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A Dependent Nominal Physical Type System for the
Static Analysis of Memory in Low Level Code

JULIEN SIMONNET, CEA LIST, University Paris-Saclay, LMF, France
MATTHIEU LEMERRE, CEA LIST, France
MIHAELA SIGHIREAN U, University Paris-Saclay, ENS Paris-Saclay and CNRS, LMF, France

We tackle the problem of checking non-proof-carrying code, i.e. automatically proving type-safety (implying in
our type system spatial memory safety) of low-level C code or of machine code resulting from its compilation
without modification. This requires a precise static analysis that we obtain by having a type system which (i)
is expressive enough to encode common low-level idioms, like pointer arithmetic, discriminating variants by
bit-stealing on aligned pointers, storing the size and the base address of a buffer in distinct parts of the memory,
or records with flexible array members, among others; and (ii) can be embedded in an abstract interpreter.
We propose a new type system that meets these criteria. The distinguishing feature of this type system is
a nominal organization of contiguous memory regions, which (i) allows nesting, concatenation, union, and
sharing parameters between regions; (ii) induces a lattice over sets of addresses from the type definitions;
and (iii) permits updates to memory cells that change their type without requiring one to control aliasing.
We provide a semantic model for our type system, which enables us to derive sound type checking rules by
abstract interpretation, then to integrate these rules as an abstract domain in a standard flow-sensitive static
analysis. Our experiments on various challenging benchmarks show that semantic type-checking using this
expressive type system generally succeeds in proving type safety and spatial memory safety of C and machine
code programs without modification, using only user-provided function prototypes.

1 INTRODUCTION

In heap-manipulating programs, one of the main issues is finding and preserving memory invariants
describing the contents of heap cells, in particular when aliasing is allowed. The problem happens
when a reference relies on an invariant on the contents of a memory region (i.e., a continuous
sequence of bytes in memory), but this invariant is broken due to modification by another reference
to or inside this region. For example, consider the encoding in C of an interval [a, b] by a record
itv with two integer fields. The internal invariant of itv is that a < b. A pointer p to a value of
itv might expect this invariant to hold, but the invariant may be broken if a pointer pb to the
second field at p is used to modify the value of b to a value strictly smaller than the first field a. A
classical instance of this problem is the need to forbid polymorphic references in the ML language
family [30, 76].

There are three main ways to deal with this problem. The first class of solutions, named read-only
in the following, consists in just forbidding writing to memory cells (only the freshly allocated
values can be stored). This is the main solution in pure functional programming languages, but
read-only fields are also common in imperative languages. However, this solution is impractical for
programs where in-place memory writes are important, e.g., for algorithmic reasons or for need of
manual control over memory allocation.

The second class of solutions, named aliasing control in the following, tracks precisely all the
references to a memory cell. For instance, separation logic [65] was designed to encode the “complex
restrictions on the sharing of [data] structures”. Linear, uniqueness or ownership types [13] are
used to limit the number of simultaneous references to an address. This class of solutions enables
complex reasoning about the behavior of a program, including the ability to change the memory
region invariant when it can be shown that no other references rely on the initial invariant (i.e., a
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strong update [73]). However, these solutions require complex reasoning on the program state. For
example, they may require to track all the aliases to the changed memory region, which is difficult
when the pattern used for sharing references is complex, like in garbage-collected programs or
operating systems code. Another illustration of this difficulty is the need to abandon structural
properties [75] when aliasing is controlled using a type system (e.g., using ownership types).

The third class of solutions does not restrict aliasing, but permits only heap modifications that
preserve the invariants (i.e., weak updates). The drawback of this class is precision, because these
solutions are unable to verify memory invariants that change over time, as needed for temporal
memory safety. The benefit is simplicity, providing for simpler, tractable and efficient reasoning
on data structures with complex sharing patterns, in particular by automated analyses that target
spatial memory safety. Moreover, the memory is allocated in most programs on the heap to hold
values of some type which is unchanged over time. This flow-insensitive heap-type relation is thus
generally sufficient to prove spatial memory safety as a consequence of type safety in a suitable type
system. Moreover, when use-after-free is impossible, e.g., when the memory is statically allocated
or it is managed by a garbage collector based on tracing or reference counting, this invariant is
enough to prove full memory safety.

In this article, our main goal is to perform automated memory analyses using these type-
based flow-insensitive memory invariants specified by the user, so as to prove type safety,
implying spatial memory safety in our type system, in low-level heap-manipulating
programs without modification of the source code.

By low-level programs we mean programs implemented in low-level languages like C or machine
code. The memory invariants in those programs must use low-level concepts, i.e., at the level of byte
representation of values. Consequently, expressing them using types requires expressive features, in
particular, dependent types. For instance, low-level arrays are encoded as a pointer (the array base)
to a region whose size is given in another integer (the array size), which is a classic example of the
use of dependent types. Furthermore, the bytes holding the array base may not adjoin the array size,
illustrating the need for non-local invariants [33]. Another important feature is the frequent usage
of interior pointers (pointing inside a record), and of functions operating over interior pointers of
different datatypes as soon as part of the data layout is compatible (this is called physical typing in
[10, 63]). Finally, low-level languages heavily make use of idioms allowing for efficient usage of
the computer resources, such as union types, or taking advantage of pointer alignment to reuse the
least significant bits in pointer values (bit-stealing [6]).

Our main contribution is an expressive structural type system, designed to automatically
prove spatial memory safety of low-level programs as type safety. This type system uses
a nominal system of regions, meaning that instead of having pointers to types, i.e., 7, which
represents any memory address whose contents may be of type 7, our pointers are of the form
n*, where 1 is a type name. Then, pointers represent memory addresses which are labeled by a
region tag obtained from # using an allocation map (e.g., bottom part of Fig. 1). In turn, the heap is
constrained so that addresses tagged using 1 must contain values of the type 7 defining 5. Thus,
region tags can be seen as a go-between a pointer and its pointed type.

Nominal systems of regions have already been used to verify imperative programs, e.g. [7, 14, 28,
35, 60, 67]. However, these systems are generally flat, with no embedding or combination between
memory regions. The main original feature of our type system is its ability to combine regions
by concatenation (record and array types), union (union and existential types), or sharing
of parameters (global properties), in addition to refining regions (using refinement and
intersection types). This rich composition of memory regions is the key to handling the low-level
programming patterns previously described, as we demonstrate in §2, without having to resort to ad-
hoc types, tailored for the specific application, and typing rules as is often done [60, 69]. Furthermore,
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the combination between region composition and explicit naming brings up several interesting
properties. First, reasoning about points-to and aliasing properties (inclusion or disjunction of sets
of addresses) reduces to reasoning about the graph expressing how definitions of type names ()
derive from each other (see §4). Second, a store can change the type of the value contained in a
memory region, provided a checkable condition that all region tags are compatible with this change
(see §6). We call this a mild update semantic of store because it combines the benefits of strong
update (the ability to change the type of a memory cell) and of weak update (there is no need to
track aliases) semantics.

This type system could be used as a typed assembly language [2, 21, 57, 78] and carried as a proof
[59] that the program is type-safe. The proof may be produced by a type-preserving compiler for a
type-safe language and checked using syntactic proof rules. However, our goal is to prove low-level
programs to be type-safe automatically, without modification, even if the program was written in
an unsafe language like C or binary code. Specifically, we want to prove type-safe programs
written in type-unsafe languages like C, or programs transformed (using any tool) into
type-unsafe machine code, without any modification, given user-provided interface (type
definitions and function prototypes) using the types of our type system. The absence of
code modification is important as modifying the code or executable may significantly worsen its
performance [70], and requires significant efforts which hinders adoption.

Relying on particular syntactic constructs to achieve this goal, as done in methods based on
syntactic type checking [14, 35, 60, 68], would defeat this goal of verifying the code unmodified,
and would probably make verification of machine code impossible. To achieve our goal and reach a
sufficient level of precision, we make our type system and type checking algorithm semantic
using abstract interpretation [17] (i.e., we formalize our type system semantically [2, 22, 51, 72]),
and implement it by a standard flow-sensitive static analysis. This semantic type-checking design
brings us at least three benefits. (i) It allows us to (try to) type check programs despite intrinsic
undecidability, with good results in practice. (ii) It provides us with a systematic method [18]
to state and prove the soundness of our typing rules, which corresponds to the static analysis
operations. (iii) It gives us modular extensibility, as the type checking can be seamlessly combined
with other numerical, memory, or control-flow analyses to improve its precision, overcoming the
syntactic limitations of purely syntactic type-checking methods. For instance, we can extend our
analysis with points-to predicates [61] that provides additional relations between an address and
its contents, and simultaneously makes use of the aliasing information provided by our types. We
can also use in parallel abstract domains for proving control safety by control-flow reconstruction
[5, 38], which allows us to remove from our type system the control-flow properties.

This focus on automation leads us to choose a structural type system which does not count the
number of references to a memory region. Indeed, the absence of reference counting reduces the
annotation burden by avoiding, e.g., Rust-like ownership and borrowing annotations. Furthermore,
the analysis will not fail because of imprecision in tracking the number of references. However,
this choice prevents us to verify programs that perform arbitrary type-changing writes.
This is a less strong limitation as one may think because (i) most writes are not type-changing
in C programs and (ii) some type-changing writes may be type-checked without sub-structural
rules using an expressive structural type system like TYPEDC (see example page 8). Still, the main
limitation of our type-system is that it can not express nor prove temporal properties (like
temporal memory safety or absence of data races) or any property that requires a temporal
invariant on the heap (like type-changing writes that are not in the class of mild updates), because
such properties require a substructural type system. However, our analysis is based on abstract
interpretation, a method which provides a framework for composition of analyses. Therefore,
by composing our analysis with those dealing with temporal properties (e.g., shape analysis or
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Monat et al. method [54] for computing modular effects of threads), we obtain an alternative to
sub-structural type systems. For instance, our analysis is combined with flow-sensitive abstractions
of memory (e.g., the stack abstraction and the points-to predicates of Nicole et al. [61]) that allows
us to infer some temporal memory invariants.

To demonstrate the applicability of our approach, we implement it in CODEX, an analyzer for C
and binary code. We exercise CODEX on various low-level code of industrial quality (see §8), e.g., the
binary code of a message passing library in an industrial micro-kernel [23], or parts of the runtime
of the Lisp interpreter found in a compiled version of GNU Emacs [29], as well as on examples
used by tools verifying spatial memory safety [66]. Our benchmark exhibits very complex sharing
patterns, which would make approaches based on control of aliasing difficult to use; their low-level
nature prevents their verification by a syntactic, flat nominal type system without rewriting and
annotations. On the contrary, we show that our approach allows checking semantically type safety
of such code with a very high degree of automation.

To sum up, our work makes the following contributions: (1) We formalize (§3) a rich dependent
type system, including refinement types combined with records, pointers, arrays, type families,
quantified and finite union types. (2) We tackle the classic unsoundness problem of strong updates
over dependent types by proposing an original memory model (§5). (3) We propose a mild update
semantic for store operation (§6). (4) We embed our type calculus into an abstract domain (§7) to
obtain a sound semantic type checking. (5) We implemented our analysis for C and binary code
and we demonstrate the effectiveness of our method (§8) on a challenging benchmark.

2 CHALLENGES FOR LOW-LEVEL SPATIAL MEMORY SAFETY

In a flat nominal systems of regions, featured in the Burstall-Bornat memory model [7, 8] as well
as on many type systems for C [14, 28, 35, 60, 67], objects of different types are viewed as entirely
separated (i.e., stored in disjoint regions of the heap). Such a system fails to verify spatial memory
safety of low-level code, because it cannot accurately describe invariants on the shape of the
memory used by such code. This section details three independent features that extend the flat
nominal system of regions: relation between regions, union of regions, and concatenation/nesting
of regions. We illustrate how our type system, by incorporating all these features, provides means
of expressing memory invariants that accurately describe the common low-level code patterns,
enabling their verification. Note that type definitions also translate to aliasing constraints, described
in §5. In the following examples, we suppose that integers and pointers have the same size, 4 bytes.

Example 1: the need for dependence relations between regions. The C code on the right of Fig. 1 is
extracted from the QDS [23] micro-kernel and simplified for readability; it encodes the message
boxes used in the inter-process communication. The implicit invariant of the type message_box is
that (a) the list starting at first is a circular non-empty list where (b) each element is a message
with an allocated buffer of size length (stored once in message_box).

The property (b) requires the ability to encode non-local invariants, i.e., properties that relate
memory regions that are not contiguous. For instance, the value of length field in message_box
fixes the size of the region pointed by the buffer field in all message regions reachable from the
first field. Non-local invariants are recognized as difficult to deal with in type-based memory
analyses: e.g., [14, 33] are limited to local invariants, CHECKEDC requires the relation between an
array length and the integer containing this length to follow specific syntactic patterns [28] to be
able to add dynamic checks, etc.

Our type system allows us to express such invariants by means of parameterized type names, as
shown in the specification given in the left part of Fig. 1. The specification includes the definition
(introduced by def keyword) of a type name message parameterized by the integer m1len; the body
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1 def int := byte[4]

2 def char := byte
3

1| struct message {
2 struct message *next;
3 char *buffer;
i def message(mlen:int) := 4 };
5
’ message (mlen)* X 6| struct message_box {
0 char [mlen]x 7 int length;

) X 8 struct message *first;
8 def message_box := 3 mlen:int. };

9 {self:byte[4] | self==mlen} X
10  message(mlen)*

h= I 4 0x2000 i 0x3000 | 0x2010 i I | | | I 0x2000 | 0x301C i i I
0x3000

0x1000 ‘ 0x2004 0x2010 0x301C

typOm=| message_box I I message (4) I Ichar[4]| I message (4) I Ichar[4]|

Fig. 1. Specification (left) of a data structure (right) in a micro-kernel and a possible memory layout (bottom)

of the definition of message is a record whose first field is a pointer to a message instantiated with
the same mlen parameter and a pointer to a block of mlen characters. The message type name is
used in the definition of the type name message_box, that employs existentially quantified types
to introduce a variable linking the value of the first component of the product with the parameter
of the second component. This is done using the refinement type “{self:byte[4] | self==mlen}”
that denotes 4-byte values satisfying the given predicate. (Notice that, because our type system
is nominal, int is not a synonym of byte [4]; nevertheless == is defined across both since they
share the same set of values). Therefore, the specification of message_box denotes all the regions
satisfying this internal invariant between their fields, which encodes the property (b).

The property (a) is obtained by associating to the 7% notation the meaning of not null pointer
since this property is important to prove spatial memory safety and mainly captured by the current
memory analyses. The possibly null pointers are derived types in our type system, using a union
with the null pointer type, as we will see in Fig. 3. Therefore, the specification in Fig. 1 (left) also
expresses that the list of messages is not empty, the pointer to the buffer in each message is not
null, and the list has a lasso shape!, an over-approximation of the circularity.

To understand the meaning of these type specifications, we provide at the bottom of Fig. 1 an
example for the memory layout when the values of these types are allocated in memory. The top
array, labeled by h, represents the heap, mapping addresses to bit-vector values. The bottom array,
labeled by typ om, is based on what we call an allocation map m, mapping the same addresses as h to
the region tags specifying the values that the memory cells at these addresses should contain [74].
For the sake of space, we use type names instead of region tags (region tags are trees in our memory
model, see §4.1), which is why we compose m with the typ function.

Example 2: the need for unions between regions. Fig. 2 (right) presents the C encoding of a core
component of the Emacs-Lisp interpreter [29] simplified for the sake of readability. It defines
“vector-like” objects (including real vectors, buffers, character sets, etc.) by employing a classical
pattern to encode variant types in low-level programming: discriminated unions.? The union
collects pointers to objects of different types, all of which share a common information (here the
header field) that uses an integer value to discriminate between the different variants. For instance,
a pointer of type vectorlike_p points to a vector (an array of Lisp values) if header is 0 or

1Because of the finite number of memory addresses; however, an elaborate type definition may express the circular shape.
2 Another way to encode variant types is using bit-stealing, as illustrated in the next example.
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struct buffer {
int header;
int size;
Lisp_Object name;
char *contents;

1 def tag(y:int) := {self:byte[4] | self==y};

-

3 def buffer := 3 sz:int.
4 tag(12) X
5 {self:byte[4] | self==sz} X

N G W

6 Lisp_Object X h
7 char[sz]* 8| struct vector {
8 9 int header;
9 def vector := 3 len:int. 10 int size:
H
10 tag(0) X 11 Lisp_Object arrayl[];
11 {self:byte[4] | self==len} X 12| };
12 Lisp_Object[len] 13
13 P 14| typedef union {

15 struct buffer xbuf;
16 struct vector *vec;
17| } vectorlike_p;

[T T U T o]

0x1000 0x1008 0x1010 0x1018 0x1020 0x1028

14 def vectorlike_p :=
15 bufferx U vectorkx

typom = I buffer I Ichar [4]| I vector I

Fig. 2. Specification (left) for the data structure (right) used by the Emacs-Lisp interpreter for vector-like
values and a possible memory layout (bottom)

to a buffer (an array of characters) if header is 12. Like in the previous example, the buffer’s
content is stored in a different memory region whose size is stored inside the size field. However,
the vector’s content is stored inside the vector value itself using the C feature known as flexible
array member. In the specification at left of Fig. 2, this concurs with the fact that char [sz]x is
a pointer type, unlike Lisp_0bject [1en]. Union types are used to represent non-discriminated
unions, e.g., the values of type vectorlike_p may be either values of types bufferk or vectorx.
Finally, the existential types that we already saw actually represent an infinite union of regions, e.g.,
the vector type is the union of all the regions for every value of len.

Example 3: the need for concatenation and nesting of regions. The third example is extracted from
the implementation of red black trees (RBT) in the Linux kernel [4] and it is presented in Fig. 3.
It defines a C type rb_node as a generic container type carrying only RBT shape and color
information. In C, this generic RBT is instantiated in mytype by embedding rb_node, along with
the key (a pointer to a fixed-size string). We do the same in our specification, by defining mytype
as a concatenation (using product type) of the key with rb_node. Note that the concatenation
may also be described using array types, like in char [16]. The nesting of a region inside another
implies that pointers to both regions may alias following relations described in §5.

The type rb_node uses bit-stealing to encode the color of a node in the last two bits of the
pointer to the parent. We specify this property (left of Fig. 3) with the type name myrb_node_color
using (i) a refinement type rbcolor encoding the type of two colors and (ii) an existential type
myrb_node_color introducing the variables denoting the values of the pointer () and of the color
(y) combined to constrain the value of the first field of myrb_node.

In the specification, the generic C type rb_node is instantiated for the usage in mytype by
defining myrb_node. This has two main consequences. First, the myrb_node type name precisely
identifies the set of addresses storing rb_node values inside a mytype region. Second, the specifi-
cation of pointers to rb_node inside mytype requires a special treatment. Describing the rb_left
field of myrb_node as a possibly null myrb_node pointer is a sound description of the memory,
but not precise enough: search algorithms depend on the fact that elements in the tree are interior
pointers to mytype to recover the key from a pointer to a node, by subtracting a fixed offset (i.e.
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1 def rbcolor := {self:byte[4] | (self==RED V self==BLACK)} #define RED 0

1
2 2| #define BLACK 1

3 def myrb_node_p := 3

4 {self: (mytypex +4) | selfl4==0} 1| struct rb_node {

5 U {self:byte[4] | self==0} 5| int rb_parent_color;

6 6 struct rb_node *rb_right;

7 def myrb_node := 7 struct rb_node *rb_left;
5 3;

8 myrb_node_color X myrb_node_p X myrb_node_p 9
9
10| struct mytype {
10 def myrb_node_color := 1 char *l{e?')
H
11 Ja myrb_node_p,y:rbcolor. {self:bytel[4] | self==aly} 12 struct rb_node node;

12
13 };
13 def mytype := char[16]% X myrb_node

X~y
h= 0x1014|0x2004| 0x. .. | 0x. .. I I I |0x401F|0x1005| 0x... | 0x... I
0x1000 0x1004 0x1014 0x2000 0x2004
typ om = I mytype I I char[16] I I e ‘ myrb_node I

Fig. 3. Specification (left) of the C types for red black trees used in the Linux kernel and their usage (right)
with a possible memory layout (at bottom)

4, the size of the key). We can specify this in the definition of myrb_node_p by adding 4 to a not
null mytype pointer. Furthermore, we specify the alignment of the pointer necessary to do
bit-stealing. Finally, these pointers may be null, and we express this using a union with a singleton
type of 4 bytes for value 0. For instance, in the memory layout given at the bottom of Fig. 3, the
value 0x1005 stored at address 0x2004 has type myrb_node_color, which describes a pointer to
amytype address 0x1000 shifted by 4 (0x1004), and the last bit is set because the node is BLACK.

Example 4: type changing writes with mild update. The C code at right of Fig. 4 defines a binary tree
where each node maintains a reference to its parent (root’s parent is 0). The three functions are
memory safe because (i) they are called with non null references to nodes and (ii) the values of
type node manipulated in the program are either a leaf node or of an interior node (inode) where
both children are non null references (i.e., nodex). These invariants are specified at left of Fig. 4;
for sake of concision, we use the notations inode? and nullptr for the type expressions at right
of £, i.e., possibly null pointer to inode and null pointer respectively.

A call to extend updates both children of the first argument n to non null references, thus
changing the type of n from nodex to inodex. Such a change of type is not allowed by a weak
update semantics because this semantic requires that updates preserve the type and the case of
values typed by union types. This constraint eases checking preservation of global memory’s
invariant since the type of every memory region is not changed. A strong update semantic allows to
change the case of the union value in memory if it finds that the global memory is still well-typed
(not necessarily by the types before the update). Such a check requires to keep track of pointers
that may point inside the updated memory region. For instance, a pointer to n->1left may change
its type after extend from null to non null pointer.

One of our contributions is identifying a third way to allow safe updates changing the case of a
union type without keeping track of pointer aliasing. We call this new semantic of updates mild
update. Roughly, it allows non preserving writes of the union case if there are no pointers to the
previous crashed type. This is the case in expand because nullptr value can not be aliased since
nullptr is a type expression and not a type name, thus variable of type nullptr* can not be
declared. The update done by a to_leaf call from an interior node to a leaf is also allowed by the
mild update semantics for the same reason: the type nodex can not be aliased. Notice that this
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nullptr ey {p:byte [W] | p==0} typedef struct node_s node;

1

1

i A . 2| struct node_s {
2 inode? = inodex U nullptr 3 node *parent;
3 def int := bytel[4] 4 int val;
+ def inode := inode? 5 node *right;
5 X int 6 node xleft;
6 X nodekx 71 ¥
- X nodex 8| nodex extend(node *n, node *1, node *r) {
8 def node := ( inode? K n->left = 1; n->right = r;

. 10 1l->parent = r->parent = n; return n;

9 X int 1|y
10 X nullptr 12| nodex to_leaf(node *n) {
11 X nullptr) 13 n->left = n->right = 0; return n;
12 U inode 14| ¥
13 inodex extend(nodex, nodex, nodex); 15| node* next_right(node *n) {
14 nodex to_leaf (nodex); 16 return (n->parent!=0)?n->parent->right:n;

17|}

15 nodex next_right(nodex);

Fig. 4. Specification (left) of the binary tree invariants used in the C code at right.

update of the union’s case is computed after both assignments of children to 0 are done. If only one
child is changed to 0 at the end of the function, the analysis raises an alarm for bad type.

As a final remark, notice that our analysis proves that next_right is memory safe and returns
a non null reference to node. This follows from n being a not null and therefore, its parent is an
interior node with right child also not null.

3 PHYSICAL DEPENDENT TYPES

We start presenting the TYPEDC type system, by the definition of the set of type expressions on
which it is built. The semantics of TYPEDC is presented in §4, the aliasing rules that it entails are
in §5, and the core typing judgments are in §6. Throughout these sections we will use Fig. 5 as a
running example; it contains a complete specification for two functions acting on a binary tree
holding integer data. Each tree’s node is either an interior node with two children, or a leaf node
with none. Each node except the root has a pointer to its parent, which is an interior node.

3.1 Syntax and intuitive semantics

Table 1 summarises the syntax of type expressions in TYPEDC. The set of free symbolic variables in a
type expression or term is denoted by fv(-). A closed type/term has no free variables. A substitution
of a free variable a by k in some type or term ¢ is denoted by ¢[a « k].

The type identifier byte is the predefined type for the smallest addressable memory piece in
TyPeDC. Additional type names are introduced using a finite set of type name definitions A: each
definition associates a type expression to a type identifier n and a (possibly empty) list of parameters.
Type names 7 are either the predefined type identifier byte or the application of a type identifier
n to a list of terms corresponding in size and type to the list of parameters in the definition of n.
We denote by A(n(ey, ..., es)) the type expression obtained by substituting the parameters in the
definition of n by the values of terms ey, . . ., e, respectively. We omit parentheses in type names
when the list of parameters is empty. For instance, the definition of type name tag in Fig. 2 has one
parameter, and it is instantiated in type buffer to obtain the type name tag(12); an example of
type name without parameters is rbcolor in Fig. 3. Additional constraints on the type definitions
and their instantiation are exposed in §3.2. The set A is an input of our analysis, provided by
the user after translation from a C-like surface syntax, which predefines standard C types like
int, long, etc. Fig. 6 contains a complete example of a user-provided specification for A.

Pointer type expressions are built on type names. The simplest form is “gx”, which denotes the set
of start addresses for memory regions whose tags include 7 in the memory layout (i.e., allocation
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Table 1. Physical dependent types of TyPEDC

symbolic variables: @, self € integer constants: £ € Z, bit-vector constants: k € V
type identifiers: n € N operators: o (bit-vector, comparison and logical)
A> defn(ay:tq,...,a0:7p) :=7T type name definition with fv(z) C {ay,...,ar}

Type names 1 ::= byte | n(eq, ..., ep)
TypesToru=n|npx+e|{self:r|e}|nuxn|rle] |nVUn|Ja:n.n2 | nlde

TermsE>ex=k|a|eoex|e e elky.kz]

map, see §4.1). To address a byte at an offset e inside a memory region labelled by 1, we use type
expression “nx + e”. The null address is not a value of nx. However, possibly null pointers of type
n, whose surface syntax is 7, are encoded using union and refined type expressions (see Fig. 3 and
below). The values of pointer type occupy W bytes, where W is a constant fixed by the ABI. Like in
§2, we suppose ‘W = 4 which also equals size of int. Notice that there are architecture-dependent
aspects of the translation from the C-like surface language of specification (e.g., endianness) which
come from the ABI parameter used by the analysis.

A refinement type expression “{self : 7 | e}” specifies the set of values v of type 7 such that
the term e evaluates to true (i.e., # 0) when the symbolic variable self is replaced by v. For
instance, rbcolor in Fig. 3 is a refined type. Notice that e need not to refer to the self variable,
e.g., {self : byte | 1 == 0} denotes a type of byte’s size with an empty set of values.

Product type expressions “7; X 7,” denote the bit-vector concatenation of a value in 7; with a value
in 7,. They are used to specify record types in C, e.g., the myrb_node type in Fig. 3. We use the
shorthand 7" for a product of n types 7. The memory layout induced by the alignment constraints
(i.e., padding) is made explicit using product types. For example a record type with two fields of
type byte and int is specified by byte X byte [3] X int if int are 4-bytes.

Array type expressions “r[e]” generalize the product to the concatenation of e values of type ¢
(e may be symbolic). Arrays with symbolic sizes are used to specify flexible array members like
in the vector type on Fig. 2. To keep notations simple, we denote by char [sz]* (e.g., in type
buffer from Fig. 2) a pointer to an array of sz characters, instead of arr_char (sz)* where
def arr_char(n:int) :=char[sz].

Union type expressions “7; U 7,” specify the union of sets of values of 7; and ;. For example, the
possibly null pointer notation 57 is a shorthand for 7 x U {self : byte[“W] | self == 0}, which
combines pointer, refinement, product and union type expressions. Notice that our union type is
different from the sum type used in classic dependent types because it is not discriminated; e.g.,
union between types that share values is allowed.

Existential type expressions (or quantified union) “Je : 7y. 72" generalize finite union types to an
unbounded union®. Such types include values v of type ;[ < v,], i.e., 7, where v,, a value of
type 71, replaces a. Without loss of generality, we suppose that all variables bound by existential
quantifiers have unique names.

Intersection type expressions “71/ 7,” specify a restriction of values of 7; to the values of 7,, with
7; a union type including 7, as member; this expression is mainly used by the analysis.

Terms e are built on constants, symbolic variables in an unbounded set , arithmetic operations,
comparisons, logical operations (with non-null terms interpreted as true, and false otherwise), and
bit-vector operations like concatenation “e; :: e;” and extraction “e[k;..k2]” of bits of e’s value

3Although similar to existential types in System F, our existential types quantify a value variable and not a type variable.
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Table 2. Orderings <a and <§ between type expressions.

A(m) <A 7 Vie{1,2}: 71 <A T1 X T2 71 <a 11/ 72
byte[W] <a nk +e 7 < tlel VkeV: pla k] <p3a:1.1
<A {x:7]|¢e} Vie{l,2}: i <p 1 Um T <§3a:11.1'2

between positions k; (included) and k; (excluded). Actually, terms may belong to any arithmetic
theory with a sound decision procedure for entailment. In our analysis, we use the linear integer
arithmetic with modulo constraints or bit-vector constraints, which is the logic theory underlying
our numerical abstract domain (see §8).

3.2 Well-formed type definitions

Intuitively, def 5 := 7 defines new kinds of contiguous memory regions “of type 1. Specifically, a
definition (i) constrains the possible values that can be stored in these regions (“regions of type 5
contain values of type ”), and (ii) it constrains the relations between the different regions (“regions
of type n are a subset of the regions of type 7). The latter interpretation hints at a well-founded
ordering between the tags of regions (provided in §5); this ordering derives from an ordering
between type expressions, denoted <, which is formally defined in Table 2. The relation <, is a
strict preorder over type expressions that mostly corresponds to the sub-term relation. We explain
in the following the differences with the sub-term relation. The rule A(n) <a 7 relates a type name
with the expression given by its definition. Note that this rule implies that n and A(n) are not
equivalent, which makes our type system nominal. The rule byte[ W] <A nx + e (and the absence
of a rule n <A 1% + e) is another difference with the sub-term relation. Indeed, a pointer type
n* + e does not “contain” values of type 5, but it is a new scalar type holding an address. This rule
is related to the C notion of forward reference to type names in pointer types. The absence of a
rule 7, <A 71/ 7, also breaks the sub-term relation and comes from the asymmetric nature of our
intersection. However, we require that z; is related by the transitive closure of < to 714 75:

REQUIREMENT 1 (WELL-FORMED INTERSECTION TYPES). Any type expression t; /7, satisfiest, <} 71,
i.e., type T, is either T (degenerate case) or a type used in the definition of t;.

The rule Vk € V : ,[a < k] <p Ja : 11. 72 defines a sub-term ordering modulo the instantiation
of the existentially quantified variable (whose possible values is over-approximated by V). We don’t
want a rule 7; <A Ja : 7y. 7, as the type Ja : ;. 7, may not contain values of the type 7;. However,
we do want to prevent circular type definitions (except through a pointer type, like in C). So, we
extend <, with the relation <§ defined by 7 <§ Ja : 7;. 7, and we ask the following:

REQUIREMENT 2 (WELL-FORMED A). The relation <5 U <§ induced by A is well-founded.
The above requirement implies in particular the following property:

PROPOSITION 1. The relation <, is well-founded, i.e., if 11 <p 2 is understood as the successor
relation Ty — 73 in a graph, then <, induces a DAG over type expressions.

An example of such a graph is given in Fig. 5. The DAG induced by < (and its evolution in §5
that includes offsets) ensures type-based reasoning over aliasing [24] and separation. In particular,
two pointers of type 771% + e; and 5% + ez such that neither n; <} 1, nor 7, <} 71 do not alias. For
instance, in Fig. 2, a pointer of type buffer* cannot be used to write into a region of type vector.
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CQuoded
path(p} . 10) path(pﬁode, 10)

A
nullptr={p:byte[W] | p==0} (inode?xintXnullptanullptr) U inode =
inode?£inodex U nullptr / @
def int := byte[4] inode?xint Cinoasd
. - XnullptrXnullptr (inode?xintx 1node7><1nt><
def inode:= inode? T
X int ) ) nullptrXnullptr) nullptr)(nullptr)
X nodex inode?Xint U inode,10 Uinode,10
X nodekx XnodexXnodex

. A inode?xir‘xtx -
def node : ( inode? inode?= nullptanullptr,lO
X int inode*Unullptr FCAB XX
X nullptr nullptr,2 )
X nullptr) /f ‘ nodexXnodex,10
U inode nullptr2 1node* e {p:byte[ W]Ip==0}2 nodex,2
nodex new_leaf(int); {p:byte[ W] |p==0} ‘
inodex extend(nodex, nodex, /\ byte[W1,2 byte [ W12
nodex); byte 'Vl/]%/byte [4]
1 A 2 4
Pl 2D P £
(inode?xintXnullptrxnullptr) U inode (inode?xintxnullptrxnullptr) U inode
inode?XintXnullptrXnullptr inode?XintXnodekxXnodex
-
inodex Unullptr inodex Unullptr
inodex nullptr nullptr nul{ptr nodex nodex
\ \ \ \ \ \
byte [W] byte [4] byte [W] byte [W] byte [W] byte [4] byte [W1 byte [W]

Fig. 5. Full specification (top left), DAG representation of <5 (top middle), two region tags for node out of 4
possible (bottom