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Partial Volume Correction on 177Lu-SPECT
sinogram with Deep Learning trained on synthetic

data
T. Kaprelian1, A. Etxebeste1, D. Sarrut1

Abstract—This study introduces PVCNet, a deep learning-
based method for Partial Volume Correction for 177Lu-SPECT
imaging, aimed at improving quantitative accuracy and image
resolution prior to reconstruction. The method utilizes a large
synthetic dataset derived from real patient images. PVCNet
employs a dual neural network architecture, processing sino-
grams and projected attenuation maps as inputs. Its perfor-
mance is evaluated using both real experimental phantom data
and Monte Carlo simulations, and it is benchmarked against
conventional Resolution Modeling (RM) and Iterative Yang (iY)
methods, demonstrating promising results. On phantom data,
PVCNet demonstrated superior performances (0.80/0.93/1.00 for
Recovery Coefficients on 22/28/37 mm diameter spheres) than
RM (0.52/0.66/0.77) but slightly lower than iY (0.96/0.99/1.06)
which benefits from exact object segmentation, not required
by PVCNet. On patient simulation, PVCNet showed the best
results both in terms of Normalized Root Mean Squared
Error (2.786/2.635/2.345 for RM/iY/PVCNet respectively) and
mean Recovery Coefficients in background (1.05/0.95/1.03 for
RM/iY/PVCNet respectively), kidneys (0.93/1.16/0.97 respec-
tively) and lesions (0.66/1.14/0.91 respectively).

Index Terms—Partial Volume Correction, Deep Learning,
SPECT Imaging, Image Reconstruction

I. INTRODUCTION

QUantitative Single Photon Emission Computed Tomogra-
phy (SPECT) is a key tool during 177Lu-PSMA therapy

for absorbed dose computation in organs and tumours [1].
It is however still limited by the poor spatial resolution of
gamma cameras whose Point Spread Functions (PSF) have
a Full Width at Half Maximum (FWHM) usually comprised
between 10 and 15 mm [2]. This large PSF leads to blurred
reconstructed images and under-(or over) estimated activity
concentrations, especially in objects of size below twice the
system’s FWHM. These are known as Partial Volume Effects
(PVEs) and are primarily due to the gamma camera’s collima-
tor distance-dependant geometric response [3]. Several Partial
Volume Correction (PVC) algorithms have been proposed to
mitigate PVEs, including PSF modeling [4] during Ordered
Subset Expectation Maximization (OSEM) reconstruction,
known as Resolution Modeling (RM). RM allows to reduce
PVEs but not sufficiently and gives rise to Gibbs artefacts
[3]. Another class of methods, such as the Iterative Yang (iY)
[3] PVC, relies on a CT-based segmentation of Volumes of
Interest (VOIs) to deconvolve each region. These methods
are however difficult to apply in clinical settings since region
segmentation can be time-consuming and difficult, especially
for small lesions. Moreover, these anatomy-based methods
assume uniform activity in each VOI and position-invariant
PSF.
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We propose a segmentation-free PVC method on 177Lu-
SPECT projections by training a Deep Learning model (PVC-
Net) on a large simulated dataset. Our method is evaluated on
simulated and real SPECT acquisitions.

II. MATERIAL AND METHODS

A. Training dataset

Fifteen automatically segmented patient CT images
(0.97×1.25×0.97 mm3 voxel size) were used to create 5,000
voxelized activity maps with background activity in the whole
body and in regions with 177Lu-PSMA uptake (liver, kidneys,
spleen, gallbladder, stomach, pancreas, small bowel, colon,
duodenum and urinary bladder). Moreover, several synthetic
lesions were added to the activity maps, with random shapes,
locations and activity ratios. Each region was multiplied by a
gradient function like in [5] to model heterogeneity. These
5,000 activity maps were forward-projected with the RTK
Software [6], once with PSF modeling to obtain PPVE and
once without to obtain PnoPVE. All sinograms contained
120 linearly spaced angles (between 0° and 360°), with a
280 mm detector-to-isocenter distance and 128×128 pixels of
4.7952×4.7952 mm2. PSF parameters were obtained by Monte
Carlo (MC) simulations with Gate [7] toolkit of the Siemens
Symbia Intevo SPECT system, with a parallel hole Medium
Energy (ME) collimator. We obtained FWHM(d) = 2.75 +
0.08d mm, with d the source-to-collimator distance (mm).
Poisson noise was applied to PPVE to obtain PPVE,noisy.
The linear attenuation map was also forward-projected (Patt).
Finally, PPVE,noisy was used to reconstruct Irec10 with 10
iterations of OSEM (8 subsets) with RTK and then forward-
projected (without PSF modeling) to obtain Prec,fp.

B. Networks and training

The PVCNet framework contained two successive convo-
lutional neural networks h1 and h2 trained with the loss L
defined such that:


P̂PVE = h1(PPVE,noisy, Prec,fp, Patt)

P̂noPVE = h2(P̂PVE, Prec,fp, Patt)

L = ||P̂PVE − PPVE||1 + ||P̂noPVE − PnoPVE||1
(1)

Both h1 and h2 were 3D-Unets with three input chan-
nels corresponding to the three input sinograms, three en-
coding/decoding layers with skip connections, two consecu-
tive Conv-InstNorm-LeakyRelu sequences in each layer and
residual units. The number of channel sequences was 3-16-
32-64-128-128-64-32-16-1. All convolution kernel sizes were
3× 3× 3, totalling 4 M trainable parameters.
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We used the Adam optimizer with an initial learning rate of
2×10−4, halved every 20 epochs. All sinograms were divided
by the maximal value contained in Prec,fp (except Patt, divided
by its maximum). To promote consistency between corrected
sinograms’ first and last angles, we padded the input/target
sinograms from (120,128,128) shape into (128,128,128) with
circular padding on the first dimension.

C. Experiments
The first experiment was a NEMA IEC phantom acquisition

with the Siemens-Symbia-Intevo SPECT/CT, containing 6
spheres of 10, 13, 17, 22, 28 and 37 mm diameter filled with
1110 kBq/mL of 177Lu and a target to background (TBR) ratio
of 13.3.

The second experiment was a MC simulation of a patient
acquisition with the same SPECT system and 177Lu activity in
the background and a TBR of 40 in the kidneys, 15 in the liver,
and 30, 50, 83 in three manually placed lesions. Computation
time was reduced by using an Angular Response Function
(ARF) method modelled by a pre-trained neural network [8]
which allowed us to simulate only 300 MBq of activity with
the same noise level as with ≈ 3 GBq.

For both experiments, 120 angular projections were ob-
tained for 15 seconds each, with a ME collimator, a 20%
primary window centered around 208 keV and two surround-
ing 10% scatter windows. The scatter was corrected using
the triple energy window method. Attenuation was corrected
using CT-derived linear attenuation coefficients during recon-
struction by the OSEM algorithm (8 subsets). Raw sino-
grams were first scatter corrected (PSC) and then used for
reconstruction. The reconstructed image, Irec10, was forward-
projected to obtain Prec,fp. PVCnet was then applied with
(PSC, Prec,fp, Patt) as input. The corrected sinograms P̂noPVE

were used to reconstruct the final image, IPVCNet, with 10
iterations of OSEM.

Our method was compared with the image reconstructed
from PSC with RM during 20 reconstruction iterations (IRM).
We used the PETPVC Software [9] to apply iY to IRM, thanks
to a CT-based organ and lesion segmentation and the post-
reconstruction-estimated 3-dim PSF. We compared the Re-
covery Coefficients (RC) i.e. the ratio between estimated and
ground-truth activity and the Normalize Root Mean Squared
Error (NRMSE) of the different methods.

III. RESULTS

RCs on the IEC acquisition can be found in Table I. The
proposed method yields better results in terms of activity
estimation than RM but iY outperforms slightly our method.
However, iY needs a segmentation.

Table II shows RCs obtained on the patient MC simulation.
PVCNet not only demonstrates superior activity estimation
than RM but also than iY on almost all regions, including
lesions. The mean RC error is 55% lower with PVCNet
than with iY. A reduced PVEs and a good retrieval of organ
and lesion contours can be seen for the proposed method
in Figure 1 (d). NRMSE value with PVCNet was 15.7 %
lower than with RM and 10.8% lower than with iY (2.786
for RM, 2.635 for iY and 2.345 for PVCNet).

TABLE I: Recovery Coefficients for NEMA IEC acquisition
for RM, iY and PVCNet correction methods

Sphere Diameter
PVC 10 mm 13 mm 17 mm 22 mm 28 mm 37 mm
RM 0.24 0.29 0.36 0.52 0.66 0.77
iY 1.22 0.80 0.73 0.96 0.99 1.06

PVCNet 0.28 0.35 0.55 0.80 0.93 1.00

TABLE II: Recovery Coefficients of the patient MC simulation
for RM, iY and PVCNet correction methods

PVC BG left kidney right kidney lesion 1 lesion 2 lesion 3
RM 1.05 0.94 0.92 0.70 0.75 0.52
iY 0.95 1.16 1.16 1.15 1.25 1.01

PVCNet 1.03 0.96 0.98 0.89 0.88 0.97

(a) (b) (c) (d)

Fig. 1: Patient MC simulation. (a) Ground truth activity map
(b) RM (c) iY (d) PVCNet.

IV. CONCLUSION

In this study, we introduced a novel Deep Learning approach
for addressing PVC in 177Lu-SPECT projections, prior to re-
construction. Our method, developed on an extensive synthetic
dataset, shows promising results in accurate activity estima-
tion, better than the conventional RM method and comparable
to the iY method but without requiring any segmentation.

The key elements of the proposed sinogram-based PVC
approach are the comprehensive size of the training set,
the use of Prec,fp as input to leverage its noise-reduced
and partially corrected characteristics, and the application of
circular padding and normalization techniques. These elements
collectively enhance the model’s ability to generalize and func-
tion reliably across different testing scenarios, demonstrating
the potential of deep learning in enhancing SPECT image
quantification.
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