1.2 V and 1.37 V vs. RHE, interfacial water molecules (region I) 

interact with another surface oxygen to form a hydroxyl group: O* + H₂O → OOH* + H+ + e−, 

the cation on the surface undergoes oxidation and is stabilized by OOH*. Simultaneously, the 

oxygen on the surface binds with H* to create a stable structure of CWO(H2O)3*OO* (region 

IV), and the two O* species combine directly to form O₂, leading to the release of oxygen 

without the formation of *OOH intermediate. As the potential rises to ≥ 1.46 V (vs. RHE), the 

surface is shielded by O* leading to the formation of a stable CWO(H2O)3O* structure (region 

V). 

Electrochemical performance 

We compared the polarization curves of CWO−del catalysts with commercial Co3O4 and IrO2 

(Fig. 4A) (suppl. Section 6). A minimum 288 mV overpotential at 10 mA‧cm− current density 

was obtained for CWO−del−48 (no iR correction), as opposed to 392 mV and 259 mV for 

commercial Co3O4 and IrO2 respectively (see Fig. S50-52 and Table S18 for details on particle 

size, loading, and double layer capacitance). Statistical analysis (Fig. 4B) and extended 

measurements confirm the reproducibility of these trends (Fig. S53-S54). The Faradaic 

efficiency for O2 generation was 96.6 ± 5.2% at 10 mA‧cm− current density (Fig. S55-S60). 

Tafel analysis reveals a slope 85 mV‧dec−1 for CWO−del−48, vs. 63 mV‧dec−1 for IrO2 and 227 

mV‧dec−1 for CWO. This showcases the improved OER kinetics of CWO−del−48 over 

reference samples, approaching that of IrO2 (Fig. S61).  

CWO–del–48 exhibits the highest stability (>175 h) over commercial Co3O4 and CWO (Fig. 

4C) in H-cell at 10 mA‧cm− Structural, compositional, and electrochemical post-analysis, 

suggest that the crystallinity, microstructure and size, remain comparable after electrolysis 

(Fig. S24, S62-67, Table S19). 
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We then assessed Co leaching and the potential role of dissolved species. Inductively coupled 

plasma-mass spectroscopy (ICP-MS) reveals that Co leaching remains unchanged after 50 h of 

OER in H-cell at 10 mA‧cm−, with a ⁓2.76 ppm concentration of dissolved Co ions in anolyte 

after 100 h of chronopotentiometry (Fig. S68). A fraction of Co ions (0.3 ppm) leaches out 

during OCP, pre-OER stability test. The concentration of dissolved Co ions in the catholyte 

remained negligible (< 30 ppb, Fig. S69), and no traces were found in the membrane (Fig. S70, 

Table S20) or graphite rod (Fig. S71). The resulting stability number (S-number) (50, 51) after 

100 h of stability test at 10 mA‧cm− is 14771 ± 768 (Fig. S72). Additional experiments 

confirm the electrochemical stability at different mass loadings (0.075 to 2 mg‧cm−) (Fig. S73, 

S74). 

Encouraged by this, we implemented the CWO−del−48 catalyst in a PEMWE system (Fig. 4D, 

S75) and studied the cell performance under industrial operational settings, including 80℃ 

temperature and high current density of 0.2 – 1 A‧cm−2 (see methods and suppl. section 6 for 

details). The polarization curve of CWO−del−48 based cells reaches a nominal current density 

of 1.8 A‧cm−2 at 2 V (Fig. 4E); an improvement in rate over the previous-best non-Ir/Ru anodes 

of up to 3 for a comparable membrane (25) and of 1.8 for advanced, thinner membranes (40).  

During electrolysis at a fixed current density of 0.2 A‧cm−, the voltage range (1.53 − 1.56 V) 

is ⁓130 mV lower than prior-best Co-based PEMWE catalysis (Fig. 4F) and matches that of Ir 

black (1.50 V) at ¼ the loading. This showcases the potential of CWO−del−48 catalysts 

compared to the well-established iridium oxide, along with its lower cost, and potentially 

higher availability of Co and W. This performance (⁓1.52 V at 0.2 A‧cm−) is retained for at 

least over 278 h continuous operation (limited by pump failure). 

ICP-OES analysis of the anolyte reveals a Co concentration of ⁓1.7 ppm after 20 h of 

electrolysis (Fig. S76). We additionally performed single pass electrolyte flow experiments to 

study the potential role of ion accumulation in the electrolyte reservoir. The cell voltage 
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remains stable (within 1.53-1.54 V) for at least 32 h at 0.2 A‧cm− at similar PEMWE 

conditions but continuous, fresh electrolyte flushing (Fig. S77). 

We further challenged the stability of the CWO−del−48 catalyst at 1 A‧cm−2 operation (Fig. 

4F) – a so far elusive benchmark for Ir/Ru-free catalysts. Electrodes show comparable 

composition after an initial 20 h study (Fig. S78-S81, Table S21). The PEMWE cell exhibited 

stable performance, with a stabilized cell voltage of ⁓1.77 V during a 608 h of durability study 

(see table S22 for prior benchmarks). The observed slight voltage fluctuations might arise due 

to a combination of temperature gradients during electrolyte replenishment, modifying 

electrolysis rates and gas dissolution, as well as catalyst dissolution (ion and particulate 

detachment) events. 

The calculated S-number at these conditions is ⁓31% of that achieved at 10 mA‧cm-2 in the H-

cell (supplementary text). This showcases the impact of high rate and temperature operation 

stress, which accelerate catalyst degradation. 

Conclusion and future scope 

The reported strategy still faces several challenges and opportunities. CWO−del samples 

exhibit high polarization voltage under high current density, which should be improved by 

further optimization of the integration of key components, to enhance electrolysis performance 

and subsequently improve stability at higher currents that approach state-of-the-art Ir-systems.  

In the future, achieving industrial performance benchmarks, such as energy-efficient and stable 

operation in the 2-3 A‧cm−2 range (a milestone of IrO2 in PEMWE), will require tailored 

engineering of catalysts electrodes and membranes. In that sense, obtaining further insights on 

the properties of these interfaces, and on the role of water trapping and hydroxide bridging, in 

the OER at increasing current densities, will be crucial. Operando spectroscopies and 

modelling at these settings are fundamental enabling tools that can help in that direction. 

Quantifying the catalyst dissolution dynamics through inline ICP-MS studies, under relevant 
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PEMWE target conditions, is crucial to further understand the local dissolution-redeposition 

equilibria. Combined with morphology and elemental analysis, this could help elucidate the 

dissolution pathways through accelerated stress tests (52). 

Progressing towards fully earth-abundant metal PEMWE catalysts, including the cathodic side, 

and recyclable systems, demands further innovation spanning materials, electrode structures, 

membranes-electrode interface, and process control. While this study focuses on abundant Co-

based OER catalysts, further advances in alternative materials (e.g., Mn, Ni), which consider 

geopolitical barriers and environmental aspects related to metal extraction and purification, 

remain urgently needed. 
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Fig. 1. Water-hydroxide trapping enables active and stable Proton Exchange Membrane 

Water Electrolysis. (A) Schematic illustration of the dissolution of Co ions in Co3O4 via Co–

O bond cleaving, followed by their hydration in acidic medium. (B) A depiction of delaminated 

cobalt catalysts (CWO−del−48) illustrating the effect of water trapping and hydroxide bridging 

within the crystal lattice, enabling stability in acid. (C) The process and the crystallographic 

representation of CWO delamination into CWO–del–48 via base treatment. (D) CWO−del−48 

catalyst shows unfavorable Co ions dissolution compared to Co3O4. The calculated equilibrium 

constants of dissolution reaction for CWO−del−48, Keq << 1, suggesting non-spontaneity of 

the process. The structure of dissolved Co2+ and Co3+ ions are shown in the inset. This 

equilibrium enables significant advances in performance (E) cell voltage vs. current density, 

and (F) durability, compared to state-of-the-art Ir and Ru-free anodes in PEMWE.  
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Fig. 2. Water trapping and hydroxide bridging. (A) Ex situ Raman spectra of as-synthesized 

CWO and CWO−del (24 h and 48 h) showing a regular red shift associated with the W-O 

vibrational peaks. Inset: intensity ratio of the Co–O and W–O peaks with delamination time. 

(B) Thermogravimetric analysis coupled with mass spectrometry (TGA-MS) shows the 

presence of H2O and hydroxide in CWO–del–48. Inset: ex situ Raman spectra showing 

presence of different types of water. The sharp H−OH stretching peak of CWO–del–48 

indicates presence of strongly H-bonded water. (C) O 1s XPS spectra of CWO and CWO–del–

48. O 1s peak in CWO deconvolutes into metal-oxygen (OM) and lattice-oxygen (OL). O 1s 

peak in CWO–del–48 deconvolutes into four peaks: OM, OL, hydroxide (OOH) and water (OH2O). 

(D) Visual representation of the free energy changes involved in the delamination process of 

CWO to CWO(H2O)m(OH)n under alkaline solution, as a result of water trapping and hydroxide 

bridging with the removal of tungstate (see suppl. Movie 1). DFT simulations predict that 

CWO(H2O)2(OH)2 is the thermodynamically the most favorable composition for CWO–del–

48. (E) Potential and pH dependence of the intermediates in OER for the CWO–del–48. (G) In 

situ Raman spectra of CWO and CWO–del–48 catalysts at 1.7 V vs. RHE suggests the 

involvement of Co (III), Co (IV), and Co-peroxide, as the active-OER species.  
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Fig. 3. OER reaction mechanism: operando and DFT studies. (A) Operando Raman 

spectroscopy in CWO–del–48 (on carbon paper, from OCP to 1.9 V vs. RHE in 0.5 M H2SO4), 

reveals a correlation between OER activity and the intensity of −CoOOH and Co−O−O−Co 

peaks. pH-dependent studies (1.6 V vs. RHE as a function of pH) during (B) OER and (C) 

Methanol Oxidation Reaction (MOR) elucidate the role of surface-trapped water fragments. 

Error bars correspond to the standard deviation and average of three independent 

measurements. (D) Percentage of different type of interfacial water structure with applied 

potential for CWO (left) and CWO–del–48 (right). In CWO-del, the % of 0-HB·H2O water 

increases with applied potential while 4-HB·H2O structure decreases. These remain almost 

unchanged for CWO in the applied potential window. (E) Free energy profiles of CWO and 

CWO–del–48 in OER reaction pathways. The involved species and/or intermediates are shown 

in the corresponding steps. The dynamic involvement of H2O and OH− enables favorable 

cAEM and cOPM reaction pathways in CWO–del–48. (F) OER catalytic cycle schematically 

showing the cAEM and cOPM pathways. The first step is the chemical conversion of 

*Co(H2O)2(OH)2 to *Co(H2O)3O. Both the cAEM and cOPM mechanisms share *Co(H2O)3–

OH as a common intermediate.  
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Fig. 4. Electrochemical performance and stable PEMWE at the ampere-level. (A) Linear-

sweep voltammetry of Co-based catalysts at 5 mV‧s–1 in 0.5 M H2SO4 electrolyte along with 

commercial IrO2 and Co3O4 (no iR-correction) (B) Overpotential statistics at 10 mA‧cm–2 

current density. (C) Chronopotentiometry stability tests in 0.5 M H2SO4 electrolyte at constant 

10 mA‧cm–2 current density in H-cell set up using a Nafion 117 membrane. (D) Illustration of 

PEMWE along with catalyst coated membrane (CCM), cathode and anode GDL. (E) The 

PEMWE based polarization curves of CWO–del–48, CWO, commercial Co3O4 and IrO2 

(without iR-correction), used as anodic material separately. The PEMWE based polarization 

curve is compared with the best reported, La, Mn co-doped porous cobalt spinel fibers catalyst 

(25). Commercial 60 wt.% Pt/C was used as cathodic material and Nafion 117 is the membrane. 

(F) The chronopotentiometry stability test of CWO−del−48 at 0.2 A‧cm–2 and at 1.0 A‧cm–2 of 

current density in PEMWE at 80˚C temperature for 278 h and 608 h, respectively, after 

overnight conditioning at 1.7 V (see suppl. methods for details). The milli-Q water filling 

process during operation leads to small voltage transients due to temperature gradients and 

interface re-equilibration. 
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