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Abstract 24 

The application of rare earth elements (REE) and neodymium (Nd) isotopes to authigenic Fe-25 

(oxyhydr)oxide phases leached from marine sediments can be used for reconstructing past ocean 26 

circulation and chemical weathering patterns on nearby continental landmasses. To explore the 27 

behaviour of REE during chemical weathering in glacial environments, we analyzed the authigenic 28 

fraction of glacimarine sediments from the continental shelf off northern Svalbard (Arctic Ocean), 29 

where the evolution of ice sheet dynamics since the last deglaciation is well constrained. Our results 30 

show that leached authigenic fractions in Svalbard sediments exhibit shale-normalized REE patterns 31 

characterized by anomalously high mid-REE enrichment relative to both light- and heavy-REE, as 32 

expressed by concavity index values (CI > 2.5) that significantly depart from typical REE signatures 33 

for leached fractions in marine and river sediments worldwide. Using a compilation of literature data, 34 

we provide compelling evidence that the occurrence of pronounced mid-REE enrichment in authigenic 35 

fractions of Svalbard marine sediments links to terrestrial oxidation of pyrite following glacial 36 

weathering. While future investigation will be required to further understand the detailed mechanism 37 

accounting for the observed REE decoupling and its link to pyrite oxidation, we propose that 38 

preferential dissolution of MREE-enriched rock-bearing minerals such as apatite following glacial 39 

erosion, sulfide weathering and subsequent release of sulfuric acid could release a distinctive REE 40 

signature in glacial surface environments. Our findings suggest that the use of authigenic REE in the 41 

sedimentary record could provide a means for tracing glacial weathering and associated biogeochemical 42 

sulfur and iron cycling across geological times. 43 

 44 

 45 
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1. Introduction 49 

In recent decades, the rare earth elements (REE) and their isotope ratios have been 50 

increasingly used as paleoenvironmental tracers in authigenic phases extracted from marine sediments 51 

(e.g., Dias et al., 2021; Frank, 2002; Jang et al., 2017; Larkin et al., 2022). The rationale behind the 52 

use of REE in sedimentary Fe-(oxyhydr)oxide phases as paleoceanographic archives is that they 53 

incorporate - upon formation near the sediment-seawater interface – the neodymium (Nd) isotopic 54 

composition (143Nd/144Nd) of ambient bottom-water masses. Measurements of Nd isotope ratios in 55 

leached fractions of marine sediments from open ocean settings have thus been used to reconstruct, 56 

for instance, the evolution of deep-ocean circulation over glacial-interglacial timescales (e.g., Böhm et 57 

al., 2015; Piotrowski et al., 2004; Roberts et al., 2010; Rutberg et al., 2000). At ocean margins, the 58 

leached Fe-(oxyhydr)oxide component of marine sediments can be strongly influenced by terrestrial 59 

inputs, due to the presence of continentally-derived Fe-(oxyhydr)oxides transported along with the 60 

fine-grained terrigenous material delivered to the seafloor (e.g., Bayon et al., 2004; Jang et al., 2020, 61 

2021; Kraft et al., 2013; Werner et al., 2014). Such continentally-derived Fe-(oxyhydr)oxides can 62 

include secondary weathering products formed in soils, Fe-(oxyhydr)oxide phases derived from the 63 

erosion of ancient sedimentary rock formations in source regions, or iron oxides precipitated from Fe-64 

rich glacial meltwater upon mixing with seawater.  65 

Recent studies conducted on lake (Süfke et al., 2019) and river sediments worldwide (Bayon 66 

et al., 2020) have both highlighted the great potential of using REE and Nd isotopes in sedimentary 67 

iron oxides for tracing chemical weathering in corresponding watersheds. Recently, Bayon et al. 68 

(2020) introduced a novel index termed ‘concavity index’ (CI) as a quantitative measure of mid-REE 69 

(MREE) enrichments relative to light- and heavy-REE that can be used for discerning the provenance 70 

of leached Fe-(oxyhydr)oxide components in sediments. One striking finding of this study was the 71 

fact that a few leached sediments from catchments draining extensive shale formations, such as the 72 

Mackenzie (Canada) and Gaoping (Taiwan) rivers, displayed anomalously high MREE enrichments, 73 

yielding CI values much higher than the general range of values typically encountered for oxide 74 

fractions in both marine and river sediments. Because these particular watersheds had been previously 75 
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shown to be the location of intense sulfide weathering, such anomalously high MREE signatures in 76 

leached river sediments were hypothetically attributed to the presence of secondary Fe-77 

(oxyhydr)oxides resulting from terrestrial pyrite oxidation in shale formations (Bayon et al., 2020). 78 

Building on these recent findings, we have investigated the REE distribution in oxide 79 

fractions leached from glacimarine sediments (site HH17-1085-GC) on the continental shelf off 80 

northern Svalbard in the Arctic Ocean (Fig. 1). Because intense pyrite oxidation is thought to 81 

dominate in glacial environments (Anderson et al., 2000; Calmels et al., 2007; Stachnik et al., 2022; 82 

Torres et al., 2017), our main goal was to further explore the hypothesis that REE in sedimentary Fe-83 

(oxyhydr)oxide phases can be used to trace oxidative sulfide weathering. This research has broad 84 

implications given the presumed importance of oxidative weathering in the global evolution of 85 

atmospheric oxygen and carbon levels in Earth’s history (Konhauser et al., 2011; Liu et al., 2023; 86 

Torres et al., 2017; Ostrander et al., 2021). 87 

 88 

2. Study Area 89 

Sediment core HH17-1085-GC (hereafter 1085; 80.274ºN, 16.211ºE, 462 cm long) was 90 

retrieved from 322 m water depth on the continental shelf offshore northern Svalbard during a 91 

Korean-Norwegian joint cruise on RV Helmer Hanssen in 2017 (Jang et al., 2021) (Fig. 1). The 92 

Svalbard archipelago, at the border of the Arctic Ocean is composed of nine main islands including 93 

Spitsbergen, Nordaustlandet, Barentsøya and Edgeøya (Fig. 1). The bedrock geology in Svalbard 94 

includes various sedimentary, metamorphic and igneous rock formations with ages ranging from late 95 

Archaean to Cenozoic (Dallmann and Elvevold, 2015). Among them, the Devonian Old Red 96 

sandstone outcropping west of Wijdefjorden represents the main source rock for sediments deposited 97 

at Site 1085, together with Proterozoic metamorphic rocks east of Wijdefjorden, and Neoproterozoic 98 

and Permian to Carboniferous rocks on Nordaustlandet (Jang et al., 2021). 99 

Svalbard has experienced major ice sheet fluctuations during the late Quaternary. During the 100 

last glacial maximum, the Svalbard-Barents Sea Ice Sheet covered the inner continental shelf offshore 101 

northern and western Svalbard (Hughes et al., 2016 and references therein), including the location of 102 
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Site 1085 (Jang et al., 2021). After 16.3 ka, gradual ice sheet retreat occurred, punctuated by short-103 

term glacier halts and/or re-advances, until reaching a minimum glacier extent in Svalbard during the 104 

middle Holocene (Allaart et al., 2020; Farnsworth et al., 2020; Jang et al., 2021). The late Holocene 105 

period witnessed a phase with re-advances of terrestrial and tidewater glaciers in Svalbard (Forwick 106 

and Vorren, 2009; Jang et al., 2021; Røthe et al., 2015; Svendsen and Mangerud, 1997). 107 

 108 

Fig. 1. Map of (A) the Arctic Ocean and (B) Svalbard. Sampling locations for core HH17-1085-GC 

and the Devonian Old Red sandstone are indicated with yellow and red circles, respectively. Locations 

for coal mining activity are also marked with yellow cross symbols. The bathymetric information is 

based on IBCAO 4.0 bathymetric grid (Jakobsson et al., 2020) combined with the published seafloor 

information (Allaart et al., 2020). Note that all mines, except for those in Longyearbyen and 

Barentsburg, are no longer in operation. 
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3. Materials and Methods 109 

3.1. Sample collection 110 

The sediment core HH17-1085-GC, retrieved from the continental shelf offshore northern 111 

Svalbard, was subsampled at 5-25 cm intervals (n = 29). Subsequently, the subsamples were freeze-112 

dried and homogenously powdered for geochemical analyses. For comparison, a representative 113 

sample of the Devonian Old Red sandstone was collected from the Wood Bay formation in 114 

Halvdanpiggen, Woodfjorden (ID 080302; 79.389ºN, 13.622ºE; Jang et al., 2020) (Fig. 1). This 115 

bedrock sample was also powdered homogenously. 116 

Core 1085 displays four distinctive sedimentary facies (Jang et al., 2021): laminated mud 117 

(between 462-385 cm sediment depth), weakly laminated mud (385-228 cm), massive mud (228-30 118 

cm) and bioturbated sandy mud (30-0 cm) (Fig. 2). A coarse-grained layer is discernible at a depth of 119 

360-370 cm within the weakly laminated mud facies. According to the age model based on 120 

radiocarbon dating (Jang et al., 2021), the sediment interval exhibiting laminated structures (462-228 121 

cm) broadly covers the last deglaciation during the late Pleistocene (16.3 to 12.1 ka), while the 122 

massive mud and bioturbated were predominantly deposited during the early-to-middle (12.1 to 2.7 123 

ka) and late Holocene (2.7 ka to modern) periods, respectively (Fig. 2). Sedimentation rates were 124 

relatively high until the early Holocene (up to 88 cm/ka) and significantly reduced during the middle 125 

Holocene (Jang et al., 2021) (Fig. 2). The sediment starvation or a hiatus during the middle Holocene 126 

has also been observed in other Svalbard fjords, likely due to limited or minimum glacigenic input 127 

when glaciers in Svalbard reached their Holocene minimum (e.g., Allaart et al., 2020; Farnsworth et 128 

al., 2020; Flink et al., 2017; Joe et al., 2022).  129 

 130 

3.2. REE and Nd isotope analyses 131 

The REE abundances in leached fractions of core 1085 sediments and the Devonian Old Red 132 

sandstone were determined with an Agilent 7900 inductively coupled plasma mass spectrometry (ICP-133 

MS) at the National Instrumentation Center for Environmental Management at Seoul National 134 

University (Republic of Korea), following a sequential extraction procedure. Leached fractions were 135 
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extracted using 0.02 M hydroxylamine hydrochloride in 25% acetic acid (volume to volume) for 1 136 

hour (Jang et al., 2021). This mild leaching protocol was designed to selectively target easily 137 

reducible Fe-(oxyhydr)oxides like ferrihydrite and lepidocrocite (Poulton and Canfield, 2005), while 138 

minimizing the extraction of undesired reactive phases, including volcanic components (Jang et al., 139 

2017; Wilson et al., 2013). The leachates were evaporated to dryness and taken up in ultrapure diluted 140 

HNO3 solution for ICP‒MS analyses. The analytical uncertainty in the REE measurements was ≤ 5% 141 

(1 SD). Natural water certified reference materials SLRS-6 and SPS-SW1 were measured to evaluate 142 

the accuracy of measured abundances, agreeing well (< 5%) with literature values (Yeghicheyan et al., 143 

2019), except for lutetium (Lu; not used in this study). For comparison purposes, the REE abundances 144 

were normalized to the World River Average Silt (WRAS: Bayon et al., 2015), marked with the 145 

subscript “N”. The degree of MREE enrichment in shale-normalized REE patterns can be quantified 146 

numerically by the mean of a ‘concavity index’ (CI) = GdN/(La6
N × Yb7

N)1/13 calculated by geometric 147 

extrapolation (i.e., semi-logarithmically; Lawrence et al., 2006), following the approach described by 148 

Bayon et al. (2020). Using the above equation, the following relationship (La/Gd)N = [(Gd/Yb)N × 149 

1/CI]7/6/CI can be used to illustrate graphically theoretical CI values in a plot of (Gd/Yb)N versus 150 

(La/Gd)N. 151 

Fig. 2. Summary of lithological and geochemical features at Site 1085. Sedimentation rate (cm/ka), 

detrital and authigenic εNd values, as well as their difference (△εNd = εNd Auth - εNd Det), and dolomite 

contents are included for comparison. All dataset are sourced from Jang et al. (2021).  
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Methods for sample preparation and acquisition of Nd isotopes for both leached and detrital 152 

fractions in core 1085 have already been published by Jang et al. (2021). In summary, the same mild 153 

leaching protocol described above was used for Nd isotope analyses of authigenic fractions. 154 

Conversely, the detrital fraction, which corresponds to the residual material left behind after the 155 

extraction of non-silicate fractions from the sediment, was digested by alkaline fusion (Bayon et al., 156 

2009). Neodymium was purified by ion chromatography using the TRU and Ln resins (modified after 157 

Pin and Zalduegui, 1997). Subsequently, 143Nd/144Nd ratios were measured by thermal ionization mass 158 

spectrometry (Triton, Thermo Scientific) at the Korea Polar Research Institute using 144Nd/146Nd = 159 

0.7219 for correcting instrumental mass bias. The measured Nd isotope ratios were finally expressed 160 

as εNd, which is calculated using the following equation: 161 

εNd = [(143Nd/144Nd)sample/(143Nd/144Nd)CHUR-1] × 104 162 

where (143Nd/144Nd)CHUR is 0.512638 (Jacobsen and Wasserburg, 1980). The △εNd value, a proxy for 163 

tracing glacial fluctuations (Jang et al., 2020), is defined as the difference between the leached εNd and 164 

the detrital εNd values.  165 

 166 

4. Results and background Nd isotope data  167 

4.1. REE concentrations 168 

The REE abundances in the leached fractions of the Devonian Old Red sandstone and Site 169 

1085 marine sediments are reported as concentrations (g/g) relative to the initial mass of leached 170 

bedrock and bulk sediment (Table 1). The REE concentrations determined for the leached fraction of 171 

the Devonian Old Red sandstone are comparatively higher than the leached fraction of sediments at 172 

Site 1085 (Fig. 3). For example, the lanthanum (La) and gadolinium (Gd) concentrations of leached 173 

fractions for the Devonian Old Red sandstone are 2.6 and 1.0 g/g, respectively, while those for Site 174 

1085 sediments range from 0.58 to 2.0 g/g (average ~ 1.2±0.38, 1 SD, n= 29) and 0.30 to 0.79 g/g 175 

(0.56±0.16, 1 SD, n= 29), respectively. Similarly, the ytterbium (Yb) abundance (0.43 g/g) in the 176 
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leached fraction of the Devonian Old Red sandstone is significantly greater than the range of Yb  177 

concentrations at Site 1085 (0.005 to 0.21 g/g; average 0.14±0.05, 1 SD, n= 29). Finally, REE 178 

concentrations for leached fractions at Site 1085 exhibit some downcore variability, with 179 

concentrations being lower in the upper part (Fig. 3).  180 

 181 

4.2. Previous results for Nd isotopes 182 

The εNd values for detrital and leached fractions of 1085 sediments have been previously 183 

discussed in Jang et al. (2021) and are briefly summarized here (Fig. 2). The detrital εNd values range 184 

from -14.5 to -12.3, while leached fractions display slightly more radiogenic εNd values between -13.6 185 

and -10.4;the two fractions being strongly correlated with each other (r = 0.87, n = 29). In general, 186 

both εNd values display larger variability in the laminated mud and weakly laminated mud facies, 187 

compared to the upper part of the core composed of massive mud and the bioturbated sandy mud 188 

facies.  189 

The detrital εNd values for the laminated mud facies at core 1085 are similar to those for 190 

surface sediments from central Woodfjorden (-14.1±0.2 from Jang et al., 2020) and the mouth of 191 

Fig. 3. Box and whisker plots of LREE (La), MREE (Gd) and HREE (Yb) concentrations in the 

leached authigenic phases of core 1085 in response to changes in lithological facies. The results in 

the leached weathering phases of the Devonian Old Red sandstone are also marked with pink dashed 

lines for comparison. The lithological facies, as defined by Jang et al. (2021), correspond to specific 

depth intervals: laminated mud (between 462-385 cm sediment depth), weakly laminated mud (385-

228 cm), massive mud (228-30 cm) and bioturbated sandy mud (30-0 cm). 



10 

 

Wijdefjorden (-14.2±0.2 from Jang et al., 2020), which are known to be directly sourced from the 192 

erosion of the Devonian Old Red sandstone. The laminated mud facies is also characterized by 193 

reddish sediment colour and relatively low dolomite contents (Fig. 2). Based on these observations, 194 

Jang et al. (2021) concluded that the Devonian Old Red sandstone from Woodfjorden and western 195 

Wijdefjorden was the main source of sediment in the section of core 1085, with probably minor 196 

contribution from Proterozoic metamorphic rocks in eastern Wijdefjorden (-25.4 to -18.6 from 197 

Johansson et al., 1995; Johansson and Gee, 1999). Conversely, an upward shift towards both more 198 

radiogenic detrital εNd composition and higher dolomite contents was interpreted as reflecting 199 

enhanced sediment supply from Nordaustlandet (-13.2 to -7.4 from Johansson et al., 2000; Johansson 200 

et al., 2002). The relatively consistent εNd values throughout the Holocene suggested a constant 201 

sediment provenance (Jang et al., 2021). 202 

For the authigenic fractions, εNd values at Site 1085 were generally less radiogenic than that 203 

for the Devonian Old Red sandstone (-10.8±0.2 from Jang et al., 2020), except for the bioturbated 204 

mud facies (Fig. 2). Jang et al. (2021) suggested leached Fe-(oxyhydr)oxides at Site 1085 mostly 205 

corresponded to authigenic oxides formed in-situ from either ambient seawater and/or meltwater 206 

rather than being directly sourced from eroded sedimentary rocks in glacial catchments.  207 

The calculated △εNd values indicated three prominent peaks during the late Holocene and at 208 

time intervals around 15.2 ka BP and 14.1 ka BP. These increased △εNd values were interpreted as 209 

reflecting periods of glacial advance during which enhanced glacial abrasion increased the availability 210 

of fresh rock substrates and dissolution of poorly-resistant mineral phases (Jang et al., 2020). This 211 

process most likely caused greater Nd isotopic decoupling between solutes and source rocks 212 

(Hindshaw et al., 2018), hence resulting in higher △εNd values (Jang et al., 2020).  213 
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Table 1. REE concentrations in leached phases of the Devonian Old Red Sandstone and sediments at site HH17-1085 214 

Sample 
Depth La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb 

(Gd/Yb)N (La/Gd)N CI 
(cm) (μg/g) (μg/g) (μg/g) (μg/g) (μg/g) (μg/g) (μg/g) (μg/g) (μg/g) (μg/g) (μg/g) (μg/g) (μg/g) 

HH17-

1085-GC 

0.5 0.710  1.766  0.210  0.925  0.235  0.058  0.366  0.044  0.186  0.034  0.078  0.011  0.055  3.86  0.27  3.81  

24.5 0.584  1.379  0.176  0.779  0.195  0.049  0.306  0.036  0.161  0.029  0.068  0.009  0.049  3.62  0.26  3.71  

49.5 0.700  1.458  0.191  0.819  0.194  0.049  0.303  0.037  0.173  0.032  0.085  0.012  0.068  2.58  0.32  2.83  

74.5 0.827  1.747  0.232  0.990  0.244  0.060  0.377  0.046  0.222  0.042  0.107  0.014  0.086  2.54  0.30  2.88  

99.5 0.781  1.706  0.219  0.960  0.235  0.059  0.366  0.044  0.212  0.040  0.099  0.014  0.077  2.76  0.29  3.04  

109.5 0.741  1.635  0.212  0.928  0.232  0.057  0.362  0.044  0.209  0.039  0.099  0.014  0.080  2.62  0.28  3.02  

124.5 0.847  1.871  0.239  1.047  0.257  0.064  0.404  0.048  0.233  0.043  0.108  0.015  0.087  2.69  0.29  3.03  

149.5 0.861  1.954  0.244  1.078  0.255  0.064  0.417  0.048  0.234  0.044  0.109  0.015  0.086  2.81  0.28  3.12  

174.5 0.927  2.125  0.261  1.141  0.278  0.068  0.444  0.053  0.254  0.048  0.123  0.018  0.098  2.63  0.29  2.99  

199.5 1.201  2.694  0.331  1.413  0.334  0.082  0.549  0.066  0.319  0.060  0.156  0.022  0.131  2.43  0.30  2.81  

224.5 1.559  3.278  0.419  1.762  0.418  0.097  0.679  0.081  0.389  0.072  0.189  0.026  0.154  2.56  0.32  2.82  

229.5 1.951  3.353  0.500  2.162  0.504  0.123  0.784  0.097  0.484  0.095  0.256  0.036  0.213  2.13  0.34  2.47  

239.5 1.138  2.542  0.317  1.351  0.329  0.077  0.538  0.063  0.304  0.056  0.149  0.020  0.122  2.56  0.29  2.93  

249.5 1.297  2.859  0.342  1.421  0.327  0.078  0.561  0.062  0.317  0.060  0.164  0.023  0.136  2.39  0.32  2.72  

274.5 1.672  3.768  0.461  1.936  0.457  0.112  0.758  0.089  0.424  0.081  0.220  0.031  0.183  2.40  0.30  2.78  

299.5 1.767  3.738  0.478  2.040  0.480  0.121  0.781  0.094  0.444  0.085  0.232  0.033  0.199  2.28  0.31  2.67  

324.5 1.688  3.594  0.470  1.957  0.458  0.120  0.747  0.090  0.445  0.083  0.226  0.034  0.206  2.10  0.31  2.56  

349.5 1.116  2.522  0.312  1.364  0.333  0.085  0.544  0.067  0.326  0.062  0.160  0.023  0.139  2.27  0.28  2.79  

359.5 1.300  2.886  0.361  1.512  0.366  0.092  0.595  0.073  0.360  0.067  0.179  0.026  0.157  2.20  0.30  2.66  

364.5 0.919  2.001  0.251  1.055  0.251  0.067  0.420  0.049  0.242  0.048  0.135  0.021  0.142  1.72  0.30  2.33  

369.5 1.222  2.707  0.352  1.488  0.370  0.092  0.585  0.071  0.349  0.067  0.184  0.026  0.161  2.11  0.29  2.66  

374.5 1.138  2.469  0.310  1.309  0.311  0.079  0.526  0.063  0.310  0.060  0.159  0.023  0.137  2.23  0.30  2.69  

389.5 1.527  3.308  0.446  1.901  0.472  0.121  0.729  0.090  0.437  0.084  0.225  0.032  0.203  2.08  0.29  2.64  

399.5 1.630  3.465  0.471  1.969  0.472  0.123  0.752  0.093  0.455  0.086  0.235  0.035  0.214  2.04  0.30  2.57  

409.5 1.509  3.248  0.423  1.744  0.409  0.100  0.674  0.081  0.397  0.072  0.197  0.029  0.182  2.15  0.31  2.60  

424.5 1.190  2.664  0.349  1.470  0.351  0.086  0.575  0.067  0.333  0.060  0.162  0.023  0.143  2.33  0.28  2.82  

434.5 1.196  2.654  0.339  1.390  0.331  0.082  0.548  0.065  0.309  0.058  0.159  0.024  0.143  2.22  0.30  2.68  

449.5 1.692  3.724  0.489  2.036  0.485  0.120  0.791  0.095  0.451  0.086  0.235  0.034  0.211  2.17  0.29  2.67  

459.5 1.667  3.634  0.471  1.962  0.453  0.117  0.765  0.091  0.438  0.083  0.225  0.032  0.202  2.20  0.30  2.67  

080302* 2.579  2.579  6.459  0.771  4.622  1.075  0.222  1.041  0.117  0.815  0.120  0.432  0.050  0.425  0.34  1.99  

WRAS† 37.8 77.7 8.77 32.69 6.15 1.188 5.19 0.819 4.95 1.019 2.97 - 3.01 - - - 

UCC‡ 30 64 7.1 26 4.5 0.88 3.8 0.64 3.5 0.8 2.3 0.33 2.2 1.00  1.08  0.96  

NASC§ 31.1 67.03 9.1 30.4 5.98 1.25 5.5 0.85 5.54 1.27 3.275 0.54 3.11 1.03  0.78  1.14  

∗Devonian Old Red sandstone collected from the Wood Bay Formation (79.39°N, 13.62°E; Jang et al., 2020) 215 
†World River Average Silt (Bayon et al., 2015) 216 
‡Upper Continental Crust (McLennan, 2001; Taylor and McLennan, 1985) 217 
§North American Shale Composite  (Gromet et al., 1984)218 



12 

 

5. Discussion 219 

5.1. Pronounced MREE enrichments for sedimentary Fe-(oxyhydr)oxides in Svalbard 220 

The corresponding shale-normalized REE patterns display MREE enrichments relative to 221 

light (LREE) and heavy REE (HREE) in both 1085 sediment samples and the Devonian Old Red 222 

sandstone (Fig. 4). The degree of MREE enrichment can be further visualized in a (Gd/Yb)N vs. 223 

(La/Gd)N diagram (Fig. 5). The calculated CI values of leached sediments at Site 1085 range from 2.3 224 

to 3.8 (average CI ~ 2.8±0.3, 1 SD, n=29) (red squares in Fig. 5). These CI values are distinctively 225 

higher than that for the Devonian Old Red sandstone (~2.0) (white circle with red boundary in Fig. 5), 226 

indicating a strong MREE enrichment in core 1085 leachates compared to the leached Fe-227 

(oxyhydr)oxide fraction associated with potential source rocks. This first observation, hence, 228 

intuitively suggests that leached sedimentary fractions at Site 1085 mostly correspond to authigenic 229 

Fe-(oxyhydr)oxides rather than pre-formed oxides of terrigenous origin (e.g., Bayon et al., 2004). This 230 

interpretation is thus consistent with inferences made from the use of εNd values in both detrital and 231 

leached fractions (see also section 4.2.). 232 

Fig. 4. Shale-normalized (WRAS; Bayon et al., 2020) REE patterns for the leached phases of core 

1085 and the Devonian Old Red sandstone. The MREE enrichments are prevalent in core 1085, but 

more pronounced in bioturbated sandy mud facies (> 30 cm; green diamonds) compared to the other 

massive and laminated deposits (< 30 cm; white diamonds). Note that the REE data were also 

normalized by GdWRAS for clarity.  
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Strikingly, our results indicate that the degree of MREE enrichment calculated in leached 233 

authigenic phases at Site 1085 is higher than for typical authigenic phases extracted from marine 234 

Fig. 5. Concavity index (CI) for the leached phases of marine sediments at Site 1085 and the 

Devonian Old Red sandstone. For comparison, the reported REE measurements from different 

archives such as the leached phases of marine and river sediments, bulk or residual marine and river 

sediments, foraminifers and fossil fish teeth and dissolved phases of seawater and porewater are 

marked with different symbols (for references, see Supplementary Table S1). Note that the leached 

riverine sediments collected from the Mackenzie River system (Larkin et al., 2021) are exclusively 

marked with sky blue squares.  (Abbott et al., 2015b; Alibo and Noza ki, 1999; Amakawa et al., 2000; Bayon et al., 2011; Behrens et al., 2018 ; Deng et al., 2017;  Elderfield and Sholkovitz, 1987; Garcia-So lsona et al., 2014; German and Elderfield, 1989; German et al., 1991; Grasse et al. , 2017 ; Greaves et al., 1999; Grenier et al., 2013; Haley  et al., 2014 ; Hathorne et al., 2015; H immler et al., 2013; Jeandel et al., 2013;  Lacan and Jeandel, 2004; Lacan and Jeandel, 2005; Laukert et al.,  2017 ; Laukert et al., 2019; Lemaitre et al., 2014 ; Mitra et al., 1994 ; Molina-Kescher et al., 2014a; Noza ki et  al., 1999; Noza ki a nd Alibo, 2003; Osborne et al., 2015; Schijf et al., 1995; Sh iller et al., 2017; Sho lkovitz e t al., 1992; Stichel et al.,  2012 ; Tachikawa et al., 1999; Ta zoe et al., 2011; Wang and Yamada, 2007; Yang and  

Haley, 2016; Zhang and Noza ki, 1998; Z hang et al., 2008; Zheng  et al., 2016) 
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sediments. Dispersed Fe-(oxyhydr)oxide phases leached from marine sediments generally exhibit 235 

shale-normalized MREE enrichment patterns with an average CI of ~1.8±0.5 (1 SD, n=93; Basak et 236 

al., 2011; Bayon et al., 2002; Bayon et al., 2004; Blaser et al., 2016; Casse et al., 2019; Martin et al., 237 

2010; Wilson et al., 2013; see yellow squares in Fig. 5). Likewise, REE measurements conducted on 238 

both bulk uncleaned foraminifers (which are thought to be controlled by the presence of authigenic 239 

Fe-Mn (oxyhydr)oxide coatings; Tachikawa et al., 2014) and fish teeth yield average CI values of ~ 240 

1.2±0.3 (1 SD, n=43; Bayon et al., 2004; Blaser et al., 2016; Charbonnier et al., 2012; Molina-241 

Kescher et al., 2014b; Skinner et al., 2019) and ~ 1.5±0.4 (1 SD, n=25; Martin et al., 2010), 242 

respectively, indicating moderate MREE enrichment (dark brown diamonds in Fig. 5). A similar 243 

average CI value of 1.2±0.5 (1 SD, n=391) is also generally encountered in pore waters (Abbott et al., 244 

2015a; Bayon et al., 2011; Deng et al., 2017; Elderfield and Sholkovitz, 1987; Haley et al., 2004; 245 

Himmler et al., 2013; Kim et al., 2012; Sholkovitz et al., 1989; Sholkovitz et al., 1992; Soyol-Erdene 246 

and Huh, 2013; Yang J. et al., 2018; see white circles with pink boundaries in Fig. 5). Comparatively, 247 

fine-grained detrital sediments (average CI ~ 1.1±0.3, 1 SD, n=104; Bayon et al., 2015; see orange 248 

triangles in Fig. 5) and seawater (average CI ~ 1.0±0.3, 1 SD, n=1778; for references, see 249 

Supplementary Table S1; white circles with grey boundaries in Fig. 5) generally display no apparent 250 

MREE enrichment (i.e., CI values ~1).  251 

In the marine environment, the MREE enrichment that typically characterizes leached 252 

authigenic phases is generally interpreted as reflecting the preferential incorporation of MREE over 253 

neighbouring REE by hydrogenous Fe-(oxyhydr)oxides (Martin et al., 2010) or the REE signature of 254 

upward-migrating reduced pore fluids from which early diagenetic Fe-(oxyhydr)oxides may 255 

precipitate at the sediment-seawater interface (Haley et al., 2004; Himmler et al., 2010; Skinner et al., 256 

2019). However, the evidence that CI values at Site 1085 notably exceed by far those typically 257 

observed for leached marine sediments worldwide suggests that an additional mechanism comes into 258 

play to account for these anomalously high MREE enrichments in Fe-(oxyhydr)oxides from Svalbard 259 

glacimarine sediments. 260 

 261 
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5.2. High concavity index in sedimentary Fe-(oxyhydr)oxides as a proxy for sulfide weathering 262 

Further insight into the potential cause of the high degree of MREE enrichment in Svalbard 263 

sedimentary Fe-(oxyhydr)oxides can be derived from the recent investigation of the corresponding 264 

phases in river sediments worldwide (Bayon et al., 2020) (green squares in Fig. 5). Like modern 265 

marine sediments, the leached fraction of river sediments also typically displays a characteristic 266 

MREE enrichment pattern (average CI ~ 2.1±0.6, 1 SD, n=74); however, their degree of MREE 267 

enrichment appears to be strongly dependent on the bedrock geology in corresponding drainage 268 

basins. While rivers draining sedimentary rocks and/or mixed lithologies tend to show pronounced 269 

MREE enrichments in leached sedimentary fractions with CI values generally >1.5, rivers draining 270 

crystalline silicate rocks generally display limited MREE enrichments with CI values ranging from 271 

1.2 to ~2 (Bayon et al., 2020). The CI values of leached fractions of river sediments are largely set by 272 

the type of extracted Fe-(oxyhydr)oxide minerals (Bayon et al., 2020). For instance, in catchments 273 

dominated by marine sedimentary rocks, the erosion and subsequent transport of ancient seawater-274 

derived mineral components represents a substantial source of sedimentary Fe-(oxyhydr)oxides with 275 

generally intermediate CI values between ~2 and 2.5. In contrast, in river basins dominated by 276 

crystalline igneous and metamorphic rocks, leached sediments mostly correspond to secondary Fe-277 

(oxyhydr)oxides formed in soils during chemical weathering, thereby explaining their reduced degree 278 

of MREE enrichment (Bayon et al., 2020).  279 

Consequently, the very high CI values (>2.5) observed in leached sedimentary fractions at 280 

Site 1085 are unlikely to be explained by the presence of pre-formed oxides related to the erosion of 281 

ancient marine sedimentary rocks and/or the alteration of silicate rocks on nearby continental regions 282 

(Fig. 5). It is important to re-emphasize here that the leached fraction of the studied Devonian Old 283 

Red sandstone has a CI value of ~2.0, and thus cannot account for the observed high CI values at Site 284 

1085 (see also section 5.1).  285 

In fact, Bayon et al. (2020) reported the occurrence of similarly high CI values >2.5 for a few 286 

leached fractions of river sediments derived from mountainous catchments dominated by sedimentary 287 

rock formations, such as the Fly (CI = 4.5), Mackenzie (4.1), Gaoping (3.5) and Parana (3.2) rivers 288 
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(Fig. 5). Additionally, recent work conducted on suspended river particulates from the Mackenzie 289 

River also reported pronounced MREE enrichments in leached fractions, yielding an average CI value 290 

of 3.2±0.6 (1 SD, n=14) (Larkin et al., 2021) (sky blue squares in Fig. 5). As mentioned in the 291 

Introduction, the fact that intense sulfide weathering has been identified as a major biogeochemical 292 

process in both the Mackenzie and Gaoping river catchments (Blattmann et al., 2019; Calmels et al., 293 

2007), raised the possibility that such anomalously high MREE enrichments (with CI >2.5) could be 294 

possibly linked to the oxidation of pyrite or other sulfide minerals hosted in shales (Bayon et al., 295 

2020).  296 

A potential pitfall in this interpretation arises from the general lack of any particular MREE 297 

enrichment in common sulfide minerals such as pyrite, sphalerite, or galena (average CI ~ 1.1±0.5, 1 298 

SD, n=16; Jiaxi et al., 2011), as well as in various mine-related deposits such as disseminated orebody 299 

waste, mine/industrial wastes, and minesoils (average CI ~ 0.9±0.2, 1 SD, n=52; Pérez-López et al., 300 

2010) (Fig. 6). These data for both sulfide minerals and mining wastes suggest that the complete 301 

dissolution of sulfide minerals, i.e., indicative of congruent sulfide weathering, is unlikely to solely 302 

account for the anomalously high MREE enrichments observed in leached sedimentary Fe-303 

(oxyhydr)oxides in Svalbard and certain river basins.  304 

The precipitation of secondary Fe-(oxyhydr)oxide minerals following sulfide oxidation is 305 

given by the following equation:  306 

FeS2 + 15/4O2 + 7/2H2O ↔ Fe(OH)3 + 2H2SO4 307 

Iron (oxyhydr)oxide co-precipitation can result in preferential uptake of MREE (Martin et al., 2010). 308 

However, in the marine environment, leached Fe-(oxyhydr)oxide phases from sediments 309 

systematically display CI values below 2.5 (Fig. 5). Considering that both seawater (average CI ~ 310 

1.0±0.3, 1 SD, n=1778; for references, see Supplementary Table S1) and sulfide minerals (average CI 311 

~ 1.1±0.5, 1 SD, n=16; Jiaxi et al., 2011) display similar CI values, the REE decoupling induced by 312 

preferential uptake of MREE during iron co-precipitation is unlikely to explain CI values > 2.5 in Fe-313 

(oxyhydr)oxides linked to sulfide oxidation. Alternatively, sulfuric acid, another byproduct of sulfide 314 

oxidation, could possibly play a role in driving the observed MREE enrichment. Following pyrite 315 
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oxidation, the release of sulfuric acid can significantly enhance the dissolution of rock-forming 316 

minerals (Chigira and Oyama, 2000; Lerman and Wu, 2006). This mechanism can drive acid rock 317 

drainage on continents (e.g., Konhauser et al., 2011), leading to preferential weathering of easily 318 

dissolvable minerals such as apatite and carbonate (Langman et al., 2019; Lerman and Wu, 2006; 319 

Takaya et al., 2015). Given the remarkably high MREE enrichment that typically characterizes 320 

diagenetic apatite (average CI ~ 4.9±3.7, 1 SD, n=58; Ohr et al., 1994; Zhao et al., 2022), we suggest 321 

that preferential alteration of MREE-enriched phosphate minerals, driven by sulfuric acid released 322 

during sulfide oxidation, could possibly explain the observed high CI values in leached authigenic 323 

fractions from Svalbard sediments.  324 

Supporting evidence for the above hypothesis comes from REE data for acidic waters 325 

released from metal or coal mining activities (i.e., acid mine drainage), which exhibit particularly high 326 

Fig. 6. Shale-normalized (WRAS; Bayon et al., 2020) REE patterns for sulfide minerals (Jiaxi et 

al., 2011), mining wastes (Pérez-López et al., 2010), Acid Mine Drainage (León et al., 2021; Pérez-

López et al., 2010) and the leachates of minesoils (Pérez-López et al., 2010). Note that the REE data 

were also normalized by GdN for clarity. 
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MREE enrichments with CI values ranging from 1.8 to 5.1 (average CI ~ 2.7±0.7, 1 SD, n=112; León 327 

et al., 2021; Pérez-López et al., 2010) (Fig. 6). Similarly, the water exchangeable fraction of minesoils 328 

collected from the São Domingos mining area yielded high CI values ranging from 1.6 to 4.2 (average 329 

CI ~ 2.5±0.7, 1 SD, n=11; Pérez-López et al., 2010) (Fig. 6). Collectively, these observations suggest 330 

sulfide-driven chemical weathering can potentially account for MREE-enriched signatures in 331 

weathering products. The subsequent precipitation of Fe-(oxyhydr)oxides would further amplify the 332 

extent of MREE enrichment, possibly resulting in CI values exceeding 2.5 observed in leached 333 

sediments at Site 1085. 334 

To some extent, this assumption is consistent with leaching experiments conducted on 335 

minesoils, where the highest CI values are encountered in samples displaying the highest levels of 336 

sulfate concentrations (Pérez-López et al., 2010) (Fig. 7). A similar relationship is also suspected in 337 

the Mackenzie River and its tributaries, as inferred from a general positive trend identified between 338 

the CI values for the leached fraction of suspended particulate material and dissolved sulfate 339 

concentrations in corresponding river waters (Larkin et al., 2021) (Fig. 7). While we acknowledge that 340 

further investigation would be needed to more thoroughly characterize the relationship between CI 341 

values and both sulfate/sulfide concentrations in aquatic environments, the sum of above observations 342 

provides empirical support for a link between high CI values and the degree of sulfide weathering, 343 

thereby further suggesting that pyrite oxidation may drive substantial MREE enrichment in 344 

sedimentary Fe-(oxyhydr)oxide phases. 345 

 346 

5.3. Combined influences of sulfide weathering and early diagenesis on MREE enrichments in 347 

Svalbard sedimentary Fe(oxyhydr)oxides 348 

The evidence presented above suggests that pyrite oxidation plays an important role in 349 

accounting for the pronounced MREE enrichment in leached Fe-(oxyhydr)oxide fractions at Site 350 

1085. In (sub)Arctic environments and high-elevation regions worldwide, sulfide oxidation is 351 

generally viewed as the main biogeochemical reaction associated with glacial weathering (Torres et 352 
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al., 2017; Wadham et al., 2019). Enhanced physical erosion by glacial abrasion typically results in 353 

widespread exposure of reactive minerals such as iron sulfides on freshly-eroded rock substrates, thus 354 

actively facilitating the process of oxidative sulfide weathering (Calmels et al., 2007; Stachnik et al., 355 

2022). Experimental studies also indicate that the very early stages of chemical weathering are 356 

typically associated with the dissolution of apatite and other accessory minerals such as sphene, and 357 

trace calcite (Bayon et al., 2006; Dausmann et al., 2019; Erel et al., 2004). This effect has been well 358 

documented in young soils developed on glacial moraines (Harlavan et al., 2009). Taken together, the 359 

above-mentioned evidence suggests that sulfuric acid released from sulfide oxidation in glacial 360 

environments most likely contributes to the preferential dissolution of MREE-enriched apatite.  As a 361 

result, glacial meltwater can acquire a distinctive MREE-enriched signature that can be subsequently 362 

incorporated into secondary Fe-(oxyhydr)oxides upon precipitation (see also section 5.2). 363 

In Svalbard, huge amounts of nanoparticulate iron minerals formed in glaciated catchments 364 

are transported to the proximal marine environment via glacial meltwater runoff (e.g., Herbert et al., 365 

2020). This important influx of nanoparticulate Fe promotes intense marine productivity and 366 

subsequent deposition of Fe-(oxyhydr)oxide minerals (Jang et al., 2023; Zhang et al., 2015). Once 367 

Fig. 7. General relationships between concavity index and dissolved SO4
2- or S concentrations in 

the laboratory experiment and field study. Data from Pérez-López et al. (2010) and Larkin et al. 

(2021), respectively. 
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buried, the rapid accumulation of organic matter and reactive iron-bearing phases in glacimarine 368 

sediments drives intense diagenetic processes such as dissimilatory iron reduction and sulfate 369 

reduction. This pool of reactive glacially-derived iron can also potentially serve as a primary oxidant 370 

for dissolved sulfide released during sulfate reduction, thereby regulating the rate of sulfide oxidation 371 

in pore waters (Findlay et al., 2020; Michaud et al., 2020). These coupled Fe and S cycles have been 372 

widely investigated in Svalbard fjords (Herbert et al., 2020, 2022; Laufer-Meiser et al., 2021; 373 

Michaud et al., 2020; Wehrmann et al., 2014, 2017). All these intense diagenetic reactions taking 374 

place in glacimarine sediments could potentially play a role in the observed MREE enrichments in 375 

leached authigenic fractions at Site 1085. Presumably, early diagenetic reduction of glacially-derived 376 

MREE-enriched Fe-(oxyhydr)oxides in Svalbard sediments is likely accompanied by a pronounced 377 

MREE enrichment in surrounding interstitial waters (e.g., Haley et al., 2004). Upon upward diffusive 378 

migration of MREE-enriched fluids, in-situ precipitation of hydrogenous Fe-(oxyhydr)oxides at the 379 

oxic surface sediment interface could represent an additional mechanism explaining the acquisition of 380 

particularly high CI values in leached sedimentary fractions. Future investigation of pore waters and 381 

sediments will be required to provide additional insights into the impact of early diagenetic processes 382 

on REE cycling in Svalbard. 383 

 384 

5.4. Interpretation of the Holocene authigenic REE record at Site 1085 385 

Based on the above findings, we explore below the potential factors explaining the observed 386 

variability of CI values in leached sedimentary fractions at Site 1085. Core 1085 indicate two distinct 387 

intervals characterized by different CI values (Fig. 8). The late Holocene sediment interval exhibits an 388 

average CI value of 3.8±0.1 (1 SD, n=2), while the earlier interval displays comparatively lower CI 389 

values with an average of 2.8±0.2 (1 SD, n=27) (Fig. 8). Measurements of Nd isotope ratios in detrital 390 

fractions at Site 1085 indicate a similar provenance across the middle-to-late Holocene transition 391 

(Jang et al., 2021), thereby suggesting that the observed shift in CI values in leached fractions is 392 

unlikely to reflect a change in sediment provenance (Fig. 8). Alternatively, the observed shift in CI 393 

values at Site 1085 could be interpreted as reflecting more intense pyrite oxidation during the late 394 
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Holocene. For instance, the late Holocene glacier advance in northern Svalbard (Jang et al., 2021) 395 

could have promoted preferential alteration of reactive sulfide minerals and other accessory minerals 396 

(including apatite) on newly eroded rock substrates (e.g., Gutjahr et al., 2009; Jang et al., 2020; Vance 397 

et al., 2009). However, the absence of any CI increase at 15.1 and 14.3 ka, i.e., at periods when glacier 398 

re-advances are known to have taken place in this region (Jang et al., 2021 and see also section 4.2.) 399 

(Fig. 8), makes this hypothesis unlikely. Nevertheless, the last deglaciation (16.3 to 12.1 ka) is a 400 

period characterized by significant variability in sediment provenance as well as an overall trend of 401 

glacier retreat in northern Svalbard, despite episodic glacier re-advances (Jang et al., 2021) (Fig. 8). In 402 

light of this complicated deglacial environmental context, we recognize that the significance of CI 403 

values for tracing ice sheet dynamics and identifying periods of past glacier advances and associated 404 

increase of sulfide weathering in the sedimentary record remains unclear and should deserve further 405 

investigation.  406 

Instead, early diagenetic Fe cycling in Svalbard sediments could possibly explain the late 407 

Holocene shift towards high CI values in leached authigenic fractions at Site 1085. This interpretation 408 

Fig. 8. Temporal variability of concavity index estimated from core 1085. Proxies for sediment 

provenance (detrital εNd) and glacial advances (△εNd) are also included for comparison (Jang et al., 

2021). In addition, bulk mineral compositions, including the sum of siderite (sid.) and magnesite 

(mags.), and apatite (Vogt and Jang, 2023), are presented.  
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is supported by the observation that the highest CI values are exclusively found within the bioturbated 409 

and presumably oxic sandy mud facies in the uppermost sediment horizon (Fig. 8). As discussed 410 

above, co-precipitation of authigenic Fe-(oxyhydr)oxides at the sediment-seawater interface (e.g., 411 

Laufer-Meiser et al., 2021) would represent a plausible mechanism accounting for the highest CI 412 

values measured at Site 1085. In addition to Fe-(oxyhydr)oxides, early diagenetic precipitation of 413 

other authigenic mineral phases such as siderite and apatite could also represent additional sinks for 414 

MREE in oxic sediment layers (e.g., Ohr et al., 1994; Rongemaille et al., 2011; Zhao et al., 2022), 415 

although their downcore distribution at Site 1085 does not provide strong support for this hypothesis 416 

(Fig. 8).  417 

Finally, it is possible that enhanced sulfide weathering during the most recent period was 418 

linked to mining activity. Coal mining activity in Svalbard has been in operation since the early 419 

1900s, and its environmental impact on the fjord and coastal regions has been well-documented using 420 

various tracers such as heavy metals, radionuclides, and polycyclic aromatic hydrocarbons (e.g., 421 

Askaer et al., 2008; Dowdall et al., 2004; Lee et al., 2023). By analogy with the observation of 422 

pronounced MREE enrichments in acid mine drainage (León et al., 2021; Pérez-López et al., 2010), 423 

mining activity in Svalbard and its hydrological impact on marine fjord environments could possibly 424 

explain, at least partly, the shift towards higher CI values in the upper sediment record at Site 1085. 425 

Nevertheless, mining activities in Svalbard have been implemented in regions around Isfjorden 426 

(Longyearbyen, Pyramiden and Barentsburg), Kongsfjorden (Ny-Ålesund), and Van Mijenfjorden 427 

(Sveagruva) (Fig. 1), hence relatively far from Site 1085; a substantial impact of mining activity on 428 

Site 1085 sedimentation thus appears unlikely.  429 

Collectively, the significant MREE enrichment observed in leached sedimentary fractions at 430 

Site 1085 suggests that high sulfide weathering fluxes have been prevalent in Svalbard since the last 431 

deglaciation, primarily driven by glacial weathering. During the late Holocene, the highest CI values 432 

observed could possibly relate to early diagenetic processes, although enhanced sulfide oxidation 433 

following widespread glacial advance in Svalbard during this period could have also played a role.  434 

 435 
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6. Conclusions and perspectives 436 

In this study, we have analysed glacimarine sediments recovered from the northern Svalbard 437 

continental shelf in the Arctic Ocean to investigate whether REE abundances in sedimentary Fe-438 

(oxyhydr)oxide phases can be used for tracing ‘glacial’ chemical weathering patterns. We show that 439 

leached Fe-(oxyhydr)oxide fractions in Svalbard glacimarine sediments deposited over the last 16.3 ka 440 

exhibit distinctive shale-normalized REE patterns characterized by pronounced mid-REE enrichments 441 

(as inferred from the use of the so-called ‘concavity index’; CI), much higher than previously 442 

encountered in any other marine environments. By analogy with a similar degree of MREE enrichment 443 

previously reported in acid mine drainage and minesoil leachates as well as in leached Fe-444 

(oxyhydr)oxide fractions of river sediments from catchments dominated by sulfide weathering, we 445 

argue that the pronounced MREE enrichment observed in leached Svalbard sediments (CI > 2.5) links 446 

to predominant oxidative sulfide weathering in corresponding catchment areas. While the exact 447 

mechanism of such MREE enrichment remains unclear, we suggest that the release of sulfuric acid 448 

following glacial erosion and enhanced sulfide oxidation could result in preferential alteration of 449 

MREE-enriched mineral phases such as apatite. The resulting REE signature released in glacial 450 

meltwaters could be subsequently incorporated into glacially-derived Fe-(oxyhydr)oxide phases during 451 

precipitation in surface environments. Early diagenetic reduction of Fe-(oxyhydr)oxide phases buried 452 

in sediments, followed by subsequent precipitation of hydrogenous Fe-(oxyhydr)oxide at the sediment-453 

seawater interface, could represent an additional mechanism explaining significant authigenic MREE 454 

enrichment in Svalbard sediments. As cryospheric regions are currently diminishing due to ongoing 455 

global warming, authigenic REE records in glacimarine systems under various hydrological settings 456 

(e.g., land vs. marine-terminating glaciers) could provide a promising tool to investigate combined 457 

biogeochemical sulfur and iron cycling in polar environments. Furthermore, our study highlights the 458 

potential interest of using authigenic REE in deep-time sedimentary records in order to investigate the 459 

evolution of oxidative sulfide weathering over geological timescales and its role as an oxygen sink or a 460 

source of carbon dioxide to the Earth’s atmosphere. 461 
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