
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Dependent Nominal Physical Type System for the
Static Analysis of Memory in Low Level Code
JULIEN SIMONNET, CEA LIST, University Paris-Saclay, LMF, France
MATTHIEU LEMERRE, CEA LIST, France
MIHAELA SIGHIREANU, University Paris-Saclay, ENS Paris-Saclay and CNRS, LMF, France

We tackle the problem of checking non-proof-carrying code, i.e. automatically proving type-safety (implying in
our type system spatial memory safety) of low-level C code or of machine code resulting from its compilation
without modification. This requires a precise static analysis that we obtain by having a type system which (i)
is expressive enough to encode common low-level idioms, like pointer arithmetic, discriminating variants by
bit-stealing on aligned pointers, storing the size and the base address of a buffer in distinct parts of the memory,
or records with flexible array members, among others; and (ii) can be embedded in an abstract interpreter.
We propose a new type system that meets these criteria. The distinguishing feature of this type system is
a nominal organization of contiguous memory regions, which (i) allows nesting, concatenation, union, and
sharing parameters between regions; (ii) induces a lattice over sets of addresses from the type definitions;
and (iii) permits updates to memory cells that change their type without requiring one to control aliasing.
We provide a semantic model for our type system, which enables us to derive sound type checking rules by
abstract interpretation, then to integrate these rules as an abstract domain in a standard flow-sensitive static
analysis. Our experiments on various challenging benchmarks show that semantic type-checking using this
expressive type system generally succeeds in proving type safety and spatial memory safety of C and machine
code programs without modification, using only user-provided function prototypes.

1 INTRODUCTION
In heap-manipulating programs, one of the main issues is finding and preserving memory invariants
describing the contents of heap cells, in particular when aliasing is allowed. The problem happens
when a reference relies on an invariant on the contents of a memory region (i.e., a continuous
sequence of bytes in memory), but this invariant is broken due to modification by another reference
to or inside this region. For example, consider the encoding in C of an interval [𝑎, 𝑏] by a record
itv with two integer fields. The internal invariant of itv is that 𝑎 ≤ 𝑏. A pointer p to a value of
itv might expect this invariant to hold, but the invariant may be broken if a pointer pb to the
second field at p is used to modify the value of 𝑏 to a value strictly smaller than the first field 𝑎. A
classical instance of this problem is the need to forbid polymorphic references in the ML language
family [30, 76].

There are three main ways to deal with this problem. The first class of solutions, named read-only
in the following, consists in just forbidding writing to memory cells (only the freshly allocated
values can be stored). This is the main solution in pure functional programming languages, but
read-only fields are also common in imperative languages. However, this solution is impractical for
programs where in-place memory writes are important, e.g., for algorithmic reasons or for need of
manual control over memory allocation.
The second class of solutions, named aliasing control in the following, tracks precisely all the

references to a memory cell. For instance, separation logic [65] was designed to encode the “complex
restrictions on the sharing of [data] structures”. Linear, uniqueness or ownership types [13] are
used to limit the number of simultaneous references to an address. This class of solutions enables
complex reasoning about the behavior of a program, including the ability to change the memory
region invariant when it can be shown that no other references rely on the initial invariant (i.e., a

Authors’ addresses: Julien Simonnet, CEA LIST, University Paris-Saclay, LMF, Palaiseau, France; Matthieu Lemerre, CEA
LIST, Palaiseau, France; Mihaela Sighireanu, University Paris-Saclay, ENS Paris-Saclay and CNRS, LMF, 4 avenue des
sciences, Gif-sur-Yvette, France.

HTTPS://ORCID.ORG/0000-0002-1925-089X
https://orcid.org/0000-0002-1925-089X

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

NNN:2 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

strong update [73]). However, these solutions require complex reasoning on the program state. For
example, they may require to track all the aliases to the changed memory region, which is difficult
when the pattern used for sharing references is complex, like in garbage-collected programs or
operating systems code. Another illustration of this difficulty is the need to abandon structural
properties [75] when aliasing is controlled using a type system (e.g., using ownership types).
The third class of solutions does not restrict aliasing, but permits only heap modifications that

preserve the invariants (i.e., weak updates). The drawback of this class is precision, because these
solutions are unable to verify memory invariants that change over time, as needed for temporal
memory safety. The benefit is simplicity, providing for simpler, tractable and efficient reasoning
on data structures with complex sharing patterns, in particular by automated analyses that target
spatial memory safety. Moreover, the memory is allocated in most programs on the heap to hold
values of some type which is unchanged over time. This flow-insensitive heap-type relation is thus
generally sufficient to prove spatial memory safety as a consequence of type safety in a suitable type
system. Moreover, when use-after-free is impossible, e.g., when the memory is statically allocated
or it is managed by a garbage collector based on tracing or reference counting, this invariant is
enough to prove full memory safety.

In this article, our main goal is to perform automated memory analyses using these type-

based flow-insensitive memory invariants specified by the user, so as to prove type safety,

implying spatial memory safety in our type system, in low-level heap-manipulating

programs without modification of the source code.
By low-level programs we mean programs implemented in low-level languages like C or machine

code. The memory invariants in those programs must use low-level concepts, i.e., at the level of byte
representation of values. Consequently, expressing them using types requires expressive features, in
particular, dependent types. For instance, low-level arrays are encoded as a pointer (the array base)
to a region whose size is given in another integer (the array size), which is a classic example of the
use of dependent types. Furthermore, the bytes holding the array base may not adjoin the array size,
illustrating the need for non-local invariants [33]. Another important feature is the frequent usage
of interior pointers (pointing inside a record), and of functions operating over interior pointers of
different datatypes as soon as part of the data layout is compatible (this is called physical typing in
[10, 63]). Finally, low-level languages heavily make use of idioms allowing for efficient usage of
the computer resources, such as union types, or taking advantage of pointer alignment to reuse the
least significant bits in pointer values (bit-stealing [6]).

Our main contribution is an expressive structural type system, designed to automatically

prove spatial memory safety of low-level programs as type safety. This type system uses
a nominal system of regions, meaning that instead of having pointers to types, i.e., 𝜏∗, which
represents any memory address whose contents may be of type 𝜏 , our pointers are of the form
𝜂∗, where 𝜂 is a type name. Then, pointers represent memory addresses which are labeled by a
region tag obtained from 𝜂 using an allocation map (e.g., bottom part of Fig. 1). In turn, the heap is
constrained so that addresses tagged using 𝜂 must contain values of the type 𝜏 defining 𝜂. Thus,
region tags can be seen as a go-between a pointer and its pointed type.

Nominal systems of regions have already been used to verify imperative programs, e.g. [7, 14, 28,
35, 60, 67]. However, these systems are generally flat, with no embedding or combination between
memory regions. The main original feature of our type system is its ability to combine regions

by concatenation (record and array types), union (union and existential types), or sharing

of parameters (global properties), in addition to refining regions (using refinement and

intersection types). This rich composition of memory regions is the key to handling the low-level
programming patterns previously described, as we demonstrate in §2, without having to resort to ad-
hoc types, tailored for the specific application, and typing rules as is often done [60, 69]. Furthermore,

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

A Dependent Nominal Physical Type System for the Static Analysis of Memory in Low Level Code NNN:3

the combination between region composition and explicit naming brings up several interesting
properties. First, reasoning about points-to and aliasing properties (inclusion or disjunction of sets
of addresses) reduces to reasoning about the graph expressing how definitions of type names (𝜂)
derive from each other (see §4). Second, a store can change the type of the value contained in a
memory region, provided a checkable condition that all region tags are compatible with this change
(see §6). We call this a mild update semantic of store because it combines the benefits of strong
update (the ability to change the type of a memory cell) and of weak update (there is no need to
track aliases) semantics.

This type system could be used as a typed assembly language [2, 21, 57, 78] and carried as a proof
[59] that the program is type-safe. The proof may be produced by a type-preserving compiler for a
type-safe language and checked using syntactic proof rules. However, our goal is to prove low-level
programs to be type-safe automatically, without modification, even if the program was written in
an unsafe language like C or binary code. Specifically, we want to prove type-safe programs

written in type-unsafe languages like C, or programs transformed (using any tool) into

type-unsafe machine code, without any modification, given user-provided interface (type

definitions and function prototypes) using the types of our type system. The absence of
code modification is important as modifying the code or executable may significantly worsen its
performance [70], and requires significant efforts which hinders adoption.
Relying on particular syntactic constructs to achieve this goal, as done in methods based on

syntactic type checking [14, 35, 60, 68], would defeat this goal of verifying the code unmodified,
and would probably make verification of machine code impossible. To achieve our goal and reach a
sufficient level of precision, we make our type system and type checking algorithm semantic

using abstract interpretation [17] (i.e., we formalize our type system semantically [2, 22, 51, 72]),
and implement it by a standard flow-sensitive static analysis. This semantic type-checking design
brings us at least three benefits. (i) It allows us to (try to) type check programs despite intrinsic
undecidability, with good results in practice. (ii) It provides us with a systematic method [18]
to state and prove the soundness of our typing rules, which corresponds to the static analysis
operations. (iii) It gives us modular extensibility, as the type checking can be seamlessly combined
with other numerical, memory, or control-flow analyses to improve its precision, overcoming the
syntactic limitations of purely syntactic type-checking methods. For instance, we can extend our
analysis with points-to predicates [61] that provides additional relations between an address and
its contents, and simultaneously makes use of the aliasing information provided by our types. We
can also use in parallel abstract domains for proving control safety by control-flow reconstruction
[5, 38], which allows us to remove from our type system the control-flow properties.

This focus on automation leads us to choose a structural type system which does not count the
number of references to a memory region. Indeed, the absence of reference counting reduces the
annotation burden by avoiding, e.g., Rust-like ownership and borrowing annotations. Furthermore,
the analysis will not fail because of imprecision in tracking the number of references. However,
this choice prevents us to verify programs that perform arbitrary type-changing writes.
This is a less strong limitation as one may think because (i) most writes are not type-changing
in C programs and (ii) some type-changing writes may be type-checked without sub-structural
rules using an expressive structural type system like TypedC (see example page 8). Still, the main

limitation of our type-system is that it can not express nor prove temporal properties (like
temporal memory safety or absence of data races) or any property that requires a temporal

invariant on the heap (like type-changing writes that are not in the class of mild updates), because
such properties require a substructural type system. However, our analysis is based on abstract
interpretation, a method which provides a framework for composition of analyses. Therefore,
by composing our analysis with those dealing with temporal properties (e.g., shape analysis or

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

NNN:4 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

Monat et al. method [54] for computing modular effects of threads), we obtain an alternative to
sub-structural type systems. For instance, our analysis is combined with flow-sensitive abstractions
of memory (e.g., the stack abstraction and the points-to predicates of Nicole et al. [61]) that allows
us to infer some temporal memory invariants.

To demonstrate the applicability of our approach, we implement it in Codex, an analyzer for C
and binary code. We exercise Codex on various low-level code of industrial quality (see §8), e.g., the
binary code of a message passing library in an industrial micro-kernel [23], or parts of the runtime
of the Lisp interpreter found in a compiled version of GNU Emacs [29], as well as on examples
used by tools verifying spatial memory safety [66]. Our benchmark exhibits very complex sharing
patterns, which would make approaches based on control of aliasing difficult to use; their low-level
nature prevents their verification by a syntactic, flat nominal type system without rewriting and
annotations. On the contrary, we show that our approach allows checking semantically type safety
of such code with a very high degree of automation.

To sum up, our work makes the following contributions: (1) We formalize (§3) a rich dependent
type system, including refinement types combined with records, pointers, arrays, type families,
quantified and finite union types. (2) We tackle the classic unsoundness problem of strong updates
over dependent types by proposing an original memory model (§5). (3) We propose a mild update
semantic for store operation (§6). (4) We embed our type calculus into an abstract domain (§7) to
obtain a sound semantic type checking. (5) We implemented our analysis for C and binary code
and we demonstrate the effectiveness of our method (§8) on a challenging benchmark.

2 CHALLENGES FOR LOW-LEVEL SPATIAL MEMORY SAFETY
In a flat nominal systems of regions, featured in the Burstall-Bornat memory model [7, 8] as well
as on many type systems for C [14, 28, 35, 60, 67], objects of different types are viewed as entirely
separated (i.e., stored in disjoint regions of the heap). Such a system fails to verify spatial memory
safety of low-level code, because it cannot accurately describe invariants on the shape of the
memory used by such code. This section details three independent features that extend the flat
nominal system of regions: relation between regions, union of regions, and concatenation/nesting
of regions. We illustrate how our type system, by incorporating all these features, provides means
of expressing memory invariants that accurately describe the common low-level code patterns,
enabling their verification. Note that type definitions also translate to aliasing constraints, described
in §5. In the following examples, we suppose that integers and pointers have the same size, 4 bytes.

Example 1: the need for dependence relations between regions. The C code on the right of Fig. 1 is
extracted from the QDS [23] micro-kernel and simplified for readability; it encodes the message
boxes used in the inter-process communication. The implicit invariant of the type message_box is
that (a) the list starting at first is a circular non-empty list where (b) each element is a message
with an allocated buffer of size length (stored once in message_box).

The property (b) requires the ability to encode non-local invariants, i.e., properties that relate
memory regions that are not contiguous. For instance, the value of length field in message_box
fixes the size of the region pointed by the buffer field in all message regions reachable from the
first field. Non-local invariants are recognized as difficult to deal with in type-based memory
analyses: e.g., [14, 33] are limited to local invariants, CheckedC requires the relation between an
array length and the integer containing this length to follow specific syntactic patterns [28] to be
able to add dynamic checks, etc.

Our type system allows us to express such invariants by means of parameterized type names, as
shown in the specification given in the left part of Fig. 1. The specification includes the definition
(introduced by def keyword) of a type name message parameterized by the integer mlen; the body

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

A Dependent Nominal Physical Type System for the Static Analysis of Memory in Low Level Code NNN:5

1 def int := byte[4]
2 def char := byte
3
4 def message(mlen:int) :=
5 message(mlen)★ ×
6 char[mlen]★
7
8 def message_box := ∃ mlen:int.
9 {self:byte[4] | self==mlen} ×
10 message(mlen)★

1 struct message {
2 struct message *next;
3 char *buffer;
4 };
5
6 struct message_box {
7 int length;
8 struct message *first;
9 };

ℎ =

0x1000

4 0x2000

0x2004

0x3000 0x2010

0x2010 0x3000

0x2000 0x301C

0x301C

typ ◦m = message_box message(4) char[4] message(4) char[4]

Fig. 1. Specification (left) of a data structure (right) in a micro-kernel and a possible memory layout (bottom)

of the definition of message is a record whose first field is a pointer to a message instantiated with
the same mlen parameter and a pointer to a block of mlen characters. The message type name is
used in the definition of the type name message_box, that employs existentially quantified types
to introduce a variable linking the value of the first component of the product with the parameter
of the second component. This is done using the refinement type “{self:byte[4] | self==mlen}”
that denotes 4-byte values satisfying the given predicate. (Notice that, because our type system
is nominal, int is not a synonym of byte[4]; nevertheless == is defined across both since they
share the same set of values). Therefore, the specification of message_box denotes all the regions
satisfying this internal invariant between their fields, which encodes the property (b).

The property (a) is obtained by associating to the 𝜂★ notation the meaning of not null pointer
since this property is important to prove spatial memory safety and mainly captured by the current
memory analyses. The possibly null pointers are derived types in our type system, using a union
with the null pointer type, as we will see in Fig. 3. Therefore, the specification in Fig. 1 (left) also
expresses that the list of messages is not empty, the pointer to the buffer in each message is not
null, and the list has a lasso shape1, an over-approximation of the circularity.
To understand the meaning of these type specifications, we provide at the bottom of Fig. 1 an

example for the memory layout when the values of these types are allocated in memory. The top
array, labeled by ℎ, represents the heap, mapping addresses to bit-vector values. The bottom array,
labeled by typ ◦m, is based on what we call an allocation map m, mapping the same addresses as ℎ to
the region tags specifying the values that the memory cells at these addresses should contain [74].
For the sake of space, we use type names instead of region tags (region tags are trees in our memory
model, see §4.1), which is why we compose m with the typ function.
Example 2: the need for unions between regions. Fig. 2 (right) presents the C encoding of a core
component of the Emacs-Lisp interpreter [29] simplified for the sake of readability. It defines
“vector-like” objects (including real vectors, buffers, character sets, etc.) by employing a classical
pattern to encode variant types in low-level programming: discriminated unions.2 The union
collects pointers to objects of different types, all of which share a common information (here the
header field) that uses an integer value to discriminate between the different variants. For instance,
a pointer of type vectorlike_p points to a vector (an array of Lisp values) if header is 0 or
1Because of the finite number of memory addresses; however, an elaborate type definition may express the circular shape.
2Another way to encode variant types is using bit-stealing, as illustrated in the next example.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

NNN:6 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

1 def tag(y:int) := {self:byte[4] | self==y};
2
3 def buffer := ∃ sz:int.
4 tag(12) ×
5 {self:byte[4] | self==sz} ×
6 Lisp_Object ×
7 char[sz]★
8
9 def vector := ∃ len:int.
10 tag(0) ×
11 {self:byte[4] | self==len} ×
12 Lisp_Object[len]
13
14 def vectorlike_p :=
15 buffer★ ∪ vector★

1 struct buffer {
2 int header;
3 int size;
4 Lisp_Object name;
5 char *contents;
6 };
7
8 struct vector {
9 int header;
10 int size;
11 Lisp_Object array[];
12 };
13
14 typedef union {
15 struct buffer *buf;
16 struct vector *vec;
17 } vectorlike_p;

ℎ = 12 4 0x... 0x1014 0 2 0x... 0x...

0x1000 0x1008 0x1010 0x1018 0x1020 0x1028

typ ◦m = buffer char[4] vector

Fig. 2. Specification (left) for the data structure (right) used by the Emacs-Lisp interpreter for vector-like

values and a possible memory layout (bottom)

to a buffer (an array of characters) if header is 12. Like in the previous example, the buffer’s
content is stored in a different memory region whose size is stored inside the size field. However,
the vector’s content is stored inside the vector value itself using the C feature known as flexible
array member. In the specification at left of Fig. 2, this concurs with the fact that char[sz]★ is
a pointer type, unlike Lisp_Object[len]. Union types are used to represent non-discriminated
unions, e.g., the values of type vectorlike_p may be either values of types buffer★ or vector★.
Finally, the existential types that we already saw actually represent an infinite union of regions, e.g.,
the vector type is the union of all the regions for every value of len.
Example 3: the need for concatenation and nesting of regions. The third example is extracted from
the implementation of red black trees (RBT) in the Linux kernel [4] and it is presented in Fig. 3.
It defines a C type rb_node as a generic container type carrying only RBT shape and color
information. In C, this generic RBT is instantiated in mytype by embedding rb_node, along with
the key (a pointer to a fixed-size string). We do the same in our specification, by defining mytype
as a concatenation (using product type) of the key with rb_node. Note that the concatenation
may also be described using array types, like in char[16]. The nesting of a region inside another
implies that pointers to both regions may alias following relations described in §5.
The type rb_node uses bit-stealing to encode the color of a node in the last two bits of the

pointer to the parent. We specify this property (left of Fig. 3) with the type name myrb_node_color
using (i) a refinement type rbcolor encoding the type of two colors and (ii) an existential type
myrb_node_color introducing the variables denoting the values of the pointer (𝛼) and of the color
(𝛾) combined to constrain the value of the first field of myrb_node.

In the specification, the generic C type rb_node is instantiated for the usage in mytype by
defining myrb_node. This has two main consequences. First, the myrb_node type name precisely
identifies the set of addresses storing rb_node values inside a mytype region. Second, the specifi-
cation of pointers to rb_node inside mytype requires a special treatment. Describing the rb_left
field of myrb_node as a possibly null myrb_node pointer is a sound description of the memory,
but not precise enough: search algorithms depend on the fact that elements in the tree are interior
pointers to mytype to recover the key from a pointer to a node, by subtracting a fixed offset (i.e.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

A Dependent Nominal Physical Type System for the Static Analysis of Memory in Low Level Code NNN:7

1 def rbcolor := {self:byte[4] | (self==RED ∨ self==BLACK)}
2
3 def myrb_node_p :=
4 {self:(mytype★ +4) | self%4==0}
5 ∪ {self:byte[4] | self==0}
6
7 def myrb_node :=
8 myrb_node_color × myrb_node_p × myrb_node_p
9
10 def myrb_node_color :=
11 ∃𝛼 :myrb_node_p,𝛾:rbcolor. {self:byte[4] | self==𝛼|𝛾}
12
13 def mytype := char[16]★ × myrb_node

1 #define RED 0
2 #define BLACK 1
3
4 struct rb_node {
5 int rb_parent_color;
6 struct rb_node *rb_right;
7 struct rb_node *rb_left;
8 };
9
10 struct mytype {
11 char *key;
12 struct rb_node node;
13 };

ℎ =

0x1000 0x1004

0x1014 0x2004 0x... 0x...

0x1014

...

0x2000 0x2004

0x401F 0x1005 0x... 0x...

typ ◦m = mytype char[16] ... myrb_node

Fig. 3. Specification (left) of the C types for red black trees used in the Linux kernel and their usage (right)

with a possible memory layout (at bottom)

4, the size of the key). We can specify this in the definition of myrb_node_p by adding 4 to a not
null mytype pointer. Furthermore, we specify the alignment of the pointer necessary to do
bit-stealing. Finally, these pointers may be null, and we express this using a union with a singleton
type of 4 bytes for value 0. For instance, in the memory layout given at the bottom of Fig. 3, the
value 0x1005 stored at address 0x2004 has type myrb_node_color, which describes a pointer to
a mytype address 0x1000 shifted by 4 (0x1004), and the last bit is set because the node is BLACK.
Example 4: type changing writes with mild update. The C code at right of Fig. 4 defines a binary tree
where each node maintains a reference to its parent (root’s parent is 0). The three functions are
memory safe because (i) they are called with non null references to nodes and (ii) the values of
type node manipulated in the program are either a leaf node or of an interior node (inode) where
both children are non null references (i.e., node★). These invariants are specified at left of Fig. 4;
for sake of concision, we use the notations inode? and nullptr for the type expressions at right
of ≜, i.e., possibly null pointer to inode and null pointer respectively.
A call to extend updates both children of the first argument n to non null references, thus

changing the type of n from node★ to inode★. Such a change of type is not allowed by a weak
update semantics because this semantic requires that updates preserve the type and the case of
values typed by union types. This constraint eases checking preservation of global memory’s
invariant since the type of every memory region is not changed. A strong update semantic allows to
change the case of the union value in memory if it finds that the global memory is still well-typed
(not necessarily by the types before the update). Such a check requires to keep track of pointers
that may point inside the updated memory region. For instance, a pointer to n->left may change
its type after extend from null to non null pointer.

One of our contributions is identifying a third way to allow safe updates changing the case of a
union type without keeping track of pointer aliasing. We call this new semantic of updates mild
update. Roughly, it allows non preserving writes of the union case if there are no pointers to the
previous crashed type. This is the case in expand because nullptr value can not be aliased since
nullptr is a type expression and not a type name, thus variable of type nullptr* can not be
declared. The update done by a to_leaf call from an interior node to a leaf is also allowed by the
mild update semantics for the same reason: the type node★ can not be aliased. Notice that this

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

NNN:8 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

1 nullptr ≜ {p:byte[W] | p==O}

2 inode? ≜ inode★ ∪ nullptr
3 def int := byte[4]
4 def inode := inode?
5 × int
6 × node★
7 × node★
8 def node := (inode?
9 × int
10 × nullptr
11 × nullptr)
12 ∪ inode
13 inode★ extend(node★, node★, node★);
14 node★ to_leaf(node★);
15 node★ next_right(node★);

1 typedef struct node_s node;
2 struct node_s {
3 node *parent;
4 int val;
5 node *right;
6 node *left;
7 };
8 node* extend(node *n, node *l, node *r) {
9 n->left = l; n->right = r;
10 l->parent = r->parent = n; return n;
11 }
12 node* to_leaf(node *n) {
13 n->left = n->right = 0; return n;
14 }
15 node* next_right(node *n) {
16 return (n->parent!=0)?n->parent->right:n;
17 }

Fig. 4. Specification (left) of the binary tree invariants used in the C code at right.

update of the union’s case is computed after both assignments of children to 0 are done. If only one
child is changed to 0 at the end of the function, the analysis raises an alarm for bad type.

As a final remark, notice that our analysis proves that next_right is memory safe and returns
a non null reference to node. This follows from n being a not null and therefore, its parent is an
interior node with right child also not null.

3 PHYSICAL DEPENDENT TYPES
We start presenting the TypedC type system, by the definition of the set of type expressions on
which it is built. The semantics of TypedC is presented in §4, the aliasing rules that it entails are
in §5, and the core typing judgments are in §6. Throughout these sections we will use Fig. 5 as a
running example; it contains a complete specification for two functions acting on a binary tree
holding integer data. Each tree’s node is either an interior node with two children, or a leaf node
with none. Each node except the root has a pointer to its parent, which is an interior node.

3.1 Syntax and intuitive semantics
Table 1 summarises the syntax of type expressions in TypedC. The set of free symbolic variables in a
type expression or term is denoted by fv(·). A closed type/term has no free variables. A substitution
of a free variable 𝛼 by 𝑘 in some type or term 𝑡 is denoted by 𝑡 [𝛼 ← 𝑘].
The type identifier byte is the predefined type for the smallest addressable memory piece in

TypedC. Additional type names are introduced using a finite set of type name definitions Δ: each
definition associates a type expression to a type identifier n and a (possibly empty) list of parameters.
Type names 𝜂 are either the predefined type identifier byte or the application of a type identifier
n to a list of terms corresponding in size and type to the list of parameters in the definition of n.
We denote by Δ(n(𝑒1, . . . , 𝑒ℓ)) the type expression obtained by substituting the parameters in the
definition of n by the values of terms 𝑒1, . . . , 𝑒ℓ respectively. We omit parentheses in type names
when the list of parameters is empty. For instance, the definition of type name tag in Fig. 2 has one
parameter, and it is instantiated in type buffer to obtain the type name tag(12); an example of
type name without parameters is rbcolor in Fig. 3. Additional constraints on the type definitions
and their instantiation are exposed in §3.2. The set Δ is an input of our analysis, provided by

the user after translation from a C-like surface syntax, which predefines standard C types like
int, long, etc. Fig. 6 contains a complete example of a user-provided specification for Δ.

Pointer type expressions are built on type names. The simplest form is “𝜂★”, which denotes the set
of start addresses for memory regions whose tags include 𝜂 in the memory layout (i.e., allocation

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

A Dependent Nominal Physical Type System for the Static Analysis of Memory in Low Level Code NNN:9

Table 1. Physical dependent types of TypedC

symbolic variables: 𝛼, self ∈ α integer constants: ℓ ∈ Z, bit-vector constants: 𝑘 ∈ V

type identifiers: n ∈ N operators: ⋄ (bit-vector, comparison and logical)

Δ ∋ def n(𝛼1 : 𝜏1, . . . , 𝛼ℓ : 𝜏ℓ) := 𝜏 type name definition with fv(𝜏) ⊆ {𝛼1, . . . , 𝛼ℓ }

Type names 𝜂 ::= byte | n(𝑒1, . . . , 𝑒ℓ)
Types T ∋ 𝜏 ::= 𝜂 | 𝜂★ + 𝑒 | {self : 𝜏 | 𝑒} | 𝜏1 × 𝜏2 | 𝜏[𝑒] | 𝜏1 ∪ 𝜏2 | ∃𝛼 : 𝜏1 . 𝜏2 | 𝜏1/|𝜏2
Terms E ∋ 𝑒 ::= 𝑘 | 𝛼 | 𝑒1 ⋄ 𝑒2 | 𝑒1 :: 𝑒2 | 𝑒 [𝑘1 ..𝑘2]

map, see §4.1). To address a byte at an offset 𝑒 inside a memory region labelled by 𝜂, we use type
expression “𝜂★ + 𝑒”. The null address is not a value of 𝜂★. However, possibly null pointers of type
𝜂, whose surface syntax is 𝜂?, are encoded using union and refined type expressions (see Fig. 3 and
below). The values of pointer type occupyW bytes, whereW is a constant fixed by the ABI. Like in
§2, we supposeW = 4 which also equals size of int. Notice that there are architecture-dependent
aspects of the translation from the C-like surface language of specification (e.g., endianness) which
come from the ABI parameter used by the analysis.
A refinement type expression “{self : 𝜏 | 𝑒}” specifies the set of values 𝑣 of type 𝜏 such that

the term 𝑒 evaluates to true (i.e., ≠ 0) when the symbolic variable self is replaced by 𝑣 . For
instance, rbcolor in Fig. 3 is a refined type. Notice that 𝑒 need not to refer to the self variable,
e.g., {self : byte | 1 == 0} denotes a type of byte’s size with an empty set of values.

Product type expressions “𝜏1×𝜏2” denote the bit-vector concatenation of a value in 𝜏1 with a value
in 𝜏2. They are used to specify record types in C, e.g., the myrb_node type in Fig. 3. We use the
shorthand 𝜏𝑛 for a product of 𝑛 types 𝜏 . The memory layout induced by the alignment constraints
(i.e., padding) is made explicit using product types. For example a record type with two fields of
type byte and int is specified by byte × byte[3] × int if int are 4-bytes.

Array type expressions “𝜏[𝑒]” generalize the product to the concatenation of 𝑒 values of type 𝜏
(𝑒 may be symbolic). Arrays with symbolic sizes are used to specify flexible array members like
in the vector type on Fig. 2. To keep notations simple, we denote by char[sz]★ (e.g., in type
buffer from Fig. 2) a pointer to an array of sz characters, instead of arr_char(sz)★ where
def arr_char(n:int):=char[sz].

Union type expressions “𝜏1 ∪ 𝜏2” specify the union of sets of values of 𝜏1 and 𝜏2. For example, the
possibly null pointer notation 𝜂? is a shorthand for 𝜂 ★∪ {self : byte[W] | self == 0}, which
combines pointer, refinement, product and union type expressions. Notice that our union type is
different from the sum type used in classic dependent types because it is not discriminated; e.g.,
union between types that share values is allowed.

Existential type expressions (or quantified union) “∃𝛼 : 𝜏1. 𝜏2” generalize finite union types to an
unbounded union3. Such types include values 𝑣 of type 𝜏2 [𝛼 ← 𝑣𝛼], i.e., 𝜏2 where 𝑣𝛼 , a value of
type 𝜏1, replaces 𝛼 . Without loss of generality, we suppose that all variables bound by existential
quantifiers have unique names.

Intersection type expressions “𝜏1/|𝜏2” specify a restriction of values of 𝜏1 to the values of 𝜏2, with
𝜏1 a union type including 𝜏2 as member; this expression is mainly used by the analysis.

Terms 𝑒 are built on constants, symbolic variables in an unbounded set α, arithmetic operations,
comparisons, logical operations (with non-null terms interpreted as true, and false otherwise), and
bit-vector operations like concatenation “𝑒1 :: 𝑒2” and extraction “𝑒 [𝑘1 ..𝑘2]” of bits of 𝑒’s value
3Although similar to existential types in System F, our existential types quantify a value variable and not a type variable.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

NNN:10 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

Table 2. Orderings ≺Δ and ≺∃Δ between type expressions.

Δ(𝜂) ≺Δ 𝜂

byte[W] ≺Δ 𝜂★ + 𝑒
𝜏 ≺Δ {𝑥 : 𝜏 | 𝑒}

∀𝑖 ∈ {1, 2} : 𝜏𝑖 ≺Δ 𝜏1 × 𝜏2
𝜏 ≺Δ 𝜏[𝑒]

∀𝑖 ∈ {1, 2} : 𝜏𝑖 ≺Δ 𝜏1 ∪ 𝜏2

𝜏1 ≺Δ 𝜏1/|𝜏2
∀𝑘 ∈ V : 𝜏2 [𝛼 ← 𝑘] ≺Δ ∃𝛼 : 𝜏1 . 𝜏2

𝜏1 ≺∃Δ ∃𝛼 : 𝜏1 . 𝜏2

between positions 𝑘1 (included) and 𝑘2 (excluded). Actually, terms may belong to any arithmetic
theory with a sound decision procedure for entailment. In our analysis, we use the linear integer
arithmetic with modulo constraints or bit-vector constraints, which is the logic theory underlying
our numerical abstract domain (see §8).

3.2 Well-formed type definitions
Intuitively, def 𝜂 := 𝜏 defines new kinds of contiguous memory regions “of type 𝜂”. Specifically, a
definition (i) constrains the possible values that can be stored in these regions (“regions of type 𝜂
contain values of type 𝜏”), and (ii) it constrains the relations between the different regions (“regions
of type 𝜂 are a subset of the regions of type 𝜏”). The latter interpretation hints at a well-founded
ordering between the tags of regions (provided in §5); this ordering derives from an ordering
between type expressions, denoted ≺Δ, which is formally defined in Table 2. The relation ≺Δ is a
strict preorder over type expressions that mostly corresponds to the sub-term relation. We explain
in the following the differences with the sub-term relation. The rule Δ(𝜂) ≺Δ 𝜂 relates a type name
with the expression given by its definition. Note that this rule implies that 𝜂 and Δ(𝜂) are not
equivalent, which makes our type system nominal. The rule byte[W] ≺Δ 𝜂★ + 𝑒 (and the absence
of a rule 𝜂 ≺Δ 𝜂★ + 𝑒) is another difference with the sub-term relation. Indeed, a pointer type
𝜂★ + 𝑒 does not “contain” values of type 𝜂, but it is a new scalar type holding an address. This rule
is related to the C notion of forward reference to type names in pointer types. The absence of a
rule 𝜏2 ≺Δ 𝜏1/|𝜏2 also breaks the sub-term relation and comes from the asymmetric nature of our
intersection. However, we require that 𝜏2 is related by the transitive closure of ≺Δ to 𝜏1/|𝜏2:

Reqirement 1 (Well-formed intersection types). Any type expression𝜏1/|𝜏2 satisfies𝜏2 ≺∗Δ 𝜏1,
i.e., type 𝜏2 is either 𝜏1 (degenerate case) or a type used in the definition of 𝜏1.

The rule ∀𝑘 ∈ V : 𝜏2 [𝛼 ← 𝑘] ≺Δ ∃𝛼 : 𝜏1 . 𝜏2 defines a sub-term ordering modulo the instantiation
of the existentially quantified variable (whose possible values is over-approximated by V). We don’t
want a rule 𝜏1 ≺Δ ∃𝛼 : 𝜏1. 𝜏2 as the type ∃𝛼 : 𝜏1. 𝜏2 may not contain values of the type 𝜏1. However,
we do want to prevent circular type definitions (except through a pointer type, like in C). So, we
extend ≺Δ with the relation ≺∃Δ defined by 𝜏1 ≺∃Δ ∃𝛼 : 𝜏1 . 𝜏2 and we ask the following:

Reqirement 2 (Well-formed Δ). The relation ≺Δ ∪ ≺∃Δ induced by Δ is well-founded.

The above requirement implies in particular the following property:

Proposition 1. The relation ≺Δ is well-founded, i.e., if 𝜏1 ≺Δ 𝜏2 is understood as the successor
relation 𝜏1 → 𝜏2 in a graph, then ≺Δ induces a DAG over type expressions.

An example of such a graph is given in Fig. 5. The DAG induced by ≺Δ (and its evolution in §5
that includes offsets) ensures type-based reasoning over aliasing [24] and separation. In particular,
two pointers of type 𝜂1★+ 𝑒1 and 𝜂2★+ 𝑒2 such that neither 𝜂1 ≺∗Δ 𝜂2 nor 𝜂2 ≺∗Δ 𝜂1 do not alias. For
instance, in Fig. 2, a pointer of type buffer* cannot be used to write into a region of type vector.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

A Dependent Nominal Physical Type System for the Static Analysis of Memory in Low Level Code NNN:11

nullptr≜{p:byte[W] | p==O}
inode?≜inode★ ∪ nullptr
def int := byte[4]
def inode:= inode?

× int
× node★
× node★

def node := (inode?
× int
× nullptr
× nullptr)

∪ inode
node★ new_leaf(int);
inode★ extend(node★, node★,

node★);

node(
inode?×int×nullptr×nullptr

)
∪ inode

inode?×int
×nullptr×nullptr inode

inode?×int
×node★×node★

inode?≜
inode★∪nullptr

int

nullptr≜
{p:byte[W]|p==0} node★inode★

byte[W] byte[4]

byte

path(𝜌1
node, 10)
=

node,10(
inode?×int×
nullptr×nullptr

)
∪ inode,10
inode?×int×
nullptr×nullptr,10

nullptr,2

{p:byte[W]|p==0},2

byte[W],2

byte,0

path(𝜌2
node, 10)
=

node,10(
inode?×int×
nullptr×nullptr

)
∪ inode,10

inode,10
inode?×int×
node★×node★,10

node★,2

byte[W],2

byte,0

𝜌1
node ≜ node(

inode?×int×nullptr×nullptr
)
∪ inode

inode?×int×nullptr×nullptr

inode★∪nullptr

inode★ int nullptr nullptr

byte[W]

byte×W... byte

byte[4]

byte ×4... byte

byte[W]

byte×W... byte

byte[W]

byte×W... byte

𝜌2
node ≜ node(

inode?×int×nullptr×nullptr
)
∪ inode

inode

inode?×int×node★×node★

inode★∪nullptr

nullptr int node★ node★

byte[W]

byte×W... byte

byte[4]

byte ×4... byte

byte[W]

byte×W... byte

byte[W]

byte×W... byte

Fig. 5. Full specification (top left), DAG representation of ≺Δ (top middle), two region tags for node out of 4

possible (bottom), and two paths (top right) in these region tags. Circled nodes are those whose type is a type

name. The notations nullptr and inode? are not type names, but textually expanded notations used only

for the sake of concision.

4 SEMANTICS OF PHYSICAL DEPENDENT TYPES
The interpretation of type expressions used by our type system depends on the memory model
we consider. Usually, a memory model directly maps an allocated address to its type; thus, a
pointer type 𝜏∗ represents all the start addresses of regions containing a value of type 𝜏 . Our type
system is nominal: pointer types 𝜂★ can refer only to a type name 𝜂. Type names are used in our
memory model to tag memory regions. This restriction on pointer types allows us in particular
(i) to distinguish pointers to different regions even if these regions hold values of the same types
(i.e., it enables a more precise alias analysis), and (ii) to change the value stored in a region without
changing the type of pointers to this region, thereby allowing mild updates. More precisely, type
names correspond to a set of region tags, where region tags identify memory regions and represent
an invariant on the contents of a memory region (§4.2). Possible aliases between pointers are
determined from the relations between region tags (§5). A region may switch between different
region tags if some conditions are met (§6). We begin our exposition by presenting the memory
model and the syntax of region tags.

4.1 Memory model
We first introduce some notations. We denote by ⟨⟩ the empty sequence, ⟨𝜎1, . . . , 𝜎𝑛⟩ is a sequence
of 𝑛 elements, ®𝜎 is a sequence of | ®𝜎 | elements with ®𝜎 [𝑖] the 𝑖th element of ®𝜎 . Concatenation ®𝜎 · ®𝜎 ′
and the last element last(®𝜎) are defined as usual. If 𝜎𝑖 appears in ®𝜎 , we denote it by 𝜎𝑖 ∈ ®𝜎 . The

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

NNN:12 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

notation [ℓ ..𝑢] denotes the set {𝑖 | ℓ ≤ 𝑖 < 𝑢} ⊂ Z and V𝑛 is the set of 𝑛-bytes bit-vectors. dom(𝑓)
and img(𝑓) respectively represents the domain and image of a function.

We consider a concrete memory model, formally defined in Table 3, where the set of addresses A
is a subset of VW . At each allocated address in the heap is stored a value in V1, i.e., values of one
byte. Because our analysis is based on a type abstraction of the memory, the concrete memory model
also requires an allocation map m, which associates the first address in a range of 𝑛 contiguous
addresses, or region, to a type-based abstraction of the value stored. However, the abstraction used
is not simply a type expression, but an ordered tree of type expressions which represents a possible
memory layout for a type, called a region tag 𝜌 ∈ R. For instance the two region tags at the bottom
of Fig. 5 represent two of the four possible layouts for node (the missing cases are when all the
pointers are null, and when all are non-null).

In Table 3, region tags are defined as trees whose leaves are byte; the number of those leaves (i.e.,
width of the tree), is called region tag’s size. However, the structure of a region tag 𝜌 in well-typed
programs is constrained by the fact that 𝜌 is one of the possible coherent memory layout for a type
𝜏 ; this constraint on well-formed region tags is formally stated as 𝜌 ∈ [[𝜏]]m with [[·]]m defined in
§4.2. Intuitively, a well-formed region tag is a tree whose root (computed by function typ) is a type
name; all the children 𝜏 of a node 𝜏 ′ in the tree are such that 𝜏 ′ ≺Δ 𝜏 ; each node has a single child,
except record types 𝜏1 × . . . × 𝜏𝑛 (that have 𝑛 children), array types 𝜏[𝑒] (“value of 𝑒” children), and
byte (which are the leaves of the tree). In Fig. 5, both 𝜌1node and 𝜌2node are well-formed region tags.

Region tags relate bytes at different offsets: e.g., in Fig. 5, pointers to the children nodes are either
both null or both non-null. We need to perform byte-level reasoning like this. To represent the
𝑘th byte in a memory layout 𝜌 , we use a byte tag defined by the pair (𝜌, 𝑘). For instance, the start
address of the second field of type node is denoted by (𝜌1node, 4) in Fig. 5 (forW = 4). From a given
allocation map m, we define (in Table 3) the corresponding byte allocation map m as a mapping
from an address 𝑎 to its byte tag built from the tag m(𝑎0) of the region starting at 𝑎0 such that 𝑎−𝑎0
is positive and less than the size of the region (i.e., size(m(𝑎0))). The definition of allocation maps
does not ensure the separation between regions. Indeed, two addresses 𝑎 and 𝑎′ such that 𝑎 < 𝑎′

may be tagged by m such that the tag associated to 𝑎 has a size (number of leaves) greater than
𝑎′ − 𝑎, which means that the regions starting at 𝑎 and 𝑎′ are overlapping. Therefore, we require in
the following sections4 that the allocation maps satisfy the following constraints ensuring region
separation (in addition to well-formedness of region tags):

Reqirement 3 (Well-formed allocation map). An allocation map m is well-formed iff ∀𝜌 ∈
img(m) the root of 𝜌 , i.e., typ(𝜌), is a type name 𝜂; 𝜌 is well-formed, i.e., 𝜌 ∈ [[𝜂]]m; and ∀𝑎1, 𝑎2 ∈
dom(m) the regionsm(𝑎1) andm(𝑎2) are separated, i.e., 𝑎1+size(m(𝑎1)) ≤ 𝑎2 ∨𝑎2+size(m(𝑎2)) ≤ 𝑎1.

4.2 Denotations of type expressions
For a given allocation map m, closed type expressions 𝜏 have a double interpretation in TypedC:
as sets of values L𝜏 Mm and as sets of region tags [[𝜏]]m. These denotations are defined in Table 4
and the interpretation of a closed term 𝑒 into a bit-vector denoted eval (𝑒) is done according to the
semantics of C operators. Most of these definitions are obvious, we present the most interesting
ones. Intuitively, the set of values of a pointer type L𝜂★ + 𝑒 Mm contains the addresses 𝑎 where 𝑎
belongs to a region starting at address 𝑎0, the region tag m(𝑎0) contains a node 𝜂 at some offset 𝑜 ,
and the offset of 𝑎 matches 𝑒 (i.e. 𝑎 − 𝑎0 = 𝑜 + eval (𝑒)). For instance, in Fig. 5, if m(0x1000) = 𝜌2node,
then 0x1006 ∈ L int★+2 Mm because int appears at offset 4 in 𝜌2node. Formally, an address 𝑎 belongs
to L𝜂★ + 𝑘 Mm if the pair (𝜂, 𝑘) appears in path(m(𝑎)) defined as follows:

4In the following subsection of this section, allocation maps are arbitrary to avoid the definition of [[·]]m to be circular.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

A Dependent Nominal Physical Type System for the Static Analysis of Memory in Low Level Code NNN:13

Table 3. Memory model for TypedC.

Values 𝑣 ∈ V Addresses 𝑎 ∈ A, A ⊂
(
VW \ {0}

)
⊂ V

Allocation maps M ∋ m : A ⇀ R Region tags R ∋ 𝜌 ::= byte | 𝜏/®𝜌 for 𝜏 . byte, 𝜏 closed
Byte allocation maps M ∋ m : A ⇀ R Byte tags R ∋ (𝜌, 𝑘) s.t. 𝜌 ∈ R, 0 ≤ 𝑘 < size(𝜌)

Type-offsets P ≜ T ×N Path in region tag 𝜋 ∈ P+

size(𝜌) ≜
{

1 if 𝜌 ≡ byte

size(®𝜌) if 𝜌 ≡ 𝜏/®𝜌

typ(𝜌) ≜
{

byte if 𝜌 ≡ byte
𝜏 if 𝜌 ≡ 𝜏/®𝜌′

size(⟨𝜌0⟩ · ®𝜌) ≜ size(𝜌0) + size(®𝜌)
m(𝑎) ≜ (m(𝑎0), 𝑎 − 𝑎0)

if 𝑎0 ∈ dom(m) and
0 ≤ 𝑎 − 𝑎0 < size(m(𝑎0))

Table 4. Value denotation (left) and region tag denotation (right) of closed type expressions

L · Mm :T→ P(V) [[·]]m :T→ P(R)
L byte Mm ≜ V1 [[byte]]m ≜ {byte}

L n(𝑒1, . . .) Mm ≜ LΔ(n(𝑒1, . . .)) Mm [[n(𝑒1, . . .)]]m ≜ {n(𝑒1, . . .)/𝜌 | 𝜌 ∈ [[Δ(n(𝑒1, . . .))]]m}
L𝜂★ + 𝑒 Mm ≜ {𝑎 ∈ A | (𝜂, eval (𝑒)) ∈ path(m(𝑎))} [[𝜂★ + 𝑒]]m ≜ {(𝜂★ + 𝑒)/byte[W]}

L {𝑥 : 𝜏 | 𝑒} Mm ≜ {𝑣 ∈ L𝜏 Mm | eval (𝑒 [𝑥 ← 𝑣]) ≠ 0} [[{𝑥 : 𝜏 | 𝑒}]]m ≜ {({𝑥 : 𝜏 | 𝑒})/𝜌 | 𝜌 ∈ [[𝜏]]m}
L𝜏1 × 𝜏2 Mm ≜ {𝑣1 :: 𝑣2 | 𝑣𝑖 ∈ L𝜏𝑖 Mm} [[𝜏1 × 𝜏2]]m ≜ {(𝜏1 × 𝜏2)/⟨𝜌1⟩ · ⟨𝜌2⟩] | 𝜌𝑖 ∈ [[𝜏𝑖]]m}

L𝜏[𝑒] Mm ≜ {𝑣0 :: . . . :: 𝑣𝑠−1 |
𝑠 = eval (𝑒), ∀𝑖 ∈ [0..𝑠], 𝑣𝑖 ∈ L𝜏 Mm}

[[𝜏[𝑒]]]m ≜ {(𝜏[𝑒])/⟨𝜌0⟩ · . . . · ⟨𝜌𝑠−1⟩] |
𝑠 = eval (𝑒), ∀𝑖 ∈ [0..𝑠] . 𝜌𝑖 ∈ [[𝜏]]m}

L𝜏1 ∪ 𝜏2 Mm ≜ L𝜏1 Mm ∪ L𝜏2 Mm [[𝜏1 ∪ 𝜏2]]m ≜ {(𝜏1 ∪ 𝜏2)/𝜌 | 𝜌 ∈ [[𝜏1]]m ∪ [[𝜏2]]m}

L∃𝛼 : 𝜏1 . 𝜏2 Mm ≜
⋃

𝑣1∈L𝜏1 Mm

L𝜏2 [𝛼 ← 𝑣1] Mm [[∃𝛼 : 𝜏1 . 𝜏2]]m ≜ {(∃𝛼 : 𝜏1 . 𝜏2)/𝜌 |
∃𝑣 ∈ L𝜏1 Mm . 𝜌 ∈ [[𝜏2 [𝛼 ← 𝑣]]]m}

L𝜏1/|𝜏2 Mm ≜ L𝜏1 Mm ∩ L𝜏2 Mm [[𝜏1/|𝜏2]]m ≜ {(𝜏1/|𝜏2)/𝜌1 | 𝜌1 ∈ [[𝜏1]]m ∧ 𝜏2 ∈ 𝜌1}

Definition 4.1 (Paths in region tags). Let 𝜌 be a well-formed tag and 𝑘 ∈ [0.. size(𝜌)] a constant.
The path inside 𝜌 for offset 𝑘 is computed by path : R→ P+ defined by:

path(byte, 0) ≜ ⟨(byte, 0)⟩
path(𝜏/(®𝜌1 · ⟨𝜌⟩ · ®𝜌2), 𝑘) ≜ ⟨(𝜏, 𝑘)⟩ · path(𝜌, 𝑘 − size(®𝜌1)) if size(®𝜌1) ≤ 𝑘 < size(®𝜌1 · ⟨𝜌⟩)

The top-right part of Fig. 5 gives two paths for the byte tags (𝜌1node, 10) and (𝜌2node, 10) respectively.
The above definition and the one of L𝜂★+𝑘 Mm (Table 4) implies that this last set contains all addresses
tagged by m with a (𝜌, 𝑘 ′) such that (𝜂, 𝑘) is somewhere in the path of (𝜌, 𝑘 ′) (and not only at the
start of this path). If we continue our previous example where m(0x1010) = (𝜌2node, 10), we can see
that the address 0x1010 belongs to all of L node★ + 10 Mm, L inode★ + 10 Mm, and L byte★ + 0 Mm.
The region tags of existential types are obtained by instantiating the quantified variable with

each value in its definition type. For an array type 𝜏[𝑒], a region tag is built from any combination
of region tags of its elements. The tags of intersection types 𝜏1/|𝜏2 recall the Reqirement 1 for
well-formed intersection types stating that 𝜏2 is part of definition of 𝜏1.

The values of a type L𝜏 Mm are not necessarily bit-vectors of the same size. For instance, consider
an array type where elements have a size fixed by an existentially quantified variable like in the
vector type in example from Fig. 2. However, C forbids type definitions where flexible size types

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

NNN:14 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

appear as a left member of a product and, by extension, as a type of elements in an array type.
Therefore, the following hypothesis on type expressions will be frequent:

Definition 4.2 (Constant size type). A type 𝜏 has a constant size if there exists 𝑠 ∈ N such that for
any m well-formed, ∀𝜌 ∈ [[𝜏]]m : size(𝜌) = 𝑠 . If 𝜏 has a constant size, we denote it by size(𝜏).

Definition 4.3 (Constant prefix hypothesis). The set of types T satisfies the constant prefix hy-
pothesis iff all its elements 𝜏 are such that:
• If 𝜏 is a product type 𝜏1 × 𝜏2, then 𝜏1 has a constant size.
• If 𝜏 is an array type 𝜏 ′[𝑒], then 𝜏 ′ has a constant size.

This hypothesis allows simplifying some abstract operations in the analyzer, as we will now see.

5 THE DAG AND LATTICE OF TYPE-OFFSETS
The type definitions Δ and type expressions 𝜏 of TypedC are used to define two abstractions of
addresses that help reasoning about aliasing: the DAG and lattice of type-offsets. Given an allocation
map m ∈ M, we saw that the denotation of pointer types L𝜂★ + 𝑒 Mm provides a meaning to the
pair of type name 𝜂 and constant offset eval (𝑒). This can be generalized to any closed type-offset
pair (TO) (𝜏, 𝑘) ∈ P ≜ T × N. We can view a type-offset pair (𝜏, 𝑘) as an abstraction of the set of
addresses 𝛾P,m (𝜏, 𝑘) ≜ {𝑎 ∈ A | (𝜏, 𝑘) ∈ path(m(𝑎))}. To obtain a sound abstraction, 𝛾P,m has to
be monotonic [18]; this allows us to derive the lattice of type-offset, detailed later in this section.
Observe that a concrete address 𝑎 goes through 3 successive levels of abstractions: (i) the byte tag
(𝜌, 𝑘) = m(𝑎), (ii) the path 𝜋 = path(𝜌, 𝑘), and finally (iii) one of the type-offset (𝜏, 𝑘 ′) in 𝜋 . In a
type system with both unions and records, none of these abstractions are exact, thereby each is
useful and needed. In particular, we also need to reason about paths (i.e., sequences of type-offsets),
and for this we rely on the DAG of type-offsets.

The path abstraction using the DAG of type-offsets. For a given allocation map m ∈ M, we define in
Table 5 a strict order relation, the type-offset derivation relation ≺Pm ⊆ P × P. The graph (P, ≺Pm)
is called a DAG of type-offsets. Such a DAG is a sound abstraction of all the possible sequences in
path(𝜌, 𝑘) for all well-formed 𝜌 ∈ R and all 𝑘 s.t. 0 ≤ 𝑘 < size(𝜌).
Intuitively, the relation ≺Pm follows the derivation relation ≺Δ on type expressions (see Fig. 2),

adding the offset 𝑘 . The relation between offsets in ≺Pm depends on the size of type expressions
involved in product or array types, which is not always a constant in the presence of both union
and record types. For this reason, we have two sets of rules: toProd1, toProd2 and toArr apply
to type-offsets whose first component fails to satisfy the constant prefix hypothesis in Def. 4.3,
while toProd1Cst, toProd2Cst and toArrCst simplify the previous rules respectively when
the hypothesis is met. We prove in App. A that ≺Pm is well-founded when ≺Δ is well-founded.
Using ≺Pm, we define in Table 6 the set of paths in the DAG of type-offsets, P+m, where each path
ends in (byte, 0) (as paths of well-formed region tags end in byte). We also prove in App. A that
P+m over-approximates the set {m(𝑎) | 𝑎 ∈ dom(m)} of paths in m. Finally, we define Pm, which
restricts P to the type-offsets found in the DAG of type-offsets for m.

The lattice of type-offsets. For a givenm, the join semi-lattice of type-offsets𝑇𝑂m = ⟨Pm, ⊑Pm, ⊔Pm ⟩
is used to concretize and to define the join and inclusion operations of our representation of
addresses. The order relation ⊑Pm is defined as the domination relation in the type-offset DAG
induced by ≺Pm, whose only start node is (byte, 0). This implies that ⊑Pm is a tree relation of root
(byte, 0). Therefore, (𝜏1, 𝑘1) ⊔Pm (𝜏2, 𝑘2) is defined to be the least-common ancestor on this tree
relation.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

A Dependent Nominal Physical Type System for the Static Analysis of Memory in Low Level Code NNN:15

Table 5. Derivation relation ≺Pm between closed type-offsets for a fixed m (% is bit-vectors’ modulo operation)

toDef
𝜂 ≠ byte

(Δ(𝜂), 𝑘) ≺Pm (𝜂, 𝑘)

toPtr

(byteW , 𝑘) ≺Pm (𝜂★ + 𝑒, 𝑘)

toRef

(𝜏, 𝑘) ≺Pm ({self : 𝜏 | 𝑒} , 𝑘)

toUnion1

(𝜏1, 𝑘) ≺Pm (𝜏1 ∪ 𝜏2, 𝑘)

toUnion2

(𝜏2, 𝑘) ≺Pm (𝜏1 ∪ 𝜏2, 𝑘)

toInter

(𝜏1, 𝑘) ≺Pm (𝜏1/|𝜏2, 𝑘)

toProd1
𝜌1 ∈ [[𝜏1]]m size(𝜌1) > 𝑘

(𝜏1, 𝑘) ≺Pm (𝜏1 × 𝜏2, 𝑘)

toProd2
𝜌1 ∈ [[𝜏1]]m 𝑠 = size(𝜌1) ≤ 𝑘

(𝜏2, 𝑘 − 𝑠)≺Pm (𝜏1 × 𝜏2, 𝑘)

toArr
®𝜌 · ⟨𝜌′⟩ ∈ [[𝜏]]+m size(®𝜌) ≤ 𝑘 < size(®𝜌 · ⟨𝜌′⟩)

(𝜏, 𝑘 − size(®𝜌)) ≺Pm (𝜏[𝑒], 𝑘)

toEx
𝑣 ∈ L𝜏1 Mm

(𝜏2 [𝛼 ← 𝑣], 𝑘) ≺Pm (∃𝛼 : 𝜏1 .𝜏2, 𝑘)

toProd1Cst
size(𝜏1) > 𝑘

(𝜏1, 𝑘) ≺Pm (𝜏1 × 𝜏2, 𝑘)

toProd2Cst
𝑠 = size(𝜏1) ≤ 𝑘

(𝜏2, 𝑘 − 𝑠) ≺Pm (𝜏1 × 𝜏2, 𝑘)

toArrCst
𝑠 = size(𝜏)

(𝜏, 𝑘%𝑠) ≺Pm (𝜏[𝑒], 𝑘)

Table 6. Well-formed type-offsets and their concretization into sequences of type-offsets and addresses

P+m ≜{𝜋 ∈ P+ | ∀𝑖 . 𝜋 [𝑖 + 1]≺Pm𝜋 [𝑖]∧
last(𝜋) = (byte, 0)}

𝛾P+,m (𝜏, 𝑘) ≜ {𝜋 ∈ P+m | (𝜏, 𝑘) ∈ 𝜋}

Pm ≜{(𝜏, 𝑘) ∈ P | ∃𝜋 ∈ P+m . (𝜏, 𝑘) ∈ 𝜋}
𝛾P,m (𝜏, 𝑘) ≜ {𝑎 ∈ A |m(𝑎) ∈ 𝛾P+,m (𝜏, 𝑘)}
𝛾P (𝜏, 𝑘) ≜ {𝑎 ∈ A | ∃m. 𝑎 ∈ 𝛾P,m (𝜏, 𝑘)}

In Table 6, we decompose the definition of 𝛾P,m using the concretization 𝛾P+,m of a type-offset
into the set of paths that traverse it. This allows us to prove (see App. A) the following fundamental
theorems for physical subtyping [10] and type-based alias analysis [24] in our type system.

Theorem 5.1. Let m be an allocation map and (𝜏1, 𝑘1), (𝜏2, 𝑘2) ∈ Pm.
(1) If (𝜏1, 𝑘1) ⊑Pm (𝜏2, 𝑘2) then 𝛾P,m (𝜏1, 𝑘1) ⊆ 𝛾P,m (𝜏2, 𝑘2), i.e., a dominating type-offset includes

the addresses of the dominated type-offset.
(2) If 𝛾P+,m (𝜏1, 𝑘1) ∩ 𝛾P+,m (𝜏2, 𝑘2) = ∅ then 𝛾P,m (𝜏1, 𝑘1) ∩ 𝛾P,m (𝜏2, 𝑘2) = ∅, i.e., if there is no path

going through both (𝜏1, 𝑘1) and (𝜏2, 𝑘2) then they don’t share any addresses.

Example 5.2. For any m in Fig. 5, we have (int, 0)≺Pm (inode, 4) and (int, 0)≺Pm (node, 4).
Because (int, 0) is the least common predecessor of each in the type-offset DAG, it is the immedi-
ate dominator, and thus the result of (inode, 4) ⊔Pm (node, 4). Furthermore, pointers typed by
(inode, 4) and (node, 8) do not alias as there is no path shared between these type-offsets.

Abstracting over allocation maps. Both relations defined above, ≺Pm and ⊑Pm, depend on an
allocation map. However, this allocation map is not known during the analysis. Therefore, we
abstract it by defining ≺P ≜

⋃
m∈M ≺Pm. The direct definition of ≺P is simple under the constant

prefix hypothesis: just replace ≺Pm by ≺P in Table 5, and rewrite the premise of the rule toEx as
“∃m ∈ M well-formed, 𝑣 ∈ L𝜏1 Mm” to be independent of a fixed m. Reasoning about aliasing without
the constant prefix hypothesis is possible but harder. Finally, the join semi-lattice ⟨P, ⊑P, ⊔P ⟩ is
defined by domination on the DAG induced by ≺P, like we did for ⟨Pm, ⊑Pm, ⊔Pm ⟩.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

NNN:16 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

6 CONCRETE SEMANTICS
The goal of our type system is to provide the following invariant on the heap: there exists an
allocation map such that the heap is well-typed. This invariant, built on an enriched program
semantics (detailed in App. B.2) that adds an allocation map to the heap, allows a static analysis
to gain precision when values are loaded, but simultaneously requires the analysis to prove that
stores maintain the invariant.

Concrete states. In an untyped execution semantic, program states 𝑠 are pairs (𝜎, h) ∈ S of a
store Σ ∋ 𝜎 : X→ V mapping program variables (including registers) in X to values, and a heap
h : A ⇀ V1 mapping allocated addresses to one byte values. We consider a typed semantics by
constraining the values in the stack by a type and those in the heap by an allocation map m. Thus,
for a given m, the set of values that can be stored at addresses tagged by 𝜌 ∈ R is defined as follows:

L byte Mm ≜ V1 L𝜏/®𝜌 Mm ≜ L𝜏 Mm ∩ {𝑣0 :: . . . :: 𝑣𝑛−1 | 𝑣𝑖 ∈ L ®𝜌 [𝑖] Mm, 𝑖 ∈ [0..𝑛]} (1)

Awell-typed heap is a pair (m, ℎ) wherem is well-formed, dom(ℎ) = dom(m) and for all 𝑎 ∈ dom(m),
ℎ(𝑎) :: . . . :: ℎ(𝑎 + size(m(𝑎)) − 1) ∈ L m(𝑎) Mm. Intuitively, well-typedness constrains the values in
the heap to belong to those of the corresponding region in the allocation map.

Rules for load. Load rules use the above constraints to extract knowledge about the value being
loaded. Let 𝑎 ∈ A be an address and ℓ ∈ N a strictly positive integer such that [𝑎..𝑎 + ℓ] ∈ dom(ℎ).
We denote by h[𝑎..𝑎+ ℓ] the load from heap operation which returns the bit vector of size ℓ obtained
by concatenation of values ℎ(𝑎) :: ℎ(𝑎 + 1) :: . . . :: ℎ(𝑎 + ℓ − 1). The store to heap operation at
address 𝑎 on ℓ consecutive values with the new value 𝑣 ∈ Vℓ is denoted by h[𝑎..𝑎 + ℓ ← 𝑣].

Proposition 2 (Typed Load). Let (m, ℎ) be a well-typed heap and 𝑎 be an address such that
[𝑎..𝑎 + ℓ] ⊆ dom(ℎ) for some ℓ and (𝜌, 𝑘) = m(𝑎). Then h[𝑎..𝑎 + ℓ] ∈ { 𝑣 [𝑘..𝑘 + ℓ] | 𝑣 ∈ L 𝜌 Mm }.

The above proposition enables inferring properties about the contents of the heap. Suppose a
C function which receives a pointer p of type node★ (like extend in Fig. 5). If we load 4 bytes
from p+8, we know that we will receive a value 𝑣 in L node★ Mm or in L nullptr Mm (depending on
the initial value of (m, ℎ)). Furthermore, if the test 𝑣 equals 0 succeeds, because 0 ∉ L node★ Mm

we deduce that the region corresponding to p cannot have 𝜌2node as a region tag, and that a value
obtained by another load at p+12 would also be in L nullptr Mm (i.e., would also be 0).

Rules for store and mild update. A store is safe if we can find a matching allocation map such that
the new heap is well-typed, but also if existing typing judgments are preserved after the store.

Definition 6.1 (Safe store). Let (m, ℎ) be a well-typed heap, 𝑎 ∈ dom(ℎ) and 𝑣 ∈ Vℓ . The store
h[𝑎..𝑎 + ℓ ← 𝑣] is safe if there exists m′ such that:

(1) (m′, h[𝑎..𝑎 + ℓ ← 𝑣]) is a well-typed heap, and
(2) typing judgments are preserved: ∀𝜏 ∈ T : ∀𝑣 ∈ V : 𝑣 ∈ L𝜏 Mm ⇒ 𝑣 ∈ L𝜏 Mm′

Note that the program may perform a partial store, with 𝑣 ∈ Vℓ at address 𝑎 at some offset 𝑘
inside a memory region of size 𝑠 s.t. 𝑠 > 𝑘 + ℓ . However, this partial store may require changing the
region tag of the whole region. This case is dealt by the following theorem:

Theorem 6.2 (Safe store inside a region). Let (m, ℎ) be a well-typed heap, 𝑎 ∈ dom(ℎ) an
allocated address such that (𝜌, 𝑘) ∈ m(𝑎) and 𝑠 = size(𝜌). Let 𝑣 ∈ Vℓ be a value. Then ℎ[𝑎..𝑎 + ℓ ← 𝑣]
is a safe store iff ℎ[𝑎 − 𝑘..𝑎 − 𝑘 + 𝑠 ← ℎ[𝑎 − 𝑘..𝑎] :: 𝑣 :: ℎ[𝑎 + ℓ ..𝑎 − 𝑘 + 𝑠]] is a safe store.

Following the definitions in Table 4, the condition (2) of Def. 6.1 amounts to a monotony condition
on the pointer types, i.e., ∀𝜂, 𝑘 : L𝜂★+𝑘 Mm ⊆ L𝜂★+𝑘 Mm′ . This is easily proved when m′ = m, which

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

A Dependent Nominal Physical Type System for the Static Analysis of Memory in Low Level Code NNN:17

Table 7. Definition of the abstract domains (top) and their meaning (bottom)

𝛼 ∈ α (symbolic variables) Ê ∋ 𝑒 ::= 𝛼 | 𝑘 | 𝑒 ⋄ 𝑒 | 𝑒 :: 𝑒 | 𝑒 [𝑘1 ..𝑘2] (symbolic expressions)
𝜈 ∈ ν ≜ α→ V (valuation) T̂ ∋ 𝜏 ::= 𝜂 | 𝜏★ + 𝑒 | {self : 𝜏 | 𝑒} | 𝜏1 × 𝜏2 | ... (symbolic types)

𝜈♯ ∈ ν♯ (numerical domain) Γ♯ ∈ Γ♯ ≜ Ê ⇀ (T̂ × Ê) (abstract type environment)
𝑥 ∈ X (prog. variables) 𝜎♯ ∈ Σ♯ ≜ X→ Ê (abstract store) 𝑠♯ ∈ S♯ ::= Σ♯ × Γ♯ × ν♯ (abstract state)

𝛾Ê : Ê→ (ν→ V) 𝛾Ê (𝑒) ≜ 𝜆𝜈. eval(subst(𝑒, 𝜈))

𝛾T̂ : T̂→ (M × ν) → P(V) 𝛾T̂ (𝜏) ≜ 𝜆(m, 𝜈) . L subst(𝜏, 𝜈) Mm with

L𝜏★ + 𝑒 Mm ≜ {𝑎 ∈ A | (𝜏, eval(𝑒)) ∈ path(m(𝑎))}

𝛾Γ♯ : Γ♯ → M→ P(ν) 𝛾Γ♯ (Γ♯) ≜ 𝜆m.
⋂

(𝑒1 ↦→(𝜏,𝑒2)) ∈Γ♯
{𝜈 ∈ ν | 𝛾Ê (𝑒1) (𝜈) ∈ 𝛾T̂ (𝜏★ + 𝑒2) (m, 𝜈)}

𝛾ν♯ : ν♯ → P(ν) (given by the numerical domain)

𝛾Σ♯ : Σ♯ → (ν→ Σ) 𝛾Σ♯ (𝜎♯) ≜ 𝜆𝜈. 𝜆𝑥 . 𝛾Ê (𝜎
♯ (𝑥)) (𝜈)

𝛾M♯ : Σ♯ → (M × ν) → P(S) 𝛾M♯ (𝜎♯) ≜ 𝜆(m, 𝜈) . {(𝜎,ℎ) | 𝜎 ∈ 𝛾Σ♯ (𝜎♯) (𝜈) ∧ (m, ℎ) well-typed}

𝛾S♯ : S♯ → P(S) 𝛾S♯ (𝜎♯, Γ♯, 𝜈♯) ≜
⋃

m∈M,𝜈∈𝛾
Γ♯ (Γ♯) (m)∩𝛾ν♯ (𝜈♯)

𝛾M♯ (𝜎♯) (m, 𝜈)

corresponds to a weak update. Arbitrary changes to m, as in a strong update (that we do not allow)
would break this condition: given 𝑎 ∈ L𝜂★+ 𝑘 Mm, we can change m(𝑎) so that 𝑎 ∉ L𝜂★+ 𝑘 Mm′ after
the update. Consider a pointer p of type inode★ in Fig. 5. The judgment p:inode★would no longer
be true if we wrote 0 at p+8 and p+12. Thus, because pointers to interior nodes exist, we cannot
transform them into leaf nodes, as this would require a strong update.

Mild updates are those that change m, the invariant on the contents of the heap, without breaking
existing typing judgments. They are possible mainly because pointers are to type names, and not
to arbitrary types. For instance, suppose that the function extend in Fig. 5 modifies a leaf node to
turn it into an interior node by changing the two last fields from null to non-null pointers. As there
is no name for the leaf node type, no “pointer to leaf node” type exists. Then, the fact that extend
decreases the number of leaf nodes in m′ is not a problem. We also have L node★ Mm = L node★ Mm′

as the type node★ cannot distinguish a pointer to an interior node from a pointer to a leaf node.
Finally, L inode★ Mm′ increases, which is allowed. Thus, extend is well-typed.
To verify the monotony, we just verify that the paths in the new allocation map m′ contain all

the type-offset pairs (𝜂, 𝑘), for which the type is a type name, that were in the previous allocation
map m (i.e., all the paths must go through the same “circled nodes” in Fig. 5).

Theorem 6.3 (Name matching implies monotony). Let m,m′ ∈ A ⇀ R.
If ∀𝑎 ∈ dom(m) : {(𝜂, 𝑘) ∈ path(m(𝑎))} ⊆ {(𝜂, 𝑘) ∈ path(m′ (𝑎))},
Then ∀𝜏 ∈ T : L𝜏 Mm ⊆ L𝜏 Mm′ and [[𝜏]]m ⊆ [[𝜏]]m′ .

For instance, suppose we try to transform an interior node at address p whose region tag is 𝜌2node
to a leaf node. To make the resulting heap well-typed, the new region tag of p shall be 𝜌1node. But
path(𝜌1node, 10) in Fig. 5 does not contain the type-offset (inode, 10), while path(𝜌2node, 10) does,
so we reject this change. The opposite change, like in the extend function, makes every path go
through more circled nodes, so it is well-typed.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

NNN:18 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

7 TYPE-CHECKING BY ABSTRACT INTERPRETATION
Our analysis is defined as an abstract interpretation [17]. This section shortly presents the defini-
tion of our abstract domains and their meaning using concretization functions 𝛾 , some abstract
transformers and their soundness. App. C details all abstract transformers and their properties.

7.1 Abstract domains
The main abstract domain of our analysis is the domain of abstract states S♯, which mimics the
structure of concrete states S (see §6). Table 7 summarizes the components of this main domain and
their meaning using concretization functions 𝛾 . Below, we give an intuition on each component.
Symbolic expressions Ê are expressions that may contain free variables in the set α of symbolic

variables. A valuation 𝜈 ∈ ν is a mapping from symbolic variables to values. Given a valuation 𝜈 , we
represent by subst(𝑒, 𝜈) the constant term obtained from a symbolic expressions 𝑒 by substitution
of the free variables in 𝑒 with their values in 𝜈 . This is used in the concretization 𝛾Ê: symbolic
expressions are the abstract counterpart of constant values and closed terms in the concrete.
Symbolic types 𝜏 extend the TypedC’s types 𝜏 ∈ T defined in §3 to allow symbolic expressions

instead of constant expressions, but also to permit extended pointer types of the form 𝜏★+ 𝑒 (where
𝜏 is not needed to be a type name 𝜂) to improve precision of the analysis (see the discussion below).
Therefore, we provide a definition for L𝜏★ + 𝑒 Mm that extends Table 4. The concretization function
𝛾T̂ first concretizes a symbolic type 𝜏 to a concrete type 𝜏 = subst(𝜏, 𝜈) given a valuation 𝜈 ; then,
𝛾T̂ uses the set of values L𝜏 Mm for a given allocation map m. Thus, 𝛾T̂ is a function which inputs
both a valuation 𝜈 and an allocation map m.

Abstract type environments Γ♯ have a role similar to type environments Γ in classical type theory,
which map terms to types Γ(𝑒) = 𝜏 , and allow judgments Γ ⊢ 𝑒 : 𝜏 . Similarly, our abstract type
environments Γ♯ map symbolic expressions 𝑒 to a pair (𝜏, 𝑒′) built from a symbolic type and a
symbolic offset; furthermore, Γ♯ (𝑒) = (𝜏, 𝑒′) implies the semantic judgment 𝑠♯ ⊨ 𝑒 : 𝜏★ + 𝑒′ (where
Γ♯ is a component of 𝑠♯). Noteworthy, Γ♯ only relates expressions to pointer types because this
is the only information which may not be represented by the numerical domain. Therefore, the
static analysis gets us a flow-sensitive typing where the properties of the numerical expressions
can be stored by the numerical domain 𝜈♯ and retrieved using the typing rules when necessary.
Because a symbolic expression 𝑒 is concretized to a value (by 𝛾Ê) using a valuation 𝜈 , the abstract
type environment Γ♯ can be interpreted (using 𝛾Γ♯) as a set of constraints on the valuations ν. For
instance, if we derive using Γ♯ that 𝛼 − 1 is typed by {self:byte[4] | self % 2 = 0}, then the
valuation 𝜈 is constrained such that 𝜈 (𝛼) is odd. The second argument of 𝛾Γ♯ is an allocation map
m used to interpret symbolic types as sets of values.
As mentioned above, Γ♯ uses symbolic pointer types 𝜏★ + 𝑒 that extend the pointer types of

TypedC. The reason is that the analysis may infer type judgments of the form 𝑠♯ ⊨ 𝑒 : 𝜏★+𝑒2 where
𝜏 is not a type name (for instance in Fig. 5, if we have 𝑠♯ ⊨ 𝑒 : node★ and the value loaded at 𝑒 + 8 is
null, we can infer that 𝑒 points to a leaf node, i.e. 𝑠♯ ⊨ 𝑒 :

(
inode?× int× nullptr× nullptr

)
★).

One problem of the type judgments on extended types is that they may not be preserved by a mild
update (see §6), unlike judgments of the form 𝑠♯ ⊨ 𝑒 : 𝜂★+ 𝑒′. Thus, in the formalization of abstract
transformers (see App. C), we limit Γ♯ to contain mappings to pairs of the form (𝜂, 𝑒). This means
that judgments of the form 𝑠♯ ⊨ 𝑒 : 𝜏★ + 𝑒2 can be made but cannot be saved in Γ♯, which makes
sound the abstract semantics of store on heap operations.

The numerical domain ν♯ complements the set of constraints of Γ♯. Elements of ν♯ are numerical
constraints over symbolic terms (such as 3 ≤ 𝛼 + 1 ≤ 7), and are interpreted by 𝛾ν♯ as a set of

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

A Dependent Nominal Physical Type System for the Static Analysis of Memory in Low Level Code NNN:19

valuations that match all these constraints. All the classical numerical domains (e.g., intervals [17],
congruences [31], octagons [53],...) can be used.

The memory is abstracted using abstract stores 𝜎♯, which map program variables X to symbolic
expressions Ê, an abstract counterpart to the concrete stores. Abstract stores are concretized by
𝛾Σ♯ to stores using a valuation of the symbolic expressions. There is no abstract counterpart to the
concrete heap. Indeed, one of the goals of our type system is to define invariants on the memory that
allow the program analysis without a representation of the heap (unlike, for instance shape analysis),
in order to obtain fast analysis operations. However, given an abstract store 𝜎♯, an allocation map
m and a valuation 𝜈 , we can define the set of all the possible corresponding concrete states (𝜎,ℎ)
using the function 𝛾M♯ (where M♯ stands for memory). Noteworthy, the only constraint on the heap
is that (m, ℎ) is well-typed, which implies that 𝛾M♯ (𝜎♯) will be empty if m is not well-formed.
The abstract state combines store, typing and numerical abstractions 𝑠♯ = (𝜎♯, Γ♯, 𝜈♯). Their

concretization 𝛾S♯ uses all the available elements in an abstract state to define the most precise set
of possible states: given an allocation map m, we find valuations 𝜈 that fulfil the constraints given
by Γ♯ and 𝜈♯, and we use them to build the set of all possible states using 𝜎♯.
This abstract state (and the analysis) may be easily extended with additional components. One

particularly interesting addition are the points-to predicates [61], which partially represent the heap
by relating pointer values to their contents. A reduced product between the points-to predicates
and our domain allows using aliasing information obtained by types to know which points-to
predicates are preserved by a store operation, or transferring typing judgments about the type of a
pointed value to the type of the pointer.

7.2 Flow-sensitive analysis
Our analysis is derived from the definition of our abstract domain and its concretisation, as usual in
abstract interpretation [16, §45]. The basic transformers required by the abstract domain (reading
from memory, storing in memory, computing expressions, testing conditions) involve additional
operations to interchange information between the different parts of the analysis. We present all
these operations and their soundness theorem in App. C. As an illustration, we provide in Table 8
some of the rules necessary to handle the evaluation of expressions, including loading frommemory,
in a simple language whose semantics is close to that of machine code.

We adopt an axiomatic formalization of the abstract transformers, where different logical asser-
tions correspond to different modules of the analyzer (in particular, abstract domains). For instance,
the abstract evaluation of a program expression 𝐸 into a symbolic expression 𝑒 [42] starting from
the abstract state 𝑠♯0 is denoted by the Hoare triple {𝑠♯0} 𝐸 ⇓ 𝑒 {𝑠

♯

1}. These assertions are defined
by inference rules, so a proof tree may be used as a witness for type-safety [56, 59]. The actual
implementation of the analysis (see §8) is a forward abstract interpretation derived from these
rules: e.g., the implementation of {𝑠♯0} 𝐸 ⇓ 𝑒 {𝑠

♯

1} is a function returning 𝑒 and 𝑠♯1 from 𝑠
♯

0 and 𝐸.
Noteworthy, the implementation does not need to perform any backtracking proof search.
The evaluation of expression start by rules of the form {𝑠♯0} 𝐸 ⇓ 𝑒 {𝑠♯1} done by a symbolic

expression analysis domain [42] translating program expressions to symbolic expressions. When
evaluating a division (rule Binop /), the rule checks that the denominator is not null by querying
the numerical abstract domain (assertion 𝑠♯2 ⊨ 𝑒2 ≠ 0); an alarm is reported otherwise. The presence
of such conditions make our type safety proof to imply the absence of runtime errors.
When a new symbolic expression, like 𝑒 + 𝑒2, is created, new information is attached to it in

the numerical or in the type domain. The rule PtrAdd illustrates the case of the type domain,
which infers symbolic types for symbolic expressions, i.e., assertions 𝑠♯ ⊨ 𝑒 : 𝜏 . When a program

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

NNN:20 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

Table 8. Some abstract transformers rules for expression evaluation and memory load

Const: {𝑠♯0 } 𝑘 ⇓ 𝑘 {𝑠
♯

0 } Var: {𝑠♯0 } 𝑥 ⇓ 𝑠
♯

0 .𝜎
♯ [𝑥] {𝑠♯0 } Load:

{𝑠♯0 } 𝐸 ⇓ 𝑒1 {𝑠
♯

1 } {𝑠♯1 } ∗ℓ 𝑒1 ⇓ 𝑒2 {𝑠
♯

2 }

{𝑠♯0 } ∗ℓ 𝐸 ⇓ 𝑒2 {𝑠
♯

2 }

Binop ⋄:
{𝑠♯0 } 𝐸1 ⇓ 𝑒1 {𝑠♯1 } {𝑠♯1 } 𝐸2 ⇓ 𝑒2 {𝑠♯2 } 𝑠

♯

2 ⊨ 𝑒2 ≠ 0 (if ⋄ = /)

{𝑠♯0 } 𝐸1 ⋄ 𝐸2 ⇓ 𝑒1 ⋄ 𝑒2 {𝑠♯2 }
PtrAdd:

𝑠♯ ⊨ 𝑒 : (𝜏★ + 𝑒1)
𝑠♯ ⊨ (𝑒 + 𝑒2) : 𝜏★ + (𝑒1 + 𝑒2)

LoadSimple:
𝑠
♯

0 ⊨ 𝑒1 : (𝜏★ + 𝑒2) 𝑠
♯

0 ⊨ size(𝜏) = ℓ 𝑠
♯

0 ⊨ 𝑒2 = 0 𝛼 fresh 𝑠
♯

0 ∧ 𝛼 : 𝜏 ⇒ 𝑠
♯

1

{𝑠♯0 } ∗ℓ𝑒1 ⇓ 𝛼 {𝑠
♯

1 }

LoadLarger:
𝑠
♯

0 ⊨ 𝑒1 : (𝜏★ + 𝑒2) 𝑠
♯

0 ⊨ 𝑒2 = 𝑘 𝑠
♯

0 ⊨ size(𝜏) = ℓ2 ℓ2 ≥ 𝑘 + ℓ1 {𝑠♯0 } ∗ℓ2 (𝑒1 − 𝑘) ⇓ 𝑒3 {𝑠
♯

1 }

{𝑠♯0 } ∗ℓ1𝑒1 ⇓ 𝑒3 [𝑘..𝑘 + ℓ1] {𝑠
♯

1 }

expression reads ℓ bytes at address 𝐸, denoted by ∗ℓ𝐸 (rule Load), the evaluation involves memory
domains. These domains handle assertions of the form {𝑠♯0} ∗ℓ 𝑒1 ⇓ 𝑒2 {𝑠

♯

1}, meaning that the value
read at the addresses given by 𝑒1 is the symbolic expression 𝑒2. The rule LoadSimple first queries
the type domain to check if 𝑒1 is a pointer that allows loading ℓ bytes (this ensures memory safety
of the load), then creates a fresh symbolic variable 𝛼 and propagates the type information 𝛼 : 𝜏 to
obtain new numerical information due to refinement types. Rule LoadLarger applies when only a
part of the target region is read. In this case, we load the full region and we extract the relevant
part as the result.

The soundness of the analysis is done inductively by proving the soundness of each rule, i.e., we
prove the soundness of the logical assertion in the conclusion from the soundness of the hypotheses.
For instance, it is easy to prove sound the rule Binop once we define the soundness of logical
assertions appearing in this rule:

Lemma 7.1 (Soundness of eval). Suppose {𝑠♯1} 𝐸 ⇓ 𝑒 {𝑠
♯

2} and 𝑠 ∈ 𝛾S♯ (𝑠♯1) and 𝑠 ⊢ 𝐸 ⇓ 𝑣 . Let
(m, 𝜈) such that 𝑠 ∈ 𝛾M♯ (𝑠♯1) (m, 𝜈). Then 𝑠 ∈ 𝛾S♯ (𝑠♯2) and 𝑠 ∈ 𝛾M♯ (𝑠♯2) (m, 𝜈) and 𝛾Ê (𝑒) (𝜈) = 𝑣 .
Lemma 7.2 (Numerical qeries). If 𝑠♯ ⊨ 𝑒 , 𝑠 ∈ 𝛾S♯ (𝑠♯) and 𝑠 ∈ 𝛾M♯ (𝑠♯) (m, 𝜈), then 𝛾Ê (𝑒) (𝜈) ≠ 0.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

A Dependent Nominal Physical Type System for the Static Analysis of Memory in Low Level Code NNN:21

8 EVALUATION
This section presents the implementation of the TypedC type system in a static analyzer and its
evaluation on a benchmark of binary and C programs. It aims to answer the followingmeta-question:
Is our approach based on semantic type-checking by abstract interpretation promising

for proving spatial memory safety? We decompose this question in three research questions:
RQ1: Expressivity Is TypedC able to specify the low-level code patterns necessary to stati-

cally prove spatial memory safety of C and binary code?
RQ2: Performance Is the automatic analysis able to find bugs or to prove spatial memory

safety with good performances in precision and time?
RQ3: Effort What is the specification effort, and how does it compare with the effort of

state-of-the-art approaches to verify spatial memory safety like CheckedC [28, 49, 68]?

Implementation and experimental setup. We implemented our analysis as part of Codex5, an open
source analyzer for C and machine code written in OCaml. Codex is a generic abstract interpreter
able to detect different runtime errors (e.g. division by zero, illegal opcode, null pointer dereferences,
etc.), here extended to also detect type-unsafe operations. It contains several abstract domains for
value and memory analyses. We extended the inter-procedural analysis in Codex with the abstract
domain based on TypedC.
The analysis presented in §7 is faithful to our actual implementation, except for the following

additional components. Firstly, the simple abstract stores 𝜎♯ are replaced with a domain more
suitable to the languages we handle. For C, Codex relies on the platform CPlatform to parse
C files into a CFG and replaces 𝜎♯ with a flow-sensitive representation of addressable C local
and global variables (similar to [52]). For machine code, Codex relies on the platform Binsec to
translate machine code instructions into a simpler intermediate language, and replaces 𝜎♯ with
a flow-sensitive abstraction of the stack, registers and global variables. Codex also includes in
𝑠♯ several abstract domains to reconstruct the control-flow graph [5, 38] during the analysis. In
both C and machine code, our analysis employs points-to predicates similar to [61], but extended
to support cross-refinement between points-to predicates and type judgments. An additional
supporting abstract domain allows us to deal precisely with disjunctions of values coming from
union types.
Codex’s inputs are (i) the (full C or binary) code, (ii) the entry point of the analysis given by

the name of a function to be analyzed, and (iii) the type specification file (see below). The ABI
parameter is fixed in our experimental setting to x86_32. Codex outputs alarms when it detects:
(a) an invalid memory access, e.g., out-of-bounds accesses to an array or structure or null pointer
read or write; (b) a violation of a type specification, e.g., a load done at a non pointer value or
a store with a value breaking the invariant of the specified type for the memory location; (c) a
run-time error not concerning the memory, e.g., division by zero. Our test system uses an Intel
Core i9-11950H machine with 32GB RAM running Ubuntu 22.04.

Benchmark selection. For our evaluation, we selected examples of C and binary code issued
from real applications or existing challenging benchmarks used by static or dynamic methods for
checking spatial memory safety. We split the examples in four parts, presented in Tables 9–10:
(1) OS includes QDS [23] (see Fig. 1), Contiki [27], and Linux RBTree [4] (see Fig. 3) which are

excerpts from proprietary (QDS) or free OSes;
(2) Emacs includes functions from the Emacs Lisp run-time [29] version 27.2 (executable compiled

by Debian); the functions manipulate various data structures (e.g., list, string, vector – see Fig. 2) in
a particular or a generic way (e.g., length for number of elements in any kind of collection);
5The names of the analyzer and of supporting platforms have been anonymized. The tool is submitted for artifact evaluation.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

NNN:22 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

(3) Shapes is used in [61] to challenge their analysis based on a simpler type system; it includes
collections of various shapes benchmarks (e.g., linked lists, trees, graphs);

(4) Olden is a standard benchmark for tools checking spatial memory safety [14, 49, 58, 60, 66].
Each case study is superscripted by bin or C when only one kind of code is analyzed.6 In these
examples, we observed the following challenging code patterns: (BS) bit-stealing, (DU) discriminated
union for variant types, (NLI) non-local invariants, (FAM) flexible array member, (IP) interior
pointers and (P?) possibly null pointer. Tables 9–10 indicate by ✓ the patterns found for each case.

1 typedef struct node {
2 int value;
3 struct node *left;
4 struct node *right;
5 } node;
6 ... // Other functions
7 node* RandTree(int, int, int, int);
8 int Bimerge(node*, int, int);
9 int Bisort(node*, int, int);

1 def node_pu(h) := union {
2 (node(h)+ with h>0) case1;
3 ((int with self==0) with h==0) case2;
4 };
5 def node(h) := struct {
6 int value;
7 node_pu(h-1) left;
8 node_pu(h-1) right;
9 };
10 def node_pp := ∃h:(int with self>0).node(h)+
11 def node_pz := ∃h:(int with self>0).node(h)?
12 ... // Other functions
13 node_pz RandTree(int, int, int, int);
14 int Bimerge(node_pp, int, int);
15 int Bisort(node_pp, int, int);

Fig. 6. Generated (top) and refined specifications.

Specification method. The results of the analysis
depend on the specification of prototypes given as
input. To write our specifications, we follow an it-
erative method that refines the C function proto-
types produced by the standard cproto tool from
the source code. We illustrate the C-like concrete
syntax of the specification files on an example ex-
tracted from Olden-bisort case study (Table 10). The
source code consists of 388 LoC and from it, cproto
generates a specification file given in part on top of
Fig. 6. With the generated specification, the analysis
produces 9 (false) alarms. After reading the imple-
mentation of RandTree, we understood that the in-
ternal nodes always have two non-null children. We
refine the specification of type node to introduce
the union of two cases: both children null or both
children non-null (we omit it for space reason). We
also specify that the arguments of some functions
cannot be a null pointer. In total, this adds 8 lines
and modifies 6 lines of the original specification. By
running our analysis with this new specification file,
we obtain one null-pointer dereference alarm in Bimerge function. This false alarm may be re-
moved by adding a dynamic check in the code (which makes it type safe but may fail at runtime).
It is better to remove it by further refining the specification. Indeed, the alarm points out to us that
the RandTree function builds a fully balanced tree. To obtain this property, we change again the
specification of node to introduce the height of nodes as a parameter because it is not stored in
the nodes, as at the bottom of Fig. 6 (where we use + for ★). With this specification file as input,
there are no remaining alarms, which implies that the code is spatially memory-safe. The effort
of finding a specification (RQ3) is reduced by the help of the analyzer. It is reduced compared to
manually introducing dynamic checks or developing special analyses in the compiler. This example
and Tables 9–10 also demonstrate the expressivity of our type system (RQ1).

Comparison with existing approaches. The Shape benchmark from Table 9 allows us to compare
indirectly with the shape analysis due to Nicole et al. [61]. Our times are comparable to their
analysis times, which in turn are much better (RQ2) than the ones obtained by state-of-the-art
tools used for shape analysis [11, 47, 48].
We also compare with CheckedC [28, 49], a state-of-the-art tool to make C code spatially

memory-safe. Qualitatively, one using CheckedC has to perform three kinds of code modifications:
(1) modification of the C code to handle limitations in the type system [49] like absence of unions,

6Some binary code is obtained by compiling existing C files, other – QDS, Emacs – is existing binary code.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

A Dependent Nominal Physical Type System for the Static Analysis of Memory in Low Level Code NNN:23

Table 9. Experimental data for OS, Emacs and Shape benchmarks where #LoC is the number of commands;

#Entry is the number of entry functions analyzed; Spec is the number of lines generated with cproto (gen)

vs. manually changed (man) in type specification; #Alarm is the number of alarms with generated (gen) resp.

manually changed (final) specification, and the (true) alarms identified with manual specification; Time is

the global time (parsing the specification, parsing the code and running the analysis).

Case studies #LoC #Entry Code patterns Spec #Alarms Time

BS DU NLI FAM IP P? gen man gen final true (s)

O
S

Contiki 329 12 – – – – – ✓ 19 14 16 2 0 1.33
QDSbin 401 3 – ✓ ✓ – – ✓ 83 83 18 0 0 1.28

RBTree Linux 1 111 2 – – – – ✓ ✓ 29 17 6 2 0 0.46

Em
ac
s listbin 464 8 ✓ ✓ – – – ✓ - 0 0 3.03

stringbin 109 5 ✓ ✓ ✓ – – ✓ 73 - 4 0 3.20
bufferbin 42 3 ✓ ✓ – ✓ – ✓ - 0 0 3.12

Sh
ap
es

Graph 155 7 – – – – – ✓ 26 14 0 0 0 0.79
Javl 920 9 – – – – – ✓ 37 34 10 1 1 0.70
Kennedy 197 6 – – – – ✓ ✓ 44 24 6 0 0 0.74
RBtree 978 7 – – – – – ✓ 32 18 56 16 0 0.42
(6-)Other 5 742 19 – – – – – ✓ 113 50 43 5 0 3.79

Table 10. Experimental data for Olden benchmarks used to compare with CheckedC and 3C. Columns

CC+3C: (man) are lines of code changed manually for CheckedC, some of them (gen) may be inferred with

3C; voronoi is not dealt by CheckedC. All alarms are eliminated by CheckedC by using assertions.

Case studies #LoC #Entry Code patterns CC+3C Spec #Alarms Time

(Olden) BS DU NLI FAM IP P? man gen man gen gen final true (s)
bhC 2 107 30 – ✓ – – – ✓ 181 18 27 144 39 3 1 26.04
bisortC 356 11 – ✓ – – ✓ ✓ 92 34 26 29 9 0 0 2.18
em3dC 693 17 – – ✓ – – ✓ 158 88 52 53 42 15 0 6.48
healthC 485 13 – – – – – ✓ 99 57 39 57 16 4 0 5.96
mstC 431 5 – ✓ – – – ✓ 161 28 17 44 33 10 3 1.89
perimeterC 486 12 – ✓ – – – ✓ 44 10 69 41 13 1 0 1.64
powerC 618 17 – – – – – ✓ 83 20 26 75 26 5 0 6.04
treeaddC 249 2 – – – – – ✓ 46 16 0 19 0 0 0 0.42
tspC 617 12 – – ✓ – – ✓ 78 10 2 32 6 0 0 3.86
voronoiC 1 151 40 ✓ – – – – ✓ ✗ ✗ 38 101 57 44 0 21.35

or to comply with limitations of the type checker [28]; (2) insertion of annotations inside the
code to help the type checker; (3) insertion of runtime checks (bound checks and null-pointer
dereference checks) by the compiler, which may fail at runtime. Some of these code annotations
may be generated automatically using 3C [49]. By contrast, we only require an external declaration
of function prototypes, perform all checks statically, and do not change the implementation (the
C and machine code is unmodified). Quantitatively, the columns CC+3C of Table 10 reproduce
from [49] the number of changes made by CheckedC and the ones that may be automatically
generated by 3C. This shall be compared with the columns Spec which contain the number of lines
of our specifications generated with cproto (gen) and manually added or changed (man). Columns
#Alarms demonstrate that refining the specification avoids signaling false alarms (column final
contains less alarms than column gen).

Conclusion. The added expressivity of our type system is necessary to represent the invariants
of challenging code without modification (e.g., observe the ✓ in Table 10). The analysis is quite
fast; there remains some imprecisions, but almost all of them are due to limitations of the analyzer
implementation (discussed in §10), not to the expressivity of the type system. Furthermore, allowing
the code to be modified would allow circumventing the current limitations of the analyzer. Finally,
the semantic type checking requires a much lesser effort than syntactic methods like CheckedC
(observe, e.g., the treeadd benchmark). Most of the effort was spent reverse-engineering the type
invariants, which would not be an issue if the tool were used during the development. Furthermore,
our semantic analysis helped to discover real issues in the analyzed code (see App. D).

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

NNN:24 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

9 RELATEDWORK
Memory models: A memory model is central to describe a programming language semantics
so as to prove the soundness of analyses, be it type checking, abstract interpretation, or both as
in our setting. High-level memory models, such as the Burstall-Bornat model [7, 8] where the
memory for different types is entirely separate, or abstract models like the CompCert memory
model [45, 46] that do not represent the value of pointers, cannot prove correct low-level operations
such as casts between different types or modifying pointers using arithmetic or bitwise operations.
Our memory model is concrete, i.e., corresponds to the machine semantics where all values,
including addresses, are just bit-vectors. It is thus maximally expressive and can be used to prove
sound low-level memory manipulations and the type and spatial memory safety of machine code.
However, verifying programs in the more complex C semantics may require adding constraints
like provenance [44, 50] to the model, to also be able to prove absence of miscompilation.
Semantic proofs of type soundness: The type-relevant aspects of our memory model simply
consists in complementing the heap with an allocation map from addresses to tags, similarly to [74].
This simplicity is due to the fact that TypedC is nominal. Building semantic models of heaps with
references to structural types (i.e., 𝜏★ instead of 𝜂★) is known to be a difficult issue [71]. Ahmed [1,
§3.2.3] explains the core problem: if we model store typings as mappings from addresses to types,
and types as predicates on store typings, we have a recursive definition which has an inconsistent
cardinality. The complexity of the solutions to this recursivity problem (e.g., in [22, 72]) was one of
the main reasons behind the rise of the syntactic method to prove type soundness [77]. For semantic
proofs, a generic solution is step-indexed logical relations [1], which avoids the recursivity issue by
stratifying the type system by indexing on the future evaluation steps. Such a solution would be
difficult to employ for proving the soundness of operations in an abstract interpreter, where the
canonical model (that we use) relates an abstract domain to a set of states. Thanks to our nominal
type system, we propose a simple solution to this issue: pointer types point to region names instead
of type expressions, so they do not depend on a store typing, but on an allocation map, that can be
defined without types. Moreover, our semantic model is suited to use in an abstract interpreter.
Syntactic type-checking of low-level code: Several analyses have been proposed to prove
memory safety of low-level programs using type-checking. Some of these analyses use type systems
focused on the control of aliasing using ownership types or separation logic (e.g. [9, 12, 34, 69]), a
style of reasoning complementary to ours that has advantages, but also makes it difficult to reason
automatically on programs with arbitrary sharing of references.

Among type systems that have been proposed to prove spatial memory safety using a reasoning
based on invariant preservation, typed assembly languages [2, 21, 57, 78] have been used to prove
type safety of assembly code. However, they are tailored to prove the safety of a given type-safe
source language where the type derivation is provided by the compiler, not for the case where the
program is written in machine code and the type checking must be done automatically. Furthermore,
in these systems, the pointers are structural, not nominal.
The line of work which is closest to ours employs type systems for verifying spatial memory

safety of C-like languages. The main design of these systems relies on a combination between
syntactic type checking and program transformation by insertion of runtime checks, which adds
considerable overhead [58]. Furthermore, the runtime information needed by early systems like
Cyclone [35] and CCured [60] changes the layout of types in memory, causing incompatibility.
Deputy [14, 79] and CheckedC [28, 68] manage to maintain a compatible memory layout by using
dependent types, which requires the user to annotate the code; this offloads runtime work to the
static analysis phase. Our work continue in this area, by aiming to verify spatial memory safety
fully statically, which means only specification overhead and full compatibility, as we do not modify

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

A Dependent Nominal Physical Type System for the Static Analysis of Memory in Low Level Code NNN:25

the program. Some of these type systems support nominal nesting of structures, and Deputy also
supports some variant types. It is also common to reason about structure nesting to derive aliasing
information [24]. What we add in this area is our notions of region tags, byte tags, and the lattice
of type offsets, that extends type-based reasoning about aliases to type systems allowing both
concatenation and union of regions, and allows byte-level reasoning [52] about memory.
Run-time and hybrid type checking: Some approaches [25, 37] propose run-time type checking
for low-level languages like C/C++ to obtain memory safety ant execution time. These approaches
can be seen as coding a concrete semantics of our type system. Although they deal with temporal
memory safety, they lack the expressivity of our type systems, especially non local invariants
(specified by parameterized, existential and refined types), and they introduce execution overhead.
Type checking using abstract interpretation: Flow-insensitive syntactic type checking suffers
from inherent limitations [28] which are solved by annotating, porting the code, and inserting
dynamic checks. To alleviate this problem, automated porting tools have been developed for
CCured [60] and CheckedC [49, 68]. An alternative is to make the type checking algorithm more
precise, which is necessary when we cannot modify the source code, like in machine code analysis.
Harren [33] uses abstract interpretation to perform a flow-sensitive type checking for some

dependent type system, which is necessary to verify assembly code. His tool cannot handle in
particular non-local invariants and relies on the addition of ad-hoc type constructors (and typing
rules) to handle low-level constructs like union types, which we address in our type system. Low-
level liquid types [67] perform a flow-sensitive type inference, but the algorithm is not based on a
standard abstract interpretation, which implies that it must make conservative decisions for some
analysis steps (e.g., fold and unfolding of variables) that impact the precision of the analysis. Their
memory structure is also limited to a flat system or regions.

The analysis of Nicole et al. [61] is the closest to ours, as it also combines abstract interpretation,
physical and refinement types to prove spatial memory safety. We extend their work by also
supporting unions (using union and existential types) and relations (using parameterized types)
between regions. This makes the type system, semantic model, and aliasing rules significantly more
complex. In particular, the main challenge when developing our type system and its semantic model
came from the interaction between union and concatenation of regions. Viewing types as program
abstractions has been studied theoretically in [15], and done in very different contexts [55].
Alias and memory analyses: There are many analyses that assume that a program is well-typed
to derive aliasing information [24, 62]. Using abstract interpretation to combine analyses [18], we
simultaneously prove that programs are well-typed and use this information to compute more
precise alias information, which helps type checking the program. There are flow-sensitive memory
analyses, e.g. [52], for low-level abstraction of memory regions, or shape analyses for low-level
code [26, 39, 41]) that can compute expressive invariants about memory. A type-based analysis like
ours, may be less precise but it is faster and more easily made modular, because the complex heap
invariants are implicitly represented by the flow-insensitive type definitions.

10 CONCLUSION
We have presented a rich non-substructural type system which is physical (types represent a
memory layout), nominal (pointers to different names do not alias just because they hold the
same content), and dependent (it captures complex relations between values and memory layout,
like array sizes). This type system is expressive enough to express many low-level programming
patterns found in C and binary code.We have used this type system to implement a modular abstract
interpreter [19] for low-level code, that performs an automated semantic type checking against
user-provided prototypes. This implies verification of spatial memory safety and has promising
results on challenging benchmarks, allowing us to verify code with a reduced effort.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

NNN:26 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

We have identified three main limitations of our approach. First, our memory invariants cannot
represent temporal properties, which prevents us to prove temporal memory safety. Second, our
analysis imprecisely handles variable-length arrays and strings. This could be improved by using
specific abstractions for arrays [20] and strings [36]. Finally, the writing of type specification still
requires some manual work that should be automated in the future. For instance, Lattner’s [40]
data structure analysis could be used to automatically refine type specifications by introducing
more type names.

DATA-AVAILABILITY STATEMENT
The software that supports §8 is available at https://zenodo.org/records/10934443 on Zenodo DOI
10.5281/zenodo.10934443. The artifact includes the sources of the analyser Codex, the set of
benchmarks used in §8, and the utilities (makefiles, scripts) to reproduce the results presented in
this section.

REFERENCES
[1] Amal Ahmed. 2004. Semantics of Types for Mutable State. Ph. D. Dissertation. Princeton University.
[2] Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N. Swadi, Gang Tan, and Daniel C. Wang. 2010.

Semantic foundations for typed assembly languages. ACM Trans. Program. Lang. Syst. 32, 3 (2010), 7:1–7:67. https:
//doi.org/10.1145/1709093.1709094

[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers: Principles, Techniques, and Tools (2nd
Edition). Addison-Wesley Longman Publishing Co., Inc., USA.

[4] Andrea Arcangeli, David Woodhouse, and Michel Lespinasse. 2012. Linux Kernel Red Black Trees. https://github.com/
torvalds/linux/blob/5133c9e51de41bfa902153888e11add3342ede18/lib/rbtree.c

[5] Sébastien Bardin, Philippe Herrmann, and Franck Védrine. 2011. Refinement-Based CFG Reconstruction from
Unstructured Programs. In 12th International Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI 2011, Vol. 6538). Springer, 54–69. https://doi.org/10.1007/978-3-642-18275-4_6

[6] Thaïs Baudon, Gabriel Radanne, and Laure Gonnord. 2023. Bit-Stealing Made Legal: Compilation for Custom Memory
Representations of Algebraic Data Types. Proc. ACM Program. Lang. 7, ICFP, 813–846. https://doi.org/10.1145/3607858

[7] Richard Bornat. 2000. Proving Pointer Programs in Hoare Logic. In Mathematics of Program Construction, Roland
Backhouse and José Nuno Oliveira (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 102–126.

[8] Rodney M Burstall. 1972. Some techniques for proving correctness of programs which alter data structures. Machine
intelligence 7, 23-50 (1972), 3.

[9] Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W Appel. 2018. VST-Floyd: A separation
logic tool to verify correctness of C programs. Journal of Automated Reasoning 61 (2018), 367–422.

[10] Satish Chandra and Thomas Reps. 1999. Physical type checking for C. ACM SIGSOFT Software Engineering Notes 24, 5
(1999), 66–75.

[11] Bor-Yuh Evan Chang and Xavier Rival. 2013. Modular Construction of Shape-Numeric Analyzers. In Festschrift
for Dave Schmidt (EPTCS, Vol. 129), Anindya Banerjee, Olivier Danvy, Kyung-Goo Doh, and John Hatcliff (Eds.).
https://doi.org/10.48550/arXiv.1309.5138

[12] Adam Chlipala. 2011. Mostly-automated verification of low-level programs in computational separation logic. In
Proceedings of the 32nd ACM SIGPLAN conference on Programming language design and implementation. 234–245.

[13] Dave Clarke, Johan Östlund, Ilya Sergey, and Tobias Wrigstad. 2013. Ownership Types: A Survey. In Aliasing in
Object-Oriented Programming. Types, Analysis and Verification, Dave Clarke, James Noble, and Tobias Wrigstad (Eds.).
Lecture Notes in Computer Science, Vol. 7850. Springer, 15–58. https://doi.org/10.1007/978-3-642-36946-9_3

[14] Jeremy Condit, Matthew Harren, Zachary R. Anderson, David Gay, and George C. Necula. 2007. Dependent Types
for Low-Level Programming. In ESOP (Lecture Notes in Computer Science, Vol. 4421), Rocco De Nicola (Ed.). Springer,
520–535. https://doi.org/10.1007/978-3-540-71316-6_35

[15] Patrick Cousot. 1997. Types as Abstract Interpretations. In Conference Record of POPL’97: The 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Papers Presented at the Symposium, Paris, France, 15-17
January 1997, Peter Lee, Fritz Henglein, and Neil D. Jones (Eds.). ACM Press, 316–331. https://doi.org/10.1145/263699.
263744

[16] P. Cousot. 2021. Principles of Abstract Interpretation. MIT Press. https://books.google.fr/books?id=CUoQEAAAQBAJ
[17] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lattice model for static analysis of programs

by construction or approximation of fixpoints. In 4th ACM Symposium on Principles of Programming Languages (POPL

https://zenodo.org/records/10934443
https://doi.org/10.1145/1709093.1709094
https://doi.org/10.1145/1709093.1709094
https://github.com/torvalds/linux/blob/5133c9e51de41bfa902153888e11add3342ede18/lib/rbtree.c
https://github.com/torvalds/linux/blob/5133c9e51de41bfa902153888e11add3342ede18/lib/rbtree.c
https://doi.org/10.1007/978-3-642-18275-4_6
https://doi.org/10.1145/3607858
https://doi.org/10.48550/arXiv.1309.5138
https://doi.org/10.1007/978-3-642-36946-9_3
https://doi.org/10.1007/978-3-540-71316-6_35
https://doi.org/10.1145/263699.263744
https://doi.org/10.1145/263699.263744
https://books.google.fr/books?id=CUoQEAAAQBAJ

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

A Dependent Nominal Physical Type System for the Static Analysis of Memory in Low Level Code NNN:27

1977). 238–252. https://doi.org/10.1145/512950.512973
[18] Patrick Cousot and Radhia Cousot. 1979. Systematic design of program analysis frameworks. In 6th ACM Symposium

on Principles of Programming Languages (POPL 1979). 269–282. https://doi.org/10.1145/567752.567778
[19] Patrick Cousot and Radhia Cousot. 2002. Modular Static Program Analysis. In Proceedings of the Eleventh International

Conference on Compiler Construction (CC 2002), R.N. Horspool (Ed.). LNCS 2304, Springer, Berlin, Grenoble, France,
159–178.

[20] Patrick Cousot, Radhia Cousot, and Francesco Logozzo. 2011. A Parametric Segmentation Functor for Fully Automatic
and Scalable Array Content Analysis. In Conference Record of the 38th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. ACM Press, New York, Austin, Texas, 105–118.

[21] K Crary, Neal Glew, Dan Grossman, Richard Samuels, F Smith, D Walker, S Weirich, and S Zdancewic. 1999. TALx86:
A realistic typed assembly language. In 1999 ACM SIGPLAN Workshop on Compiler Support for System Software Atlanta,
GA, USA. 25–35.

[22] Luis Manuel Martins Damas. 1984. Type Assignment in Programming Languages. Ph. D. Dissertation. University of
Edinburgh.

[23] Vincent David, Christophe Aussaguès, Stéphane Louise, Philippe Hilsenkopf, Bertrand Ortolo, and Christophe Hessler.
2004. The oasis based qualified display system. In Fourth American Nuclear Society International Topical Meeting on
Nuclear Plant Instrumentation, Controls and Human-Machine Interface Technologies (NPIC&HMIT 2004), Columbus, Ohio,
USA. 11.

[24] Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. 1998. Type-based Alias Analysis. In Proceedings of the ACM
SIGPLAN 1998 Conference on Programming Language Design and Implementation (PLDI’98) (PLDI’98). ACM, New York,
NY, USA, 106–117. https://doi.org/10.1145/277650.277670

[25] Gregory J. Duck and Roland H. C. Yap. 2018. EffectiveSan: type and memory error detection using dynamically typed
C/C++. In Proceedings of PLDI, Jeffrey S. Foster and Dan Grossman (Eds.). ACM, 181–195. https://doi.org/10.1145/
3192366.3192388

[26] Kamil Dudka, Petr Peringer, and Tomás Vojnar. 2013. Byte-Precise Verification of Low-Level List Manipulation. In
Static Analysis - 20th International Symposium, SAS 2013, Seattle, WA, USA, June 20-22, 2013. Proceedings (Lecture Notes
in Computer Science, Vol. 7935), Francesco Logozzo and Manuel Fähndrich (Eds.). Springer, 215–237.

[27] Adam Dunkels. 2023. Contiki-OS. https://github.com/contiki-ng/contiki-ng/blob/release-4.9/os/lib/list.c
[28] Archibald Samuel Elliott, Andrew Ruef, Michael Hicks, and David Tarditi. 2018. Checked C: Making C Safe by

Extension. In 2018 IEEE Cybersecurity Development, SecDev 2018, Cambridge, MA, USA, September 30 - October 2, 2018.
IEEE Computer Society, 53–60. https://doi.org/10.1109/SecDev.2018.00015

[29] Free Software Foundation. 2022. GNU Emacs source repository. https://git.savannah.gnu.org/cgit/emacs.git/tree/lisp.
h?h=emacs-28.2

[30] Jacques Garrigue. 2004. Relaxing the Value Restriction. In Functional and Logic Programming, 7th International
Symposium, FLOPS 2004, Nara, Japan, April 7-9, 2004, Proceedings (Lecture Notes in Computer Science, Vol. 2998),
Yukiyoshi Kameyama and Peter J. Stuckey (Eds.). Springer, 196–213. https://doi.org/10.1007/978-3-540-24754-8_15

[31] Philippe Granger. 1989. Static analysis of arithmetical congruences. International Journal of Computer Mathematics 30,
3-4 (1989), 165–190. https://doi.org/10.1080/00207168908803778

[32] Philippe Granger. 1992. Improving the Results of Static Analyses Programs by Local Decreasing Iteration. In Foundations
of Software Technology and Theoretical Computer Science, 12th Conference, New Delhi, India, December 18-20, 1992,
Proceedings (Lecture Notes in Computer Science, Vol. 652), R. K. Shyamasundar (Ed.). Springer, 68–79. https://doi.org/10.
1007/3-540-56287-7_95

[33] Matthew Harren. 2007. Dependent Types for Assembly Code Safety. Ph. D. Dissertation. University of California at
Berkeley.

[34] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens. 2011. VeriFast: A
Powerful, Sound, Predictable, Fast Verifier for C and Java. NASA Formal Methods 6617 (2011), 41–55.

[35] Trevor Jim, J Gregory Morrisett, Dan Grossman, Michael W Hicks, James Cheney, and Yanling Wang. 2002. Cyclone:
A Safe Dialect of C.. In USENIX Annual Technical Conference, General Track. 275–288.

[36] Matthieu Journault, Antoine Miné, and Abdelraouf Ouadjaout. 2018. Modular static analysis of string manipulations
in C programs. In Static Analysis: 25th International Symposium, SAS 2018, Freiburg, Germany, August 29–31, 2018,
Proceedings 25. Springer, 243–262.

[37] Stephen Kell. 2016. Dynamically diagnosing type errors in unsafe code. In Proceedings of OOPSLA, Eelco Visser and
Yannis Smaragdakis (Eds.). ACM, 800–819. https://doi.org/10.1145/2983990.2983998

[38] Johannes Kinder, Florian Zuleger, and Helmut Veith. 2009. An Abstract Interpretation-Based Framework for Control
Flow Reconstruction from Binaries. In Verification, Model Checking, and Abstract Interpretation (VMCAI 2009), Neil D.
Jones and Markus Müller-Olm (Eds.). Springer, 214–228. https://doi.org/10.1007/978-3-540-93900-9_19

https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/277650.277670
https://doi.org/10.1145/3192366.3192388
https://doi.org/10.1145/3192366.3192388
https://github.com/contiki-ng/contiki-ng/blob/release-4.9/os/lib/list.c
https://doi.org/10.1109/SecDev.2018.00015
https://git.savannah.gnu.org/cgit/emacs.git/tree/lisp.h?h=emacs-28.2
https://git.savannah.gnu.org/cgit/emacs.git/tree/lisp.h?h=emacs-28.2
https://doi.org/10.1007/978-3-540-24754-8_15
https://doi.org/10.1080/00207168908803778
https://doi.org/10.1007/3-540-56287-7_95
https://doi.org/10.1007/3-540-56287-7_95
https://doi.org/10.1145/2983990.2983998
https://doi.org/10.1007/978-3-540-93900-9_19

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

NNN:28 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

[39] Jörg Kreiker, Helmut Seidl, and Vesal Vojdani. 2010. Shape Analysis of Low-Level C with Overlapping Structures. In
VMCAI. 214–230.

[40] Chris Lattner. 2005. Macroscopic Data Structure Analysis and Optimization. Ph. D. Dissertation. Computer Science
Dept., University of Illinois at Urbana-Champaign, Urbana, IL. See http://llvm.cs.uiuc.edu..

[41] Vincent Laviron, Bor-Yuh Evan Chang, and Xavier Rival. 2010. Separating Shape Graphs. In Programming Languages
and Systems, 19th European Symposium on Programming, ESOP 2010, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings (Lecture Notes in Computer
Science, Vol. 6012), Andrew D. Gordon (Ed.). Springer, 387–406. https://doi.org/10.1007/978-3-642-11957-6_21

[42] Matthieu Lemerre. 2023. SSA Translation Is an Abstract Interpretation. Proceedings of the ACM on Programming
Languages 7, POPL (2023), 1895–1924.

[43] Matthieu Lemerre. 2023. SSA Translation Is an Abstract Interpretation. Proc. ACM Program. Lang. 7, POPL, Article 65
(jan 2023), 30 pages. https://doi.org/10.1145/3571258

[44] Rodolphe Lepigre, Michael Sammler, Kayvan Memarian, Robbert Krebbers, Derek Dreyer, and Peter Sewell. 2022.
VIP: verifying real-world C idioms with integer-pointer casts. Proc. ACM Program. Lang. 6, POPL (2022), 1–32.
https://doi.org/10.1145/3498681

[45] Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart. 2014. The CompCert memory model. Cambridge
University Press, Chapter 32.

[46] Xavier Leroy and Sandrine Blazy. 2008. Formal Verification of a C-like Memory Model and Its Uses for Verifying
Program Transformations. J. Autom. Reason. 41, 1 (2008), 1–31. https://doi.org/10.1007/S10817-008-9099-0

[47] Huisong Li, Francois Berenger, Bor-Yuh Evan Chang, and Xavier Rival. 2017. Semantic-directed clumping of disjunctive
abstract states. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 32–45.

[48] Huisong Li, Xavier Rival, and Bor-Yuh Evan Chang. 2015. Shape Analysis for Unstructured Sharing. In Static Analysis -
22nd International Symposium, SAS 2015, Saint-Malo, France, September 9-11, 2015, Proceedings (Lecture Notes in Computer
Science, Vol. 9291), Sandrine Blazy and Thomas P. Jensen (Eds.). Springer, 90–108. https://doi.org/10.1007/978-3-662-
48288-9_6

[49] Aravind Machiry, John H. Kastner, Matt McCutchen, Aaron Eline, Kyle Headley, and Michael Hicks. 2022. C to Checked
C by 3C (with appendices). CoRR abs/2203.13445 (2022). https://doi.org/10.48550/arXiv.2203.13445

[50] Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell, Alexander Richardson, Robert N. M. Watson,
and Peter Sewell. 2019. Exploring C semantics and pointer provenance. Proc. ACM Program. Lang. 3, POPL (2019),
67:1–67:32. https://doi.org/10.1145/3290380

[51] Robin Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput. Syst. Sci. 17, 3 (1978), 348–375.
https://doi.org/10.1016/0022-0000(78)90014-4

[52] Antoine Miné. 2006. Field-sensitive value analysis of embedded C programs with union types and pointer arithmetics.
In Proc. of the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES’06).
ACM, 54–63. http://www.di.ens.fr/~mine/publi/article-mine-lctes06.pdf.

[53] Antoine Miné. 2006. The octagon abstract domain. Higher-order and symbolic computation 19, 1 (2006), 31–100.
[54] Raphaël Monat and Antoine Miné. 2017. Precise Thread-Modular Abstract Interpretation of Concurrent Programs

Using Relational Interference Abstractions. In Proceedings of VMCAI (LNCS, Vol. 10145), Ahmed Bouajjani and David
Monniaux (Eds.). Springer, 386–404. https://doi.org/10.1007/978-3-319-52234-0_21

[55] Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné. 2020. Static Type Analysis by Abstract Interpretation of
Python Programs. In 34th European Conference on Object-Oriented Programming, ECOOP 2020, November 15-17, 2020,
Berlin, Germany (Virtual Conference) (LIPIcs, Vol. 166), Robert Hirschfeld and Tobias Pape (Eds.). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 17:1–17:29. https://doi.org/10.4230/LIPICS.ECOOP.2020.17

[56] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. 1999. From System F to typed assembly language. ACM
Transactions on Programming Languages and Systems (TOPLAS) 21, 3 (1999), 527–568.

[57] J. Gregory Morrisett, David Walker, Karl Crary, and Neal Glew. 1999. From system F to typed assembly language.
ACM Trans. Program. Lang. Syst. 21, 3 (1999), 527–568. https://doi.org/10.1145/319301.319345

[58] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic. 2009. SoftBound: Highly Compatible
and Complete Spatial Memory Safety for c. In Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Dublin, Ireland) (PLDI ’09). Association for Computing Machinery, New York,
NY, USA, 245–258. https://doi.org/10.1145/1542476.1542504

[59] George C. Necula. 1997. Proof-Carrying Code. In Conference Record of POPL’97: The 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Papers Presented at the Symposium, Paris, France, 15-17 January
1997, Peter Lee, Fritz Henglein, and Neil D. Jones (Eds.). ACM Press, 106–119. https://doi.org/10.1145/263699.263712

[60] George C Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: Type-safe
retrofitting of legacy software. ACM Transactions on Programming Languages and Systems (TOPLAS) 27, 3 (2005),

https://doi.org/10.1007/978-3-642-11957-6_21
https://doi.org/10.1145/3571258
https://doi.org/10.1145/3498681
https://doi.org/10.1007/S10817-008-9099-0
https://doi.org/10.1007/978-3-662-48288-9_6
https://doi.org/10.1007/978-3-662-48288-9_6
https://doi.org/10.48550/arXiv.2203.13445
https://doi.org/10.1145/3290380
https://doi.org/10.1016/0022-0000(78)90014-4
http://www.di.ens.fr/~mine/publi/article-mine-lctes06.pdf
https://doi.org/10.1007/978-3-319-52234-0_21
https://doi.org/10.4230/LIPICS.ECOOP.2020.17
https://doi.org/10.1145/319301.319345
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/263699.263712

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

A Dependent Nominal Physical Type System for the Static Analysis of Memory in Low Level Code NNN:29

477–526.
[61] Olivier Nicole, Matthieu Lemerre, and Xavier Rival. 2022. Lightweight Shape Analysis Based on Physical Types. In 23rd

International Conference on Verification, Model Checking, and Abstract Interpretation – VMCAI 2022 (Lecture Notes in
Computer Science, Vol. 13182), Bernd Finkbeiner and ThomasWies (Eds.). Springer, 219–241. https://doi.org/10.1007/978-
3-030-94583-1_11

[62] Jens Palsberg. 2001. Type-based analysis and applications. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis For Software Tools and Engineering, PASTE’01, Snowbird, Utah, USA, June 18-19, 2001, John Field
and Gregor Snelting (Eds.). ACM, 20–27. https://doi.org/10.1145/379605.379635

[63] Marina Polishchuk, Ben Liblit, and Chloë W. Schulze. 2007. Dynamic heap type inference for program understanding
and debugging. In Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2007, Nice, France, January 17-19, 2007, Martin Hofmann and Matthias Felleisen (Eds.). ACM, 39–46. https:
//doi.org/10.1145/1190216.1190225

[64] Reese T. Prosser. 1959. Applications of Boolean Matrices to the Analysis of Flow Diagrams. In Papers Presented at the
December 1-3, 1959, Eastern Joint IRE-AIEE-ACM Computer Conference (Boston, Massachusetts) (IRE-AIEE-ACM ’59
(Eastern)). ACM, New York, NY, USA, 133–138. https://doi.org/10.1145/1460299.1460314

[65] John C Reynolds. 2002. Separation logic: A logic for shared mutable data structures. In Logic in Computer Science, 2002.
Proceedings. 17th Annual IEEE Symposium on. IEEE, 55–74.

[66] Anne Rogers, Martin C. Carlisle, John H. Reppy, and Laurie J. Hendren. 1995. Supporting dynamic data structures on
distributed-memory machines. ACM Trans. Program. Lang. Syst. 17 (1995), 233–263. https://api.semanticscholar.org/
CorpusID:7251637

[67] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. 2010. Low-level liquid types. In POPL. ACM, New York,
NY, USA, 131–144. https://doi.org/10.1145/1706299.1706316

[68] Andrew Ruef, Leonidas Lampropoulos, Ian Sweet, David Tarditi, and Michael Hicks. 2019. Achieving Safety Incremen-
tally with Checked C. In Principles of Security and Trust - 8th International Conference, POST 2019, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings (Lecture Notes in Computer Science, Vol. 11426), Flemming Nielson and David Sands (Eds.). Springer, 76–98.
https://doi.org/10.1007/978-3-030-17138-4_4

[69] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, and Deepak Garg. 2021.
RefinedC: automating the foundational verification of C code with refined ownership types. In PLDI ’21: 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implementation, Virtual Event, Canada, June
20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 158–174. https://doi.org/10.1145/3453483.3454036

[70] L. Szekeres, M. Payer, T. Wei, and D. Song. 2013. SoK: Eternal War in Memory. In 2013 IEEE Symposium on Security
and Privacy. 48–62. https://doi.org/10.1109/SP.2013.13

[71] Robert D. Tennent and Dan R. Ghica. 2000. Abstract Models of Storage. High. Order Symb. Comput. 13, 1/2 (2000),
119–129. https://doi.org/10.1023/A:1010022312623

[72] Mads Tofte. 1990. Type Inference for Polymorphic References. Inf. Comput. 89, 1 (1990), 1–34. https://doi.org/10.1016/
0890-5401(90)90018-D

[73] John Toman, Ren Siqi, Kohei Suenaga, Atsushi Igarashi, and Naoki Kobayashi. 2020. ConSORT: Context- and Flow-
Sensitive Ownership Refinement Types for Imperative Programs. In Programming Languages and Systems - 29th
European Symposium on Programming, ESOP 2020, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12075),
Peter Müller (Ed.). Springer, 684–714. https://doi.org/10.1007/978-3-030-44914-8_25

[74] Harvey Tuch, Gerwin Klein, and Michael Norrish. 2007. Types, bytes, and separation logic. In Proceedings of the 34th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2007, Nice, France, January 17-19,
2007, Martin Hofmann and Matthias Felleisen (Eds.). ACM, 97–108. https://doi.org/10.1145/1190216.1190234

[75] David Walker. 2005. Advanced topics in types and programming languages. The MIT Press Cambridge, Chapter
Substructural type systems, 3–44.

[76] Andrew K. Wright. 1995. Simple Imperative Polymorphism. LISP Symb. Comput. 8, 4 (1995), 343–355.
[77] Andrew K Wright and Matthias Felleisen. 1994. A syntactic approach to type soundness. Information and computation

(1994).
[78] Hongwei Xi and Robert Harper. 2001. A Dependently Typed Assembly Language. In Proceedings of the Sixth ACM

SIGPLAN International Conference on Functional Programming (ICFP ’01), Firenze (Florence), Italy, September 3-5, 2001,
Benjamin C. Pierce (Ed.). ACM, 169–180. https://doi.org/10.1145/507635.507657

[79] Feng Zhou, Jeremy Condit, Zachary R. Anderson, Ilya Bagrak, Robert Ennals, Matthew Harren, George C. Necula,
and Eric A. Brewer. 2006. SafeDrive: Safe and Recoverable Extensions Using Language-Based Techniques. In 7th
Symposium on Operating Systems Design and Implementation (OSDI ’06), November 6-8, Seattle, WA, USA, Brian N.
Bershad and Jeffrey C. Mogul (Eds.). USENIX Association, 45–60.

https://doi.org/10.1007/978-3-030-94583-1_11
https://doi.org/10.1007/978-3-030-94583-1_11
https://doi.org/10.1145/379605.379635
https://doi.org/10.1145/1190216.1190225
https://doi.org/10.1145/1190216.1190225
https://doi.org/10.1145/1460299.1460314
https://api.semanticscholar.org/CorpusID:7251637
https://api.semanticscholar.org/CorpusID:7251637
https://doi.org/10.1145/1706299.1706316
https://doi.org/10.1007/978-3-030-17138-4_4
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1023/A:1010022312623
https://doi.org/10.1016/0890-5401(90)90018-D
https://doi.org/10.1016/0890-5401(90)90018-D
https://doi.org/10.1007/978-3-030-44914-8_25
https://doi.org/10.1145/1190216.1190234
https://doi.org/10.1145/507635.507657

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

NNN:30 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

A PHYSICAL DEPENDENT TYPES
This section provide additional results on the TypedC type-system and the lattice of type-offsets.

A.1 Well-formed type definitions
The set of type definitions Δ induces a derivation relation between types, ≺Δ defined in Table 2.
The relation ≺Δ is well-founded by the Req. 2. The following property of ≺Δ is used to define the
join semi-lattice of type-offsets:

Proposition 1. A well-founded relation ≺Δ induces a DAG over type expressions and a domination
relation ⊑ whose entry is byte.

Proof. We define a graph𝐺≺Δ ≜ (T,→) where 𝜏1 → 𝜏2 iff 𝜏1 ≺Δ 𝜏2. Because ≺Δ is well-founded,
there is no loop in this graph so𝐺≺Δ is a DAG. The only type with no predecessor by ≺Δ in Table 2
is byte.
The domination relation [3, 64] is defined by 𝜏 ⊑ 𝜏 ′ iff all paths in the DAG of ≺Δ from the entry

byte to 𝜏 are included in the set of paths from the entry to 𝜏 ′. □

A.2 Lattice of type-offsets
The set of closed type-offsets (TO) is P ≜ T × N. Given an allocation map m ∈ M, the type-offset
derivation relation ≺Pm ⊆ P × P is defined in Fig. 5.
Although the relation ≺Pm on P is linked with the semantics (by m), it has also a relation with

the purely syntactic relation ≺Δ on types (see Table 2), as stated by the following property which is
follows from the definitions of these relations:

Lemma A.1. Let (𝜏, 𝑘), (𝜏 ′, 𝑘 ′) ∈ P such that (𝜏, 𝑘)≺Pm (𝜏 ′, 𝑘 ′). Then 𝑘 ≤ 𝑘 ′ and 𝜏 ≺Δ 𝜏 ′.

Proof. By induction on the definition of ≺Pm in Fig. 5 using the definition of ≺Δ in Table 2. □

The above property has an important corollary: ≺Pm is well-founded since ≺Δ is well-founded.
The connection between type-offset and byte tags (𝜌, 𝑘) is given by the following:

Lemma A.2. If (𝜌, 𝑘) ∈ R is a well-formed byte tag then path(𝜌, 𝑘) ∈ P+m.

The proof follows from the by induction on the structure of region tags. However, the reverse
property is not true as shown by the following counterexample:

1 def c := a×b; def a := byte;
2 def b := ∃𝛼 :(byte with self*self+1==0). byte with self==𝛼;

The sequence 𝜋 = ⟨(𝑐, 0), (𝑎, 0), (byte, 0)⟩ is in P+m, but there is no well formed byte tag such that
path(𝜌, 0) = 𝜋 since [[𝑐]]m = [[𝑏]]m = ∅ for any m. This asymmetry demonstrates the relevance of
both notions: a byte tag (𝜏/®𝜌, 𝑘) (and the associated path) gives the position of a byte in a region
tagged by 𝜏/®𝜌 (and allocated of type 𝜏), while the type offset (𝜏, 𝑘) characterizes all addresses
having the same type offset, i.e., 𝛾P,m (𝜏, 𝑘) from Fig. 6.
We define below the domination relation between closed type offsets, ⊑Pm. Notice that all

sequences of type-offset end in (byte, 0) and the relation ≺Pm is well-founded, so the directed
graph induced by ≺Pm is acyclic and has as entry (byte, 0). We denote by ≺P

∗
m the reflexive and

transitive closure of ≺Pm.

Definition A.3 (Domination over type offsets). For any (𝜏, 𝑘), (𝜏, 𝑘 ′) ∈ Pm we say that (𝜏, 𝑘)
dominates (𝜏 ′, 𝑘 ′), denoted (𝜏, 𝑘) ⊑P,m (𝜏 ′, 𝑘 ′) iff for any (𝜏1, 𝑘1) if (𝜏 ′, 𝑘 ′)≺P

∗
m (𝜏1, 𝑘1) then

(𝜏, 𝑘)≺P
∗
m (𝜏1, 𝑘1).

From the properties of ≺Pm we obtain that:

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

A Dependent Nominal Physical Type System for the Static Analysis of Memory in Low Level Code NNN:31

Theorem A.4. The domination relation ⊑P,m over Pm is a tree relation of root (byte, 0).

Proof. Clearly (byte, 0)≺P
∗
m (𝜏, 𝑘) for any (𝜏, 𝑘). Because ⊑P,m is defined using the transitive

closure of ≺Pm which is a partial order, then ⊑P,m is a tree relation. □

The above theorem has as corollary that, for a fixed m, we could define a join semi-lattice
𝑇𝑂m = ⟨Pm, ⊑Pm, ⊔Pm ⟩ where (𝜏1, 𝑘1) ⊔Pm (𝜏2, 𝑘2) is the least upper bound w.r.t. ⊑Pm.

The following theorem states properties of the domination relation with respect to type-offset
concretization into P+m:

Theorem A.5. Let m be an allocation map and (𝜏1, 𝑘1), (𝜏2, 𝑘2) ∈ Pm. Then:
(1) 𝛾P+,m (𝜏1, 𝑘1) ⊆ 𝛾P+,m (𝜏2, 𝑘2) iff (𝜏1, 𝑘1) ⊑Pm (𝜏2, 𝑘2), i.e., the domination relation corresponds

to inclusion of type-offset concretizations into well-formed sequences of TO;
(2) ∃(𝜏, 𝑘) ∈ Pm such that 𝛾P+,m (𝜏, 𝑘) = 𝛾P+,m (𝜏1, 𝑘1) ∪ 𝛾P+,m (𝜏2, 𝑘2) iff (𝜏, 𝑘) = (𝜏1, 𝑘1) ⊔Pm

(𝜏2, 𝑘2), i.e., the join operator computes the least common dominator.
(3) 𝛾P+,m (𝜏1, 𝑘1) ∩ 𝛾P+,m (𝜏2, 𝑘2) = ∅ iff there is no (𝜏, 𝑘) such that (𝜏, 𝑘)≺P

∗
m (𝜏1, 𝑘1) and

(𝜏, 𝑘)≺P
∗
m (𝜏2, 𝑘2).

Proof. Concretization 𝛾P+,m captures all the paths traversing a type-offset. □

Theorem 5.1. Let m be an allocation map and (𝜏1, 𝑘1), (𝜏2, 𝑘2) ∈ Pm.
(1) If (𝜏1, 𝑘1) ⊑P,m (𝜏2, 𝑘2) then 𝛾P,m (𝜏1, 𝑘1) ⊇ 𝛾P,m (𝜏2, 𝑘2), i.e., a dominating type-offset includes

the addresses of the dominated type-offset.
(2) If 𝛾P+,m (𝜏1, 𝑘1) ∩ 𝛾P+,m (𝜏2, 𝑘2) = ∅ then 𝛾P,m (𝜏1, 𝑘1) ∩ 𝛾P,m (𝜏2, 𝑘2) = ∅, i.e., if there is no path

going through both (𝜏1, 𝑘1) and (𝜏2, 𝑘2) then they don’t share addresses.

Proof. (1) From the fact that ⊑P,m is a domination relation, all the paths from (byte, 0) to
(𝜏2, 𝑘2) pass by (𝜏1, 𝑘1). Or 𝛾P,m capture the addresses of all paths, qed.

(2) Same reasoning as above.
□

B A LOW LEVEL PROGRAMMING LANGUAGE
Our analysis is defined for both C and binary code. For sake of readability, we present the analysis
for a very simple imperative languageWhilemem which includes the most important features of low
level code: assignment, integer and pointer arithmetics, memory allocation, and standard control
flow statements. Features like addressable stack, unstructured control flow and function calls may
be dealt with classical techniques, orthogonal to our approach.

𝑥 ∈ X program variables 𝜂 ∈ N type name
ℓ ∈ Z, 𝑘 ∈ V integer resp. bit vector constants ⋄ bit vector, comparison and logical operators

Expressions Exp ∋ E ::= 𝑘 | 𝑥 | E ⋄ E | ∗ℓE
Commands Cmd ∋ C ::= skip | 𝑥 := E | 𝑥 := malloc𝜂 (E) | ∗ℓE := E | assume E

| C;C | while E do C | if E then C else C

Fig. 7. Syntax of Whilemem

B.1 Syntax
The syntax of Whilemem is given by the grammar in Fig. 7. Memory locations are obtained using
dynamic memory allocation and pointer arithmetics. We denote by A the set of addresses, i.e., values
of memory locations. To simplify the presentation, we consider a little-endian ABI, although the

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

NNN:32 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

endianness is a parameter of our analysis. The values V are bit vectors, i.e., non-negative integers
represented as fixed size sequences of bytes. The arithmetic, logical and comparison operators
⋄ ∈ {+,−,×, /,&, |,=, ≤, . . .} are extended to bit vector values in V using the semantic given by the
ABI in a classic way. Like in C or assembler, we interpret non null expressions as true and null
expressions as false. Comparison expressions evaluate to 1 when they hold and to 0 otherwise.
The memory may be read (resp. written) on ℓ bytes at an address given by an expression 𝐸 using
the load expression ∗ℓ𝐸 (resp. store command ∗ℓ𝐸 := 𝐸′). Due to pointer arithmetics allowed in
expressions, the grammar of expressions is enough to encode array access 𝐸[𝐸′] or field access
𝐸.𝐸′. We assume that instances of malloc are labeled by type names 𝜂 defined in the program and
allocates a number of bytes equal to 𝐸 times the size of 𝜂. The assume command always succeeds
and changes the program’s state such that the expression in argument becomes true; it is used to
insert annotations in the program’s abstract state.

B.2 Untyped semantics
Values. The values manipulated by our programs are bit vectors, i.e., non-negative integers

representable on a given number of bytes. The set of bit vectors, denoted by V, is defined by:

V ≜ {(𝑙, 𝑣) | 𝑙 ∈ Z, 𝑣 ∈ [0, 28𝑙 − 1]}
where 𝑙 is the number of bytes used to represent the value 𝑣 . The bit vectors are composed using
bit vectors concatenation; given two bit vectors 𝑥 and 𝑦, their concatenation denoted by 𝑥 :: 𝑦 is
defined as follows:

(𝑙1, 𝑣1) :: (𝑙2, 𝑣2) = (𝑙1 + 𝑙2, 𝑣1 + 28𝑙1𝑣2)
The set of values represented on 𝑛 bytes is denoted by V𝑛 . We denote byW the number of bytes

used to store addresses in our programming language (in most programming languages like C, this
size would be either 4 or 8). We also use A to denote the set of address values, i.e., VW .

Dynamic semantics. To define the execution semantics of our programming language, we intro-
duce the notions of store and heap.

The variables’ store (or simply store) 𝜎 ∈ Σ maps program variable to their values:

𝜎 ∈ Σ ≜ [X→ V]
We denote by 𝜎 [𝑥] the value mapped to 𝑥 in 𝜎 and by 𝜎 [𝑥 ← 𝑣] the update to 𝑣 of the value
mapped by 𝜎 in 𝑥 .
The heap h ∈ H is a partial function that maps addresses to one-byte values:

h ∈ H ≜ [A ⇀ V1]
We denote by h[𝑎..𝑎 + 𝑙] the load from heap operation which returns the bit vector of size 𝑙 obtained
by concatenation of values ℎ(𝑎) :: ℎ(𝑎 + 1) :: . . . :: ℎ(𝑎 + 𝑙 − 1). The store to heap operation at address
𝑎 on 𝑙 consecutive values with the new value 𝑣 ∈ V𝑙 is denoted by h[𝑎..𝑎 + 𝑙 ← 𝑣].

An untyped state 𝑠 ∈ S is pair of a store and a heap:

𝑠 = (𝜎, h) ∈ S ≜ (Σ × H)
In the following, we denote by dom(𝑓) the definition domain of function 𝑓 .
The semantics of expressions is defined by the judgment 𝑠 ⊢ E ⇓ 𝑣 saying that in the state 𝑠 ∈ S,

the expression E evaluates to value 𝑣 ∈ V. This judgment is defined by the rules in Fig. 8.
The semantics of commands is defined by the judgment 𝑠 ⊢ C ⇒ 𝑠′ meaning that the command

C transforms the state 𝑠 ∈ S into a new state 𝑠′ ∈ S. This judgment is defined by the rules in Fig. 9.
We comment some of these rules.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

A Dependent Nominal Physical Type System for the Static Analysis of Memory in Low Level Code NNN:33

(𝜎, h) ⊢ 𝑥 ⇓ 𝜎 [𝑥]
Env

𝑠 ⊢ 𝑘 ⇓ 𝑘
Const

𝑠 ⊢ E ⇓ 𝑎 [𝑎, 𝑎 + ℓ] ⊆ dom(h)
𝑠 ⊢ ∗ℓE ⇓ h[𝑎..𝑎 + ℓ]

Load

𝑠 ⊢ E1 ⇓ 𝑣1 𝑠 ⊢ E2 ⇓ 𝑣2 𝑣1, 𝑣2 ∈ Vℓ 𝑣2 ≠ 0
𝑠 ⊢ E1/E2 ⇓ 𝑣1/𝑣2

Div

𝑠 ⊢ E1 ⇓ 𝑣1 𝑠 ⊢ E2 ⇓ 𝑣2 𝑣1, 𝑣2 ∈ Vℓ ⋄ ∈ {+,−,×, . . . }
𝑠 ⊢ E1 ⋄ E2 ⇓ 𝑣1 ⋄ 𝑣2

Binop

𝑠 ⊢ E ⇓ 𝑣 𝑣 ∈ Vℓ ⊲ ∈ {−,¬}
𝑠 ⊢ ⊲ E ⇓ ⊲ 𝑣

Unop

Fig. 8. Dynamic semantics of expressions inWhilemem

Skip
𝑠 ⊢ skip⇒ 𝑠

Seq
𝑠 ⊢ C1 ⇒ 𝑠1 𝑠1 ⊢ C2 ⇒ 𝑠2

𝑠 ⊢ C1;C2 ⇒ 𝑠2

Assign
(𝜎, h) ⊢ E ⇓ 𝑣

(𝜎, h) ⊢ 𝑥 := E⇒ (𝜎 [𝑥 ← 𝑣], h)

Store
(𝜎, h) ⊢ E1 ⇓ 𝑎 ∈ VW (𝜎, h) ⊢ E2 ⇓ 𝑣 ∈ V𝑙

(𝜎, h) ⊢ ∗ℓ E1 := E2 ⇒ (𝜎, h[𝑎..𝑎 + ℓ ← 𝑣])

Alloc
(𝜎, h) ⊢ E ⇓ ℓ ℓ > 0 [𝑎..𝑎 + ℓ] ∪ dom(h) = ∅ 𝑣 ∈ Vℓ

(𝜎, h) ⊢ 𝑥 := malloc𝜂 (E) ⇒ (𝜎 [𝑥 ← 𝑎], h[𝑎..𝑎 + ℓ ← 𝑣])

Alloc0
(𝜎, h) ⊢ E ⇓ ℓ ℓ > 0

(𝜎, h) ⊢ 𝑥 := malloc𝜂 (E) ⇒ (𝜎 [𝑥 ← 0], h)
Assume

𝑠 ⊢ E ⇓ 𝑣 𝑣 ≠ 0
𝑠 ⊢ assume E⇒ 𝑠

Then
𝑠 ⊢ assume E;C1 ⇒ 𝑠′

𝑠 ⊢ if E then C1 else C2 end⇒ 𝑠′
Else

𝑠 ⊢ assume ¬E;C2 ⇒ 𝑠′

𝑠 ⊢ if E then C1 else C2 end⇒ 𝑠′

WhileEnd
𝑠 ⊢ E ⇓ 0

𝑠 ⊢ while E do C done⇒ 𝑠

WhileLoop
𝑠 ⊢ E ⇓ 𝑣 𝑣 ≠ 0 𝑠 ⊢ C ⇒ 𝑠1 𝑠1 ⊢ while E do C done⇒ 𝑠2

𝑠 ⊢ while E do C done⇒ 𝑠2

Fig. 9. Dynamic semantics of statements inWhilemem

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

NNN:34 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

The memory write ∗ℓE1 := E2 evaluates E1 and, if it results in a valid heap address, (i.e. a value in
A that is in the domain of h), stores the result of evaluating E2 at that address, if E2 evaluates to a
bit vector size ℓ .

Thememory allocation 𝑥 := malloc𝜂 (E) makes a non-deterministic choice: either it assigns 𝑥 to 0,
or if E evaluates to a positive value ℓ , writes an indeterminate value to a region that was previously
unmapped in h, and assigns to 𝑥 the base address of that region.
The assumption assume E selects the state where E evaluates to true (i.e., ≠ 0).
The conditional if E then C1 else C2 end is expressed in terms of assumptions, when E evaluates

to true (i.e. ≠ 0), we follow the “then” branch C1, otherwise the follow the “else” branch C2.
Finally, the semantics of loops while E do C done states that if the loop condition E is not longer

true (or it never was to begin with) then the loop ends. Otherwise, the loop is executed one more
time. Of course, these rules do not consider loop termination.

B.3 Typed concrete semantics
This is an additional material for §6.

Theorem 6.2 (Safe store inside a region). Let (m, ℎ) be a well-typed heap, 𝑎 ∈ dom(ℎ) an
allocated address such that (𝜌, 𝑘) ∈ m(𝑎) and 𝑠 = size(𝜌). Let 𝑣 ∈ Vℓ be a value. Then ℎ[𝑎..𝑎 + ℓ ← 𝑣]
is a safe store iff ℎ[𝑎 − 𝑘..𝑎 − 𝑘 + 𝑠 ← ℎ[𝑎 − 𝑘..𝑎] :: 𝑣 :: ℎ[𝑎 + ℓ ..𝑎 − 𝑘 + 𝑠]] is a safe store.

Proof. Follows fromℎ[𝑎..𝑎+ℓ ← 𝑣] = ℎ[𝑎−𝑘..𝑎−𝑘+𝑠 ← ℎ[𝑎−𝑘..𝑎] :: 𝑣 :: ℎ[𝑎+ℓ ..𝑎−𝑘+𝑠]]. □

Theorem 6.2 (Name matching implies monotony). Let m,m′ ∈ A ⇀ R such that m⇝ m′. Then:
∀𝜏 ∈ T : L𝜏 Mm ⊆ L𝜏 Mm′ and [[𝜏]]m ⊆ [[𝜏]]m′ .

Proof. By structural induction on types using the well-founded relation ≺Δ and the definition
of L · Mm and [[·]]m in Table 4. □

C ANALYSIS RULES
We present here the full set of abstract transformers shortly described in §7.

C.1 Rules’s overview and their soundness theorems
As usual in abstract interpretation [18], our abstract transformers (analysis rules) derive from the
definition of our domain and its concretization. These transformers involve many different opera-
tions requiring interaction between the different parts of the analysis. To simplify the presentation,
we describe the abstract transformers as a set of deduction rules over the formulas that our abstract
domains represent. These formulas are given as judgements below. The rules could be used as a
proof witness of the type safety of the program.

We sort the rules and the associated judgements in the following classes:
• Rules that define the translation of the imperative program constructs into side-effect-free
symbolic expressions: {𝑠♯1} 𝐸 ⇓ 𝑒 {𝑠

♯

2} for expressions and {𝑠
♯

1} 𝐶 {𝑠
♯

2} for commands;
• Rules for inferring typing judgments 𝑠♯ ⊨ 𝑒 : 𝜏 from the contents of the 𝑠♯ .Γ♯ component
of the abstract state, the previous typing judgments, and the relation between symbolic
expressions;
• Rules that infer or adds numerical constraints 𝑠♯ ⊨ 𝑒 based on conditionals encountered in
the program or from the inferred typing judgments;
• Rules for refining the abstract state 𝑠♯1 ⇒ 𝑠

♯

2 based on the inferred numerical facts and
typing judgments;
• Rules that infer properties of values read from the heap {𝑠♯1} ∗ℓ 𝑒1 ⇓ 𝑒2 {𝑠

♯

2};

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

A Dependent Nominal Physical Type System for the Static Analysis of Memory in Low Level Code NNN:35

• Rules that check the safety of stores to the heap {𝑠♯1} ∗ℓ 𝑒1 := 𝑒2 {𝑠♯2};
• Rules for joining states 𝑠♯1 ⊔ 𝑠

♯

2 when there is a merge in the control flow, which involves
operations that degrade the precision in the domain (rules Leq*), and merge different types
and symbolic expressions (rules Matching*).

The following soundness theorem describes the meaning of each kind of rule, and how we prove
that each rule is correct. The proofs rely on the concepts described in §5.

Theorem C.1 (Soundness of the analysis). For all 𝑠♯, 𝑠♯1𝑠
♯

2 ∈ S♯; for all 𝑠, 𝑠1, 𝑠2 ∈ S, for all
𝑒, 𝑒1, 𝑒2 ∈ Ê, for all 𝜏, 𝜏1, 𝜏2 ∈ T̂, for all m and 𝜈 :

Command evaluation If {𝑠♯1} 𝐶 {𝑠
♯

2} and 𝑠1 ∈ 𝛾S♯ (𝑠♯1) and 𝑠1 ⊢ 𝐶 ⇒ 𝑠2, then 𝑠2 ∈ 𝛾S♯ (𝑠♯2).
Expression evaluation If {𝑠♯1} 𝐸 ⇓ 𝑒 {𝑠

♯

2} and 𝑠 ∈ 𝛾S♯ (𝑠♯1) and 𝑠 ⊢ 𝐸 ⇓ 𝑣 . Let (m, 𝜈) such that
𝑠 ∈ 𝛾M♯ (𝑠♯1) (m, 𝜈). Then 𝑠 ∈ 𝛾S♯ (𝑠♯2) and 𝑠 ∈ 𝛾M♯ (𝑠♯2) (m, 𝜈) and 𝛾Ê (𝑒) (𝜈) = 𝑣 .

Reduction If 𝑠♯1 ⇒ 𝑠
♯

2 , then 𝛾S♯ (𝑠♯1) = 𝛾S♯ (𝑠♯2) and 𝑠
♯

1 ⊑ 𝑠
♯

2
Numerical queries If 𝑠♯ ⊨ 𝑒 , 𝑠 ∈ 𝛾S♯ (𝑠♯) and 𝑠 ∈ 𝛾M♯ (𝑠♯) (m, 𝜈), then 𝛾Ê (𝑒) (𝜈) ≠ 0.
Typing judgments If 𝑠♯ ⊨ 𝑒 : 𝜏 and 𝑠 ∈ 𝛾S♯ (𝑠♯) and 𝑠 ∈ 𝛾M♯ (𝑠♯) (m, 𝜈), then 𝛾Ê (𝑒) (𝜈) ∈

𝛾T̂ (𝜏) (m, 𝜈).
Inclusion between symbolic types with offsets If 𝑠♯ ⊨ (𝜏1, 𝑒1) ⊑♯P (𝜏2, 𝑒2), then
(𝛾T̂ (𝜏1) (m, 𝜈), 𝛾Ê (𝑒1) (𝜈)) ⊑P (𝛾T̂ (𝜏2) (m, 𝜈), 𝛾Ê (𝑒2) (𝜈)).

Load operation If {𝑠♯1} ∗ℓ 𝑒1 ⇓ 𝑒2 {𝑠♯2}, (𝜎,ℎ) ∈ 𝛾S♯ (𝑠♯1), (𝜎,ℎ) ∈ 𝛾M♯ (𝑠♯1) (m, 𝜈) and 𝑣1 =

𝛾Ê (𝑒1) (𝜈), then (𝜎,ℎ) ∈ 𝛾S♯ (𝑠♯2) and ℎ[𝑣1 ..𝑣1 + ℓ] = 𝛾Ê (𝑒2) (𝜈).
Store operation If {𝑠♯1} ∗ℓ𝑒1 := 𝑒2 {𝑠♯2}, (𝜎,ℎ) ∈ 𝛾S♯ (𝑠♯1), (𝜎,ℎ) ∈ 𝛾M♯ (𝑠♯1) (m, 𝜈), 𝑣1 = 𝛾Ê (𝑒1) (𝜈)

and 𝑣2 = 𝛾Ê (𝑒2) (𝜈), then (𝜎,ℎ[𝑣1..𝑣1 + ℓ] ← 𝑣2) ∈ 𝛾S♯ (𝑠♯2).
Join 𝛾S♯ (𝑠♯1 ⊔ 𝑠

♯

2) ⊇ 𝛾S♯ (𝑠♯1) ∪ 𝛾S♯ (𝑠♯2).

In the next sections, we present each category of rules and prove their soundness.

C.2 Inclusion rules
We want to define the abstract counterpart of the ⊑P operation in lattice𝑇𝑂 (see §5). Intuitively, we
would want to say that (𝜏1, 𝑒1) ⊑♯P (𝜏2, 𝑒2) to mean that given any valuation 𝜈 , the corresponding
(𝜏1, 𝑘1) and (𝜏2, 𝑘2) that the symbolic type represent are such that (𝜏1, 𝑘1) ⊑♯P (𝜏2, 𝑘2). However, this
could be too imprecise, we actually want to consider only the valuations that can be represented
by a given state 𝑠♯. Hence, our judgments are of the form 𝑠♯ ⊨ (𝜏1, 𝑒1) ⊑♯P (𝜏2, 𝑒2).

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

NNN:36 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

LeqByte
𝑠♯ ⊨ (𝜏, 𝑒) ⊑♯P (byte[size(𝜏)], 𝑒)

LeqNamed
𝑠♯ ⊨ (𝜂, 𝑒) ⊑♯P (Δ(𝜂), 𝑒)

LeqWith
𝑠♯ ⊨ ({𝑥 : 𝜏 | 𝑒1} , 𝑒2) ⊑♯P (𝜏, 𝑒2)

LeqInter
𝑠♯ ⊨ (𝜏2, 𝑒) ⊑♯P (𝜏3, 𝑒3)

𝑠♯ ⊨ (𝜏1/|𝜏2, 𝑒) ⊑♯P (𝜏3, 𝑒3)

LeqUnion
𝑠♯ ⊨ (𝜏1, 𝑒) ⊑♯P (𝜏, 𝑒3)
𝑠♯ ⊨ (𝜏2, 𝑒) ⊑♯P (𝜏, 𝑒3)

𝑠♯ ⊨ (𝜏1 ∪ 𝜏2, 𝑒) ⊑♯P (𝜏, 𝑒3)

LeqProd
𝑠♯ ∧ 𝑒 ≤ size(𝜏1) ⇒ 𝑠

♯

1 𝑠
♯

1 ⊨ (𝜏1, 𝑒) ⊑
♯

P (𝜏3, 𝑒3)
𝑠♯ ∧ 𝑒 > size(𝜏1) ⇒ 𝑠

♯

2 𝑠
♯

2 ⊨ (𝜏2, 𝑒) ⊑
♯

P (𝜏3, 𝑒3)

𝑠♯ ⊨ (𝜏1 × 𝜏2, 𝑒) ⊑♯P (𝜏3, 𝑒3)

LeqArray
𝑠♯ ⊨ size(𝜏) = ℓ 𝑠♯ ⊨ 0 ≤ 𝑒2 < size(ℓ ∗ 𝑒) 𝑠♯ ⊨ (𝜏, 𝑒 mod ℓ) ⊑♯P (𝜏3, 𝑒3)

𝑠♯ ⊨ (𝜏[𝑒], 𝑒2) ⊑♯P (𝜏3, 𝑒3)

LeqByte this rule is used as safe fallback if we fail to find an upper bound when joining
types, is notably useful for pointer types.

LeqNamed, LeqWith directly derive from the definition of these types, which have only
one predecessor in the (𝜏, 𝑘) graph.

LeqInter since 𝜏2 is closer to byte than 𝜏1 in the ≺ relation between types, we start from it
when trying to find its dominator.

LeqUnion finds a common ancestor between 𝜏1 and 𝜏2. In practice we want the least common
ancestor, and this rule corresponds to doing least-common ancestor search in the dominator
tree.

LeqProd in most cases, size(𝑒1) will be a constant ℓ and one of the condition 𝑒 ≤ ℓ or 𝑒 > ℓ

will be ⊥, but the rule can handle more complex cases, e.g. when we have a structure
containing several integers and the offset inside the structure is not precisely known.

LeqArray note the condition 𝑠♯ ⊨ 0 ≤ 𝑒2 < size(ℓ ∗ 𝑒), as the rule is incorrect if 𝑒 can be
out of bound.

Notice that we don’t have a rule for existential types. The existential type must have been instanti-
ated (using rule Instantiate) first.

C.3 Joining states
Intuitively, we want to define the abstract counterpart of the ⊔P operation in lattice 𝑇𝑂 (see §5),
that is, given two pairs of symbolic types and offsets (𝜏1, 𝑒1) and (𝜏2, 𝑒2), we want to find a pair of
symbolic types and offsets (𝜏3, 𝑒3) such that for any valuation, the concrete type and offset that
they represent are related though the ⊔P operation. We want to complete this first definition with
two elements:
• First, we do not to consider all the possible valuations 𝜈 , but only those that correspond to
the states 𝑠♯1 and 𝑠

♯

2 that we are joining;
• Second, we need to make use of a renaming operation𝜙 that will make similar types coincide.

For instance, if an address belongs to a set represented by 𝑖𝑛𝑡 [4] + 1 in 𝑠♯1 , and by 𝑖𝑛𝑡 [7] + 4

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

A Dependent Nominal Physical Type System for the Static Analysis of Memory in Low Level Code NNN:37

in 𝑠
♯

2 , then it will be in a set 𝑖𝑛𝑡 [𝛼1] + 𝛼2 in 𝑠
♯

1 ⊔ 𝑠
♯

2 , where 𝛼1 and 𝛼2 are fresh symbolic
variables that are numerically constrained in 𝑠

♯

1 ⊔ 𝑠
♯

2 .
Formally, a renaming function [11] 𝜙 ∈ Ê × Ê ⇀ α takes a pair of different expression and

returns a fresh (or deterministically named [43]) symbol, such that the function is injective (different
pairs of expression return a different symbol). This function can be reversed into two substitutions
that we call 𝜙1 and 𝜙2. We extend this function to the case 𝜙 (𝑒, 𝑒) = 𝑒 where the same expression
appears twice (and no substitution happens).

The judgment ⊨𝜙 𝜙 (𝜏1, 𝜏2) = 𝜏 (which is syntactic) means that 𝜙 is a suitable renaming function
for the renaming of expressions within types. Fig. 10 defines this judgment; we denote by 𝜙 (𝜏1, 𝜏2) =
𝜏 the fact that 𝜏1 and 𝜏2 are substituted by 𝜏). Formally,

Theorem C.2. If ⊨𝜙 𝜙 (𝜏1, 𝜏2) = 𝜏 , then subst(𝜏1, 𝜙1) = 𝜙 and subst(𝜏2, 𝜙2) = 𝜏 .

MatchingSame
⊨𝜙 𝜙 (𝜏, 𝜏) = 𝜏

MatchingName
⊨𝜙 𝜙 (n(𝑒1, . . . , 𝑒ℓ), n(𝑒ℓ+1, . . . , 𝑒2ℓ)) = n(𝜙 (𝑒1, 𝑒ℓ+1), . . . , 𝜙 (𝑒ℓ , 𝑒2ℓ))

MatchingWith
⊨𝜙 𝜙 (𝜏1, 𝜏2) = 𝜏

⊨𝜙 𝜙 ({𝑥 : 𝜏1 | 𝑒1} , {𝑥 : 𝜏2 | 𝑒2}) = {𝑥 : 𝜏 | 𝜙 (𝑒1, 𝑒2)}

MatchingProd
⊨𝜙 𝜙 (𝜏11, 𝜏12) = 𝜏1 ⊨𝜙 𝜙 (𝜏21, 𝜏22) = 𝜏2 size(𝜏11) = size(𝜏12)

⊨𝜙 𝜙 (𝜏11 × 𝜏21, 𝜏12 × 𝜏22) = 𝜏1 × 𝜏2

MatchingArray
⊨𝜙 𝜙 (𝜏1, 𝜏2) = 𝜏 size(𝜏1) = size(𝜏2)

𝜙 (𝜏1[𝑒1], 𝜏2[𝑒2]) = 𝜏[𝜙 (𝑒1, 𝑒2)]

MatchingUnion
⊨𝜙 𝜙 (𝜏11, 𝜏12) = 𝜏1 ⊨𝜙 𝜙 (𝜏21, 𝜏22) = 𝜏2

⊨𝜙 𝜙 (𝜏11 ∪ 𝜏21, 𝜏12 ∪ 𝜏22) = 𝜏1 ∪ 𝜏2

MatchingInter
⊨𝜙 𝜙 (𝜏11, 𝜏12) = 𝜏1 ⊨𝜙 𝜙 (𝜏21, 𝜏22) = 𝜏2

⊨𝜙 𝜙 (𝜏11/|𝜏21, 𝜏12/|𝜏22) = 𝜏1/|𝜏2

MatchingExists
⊨𝜙 𝜙 (𝜏11, 𝜏12) = 𝜏1 ⊨𝜙 𝜙 (𝜏21, 𝜏22) = 𝜏2

⊨𝜙 𝜙 (∃𝛼 : 𝜏11. 𝜏21, ∃𝛼 : 𝜏12. 𝜏22) = ∃𝛼 : 𝜏1. 𝜏2

MatchingAddr
⊨𝜙 𝜙 (𝜏1, 𝜏2) = 𝜏

⊨𝜙 𝜙 (𝜏1★ + 𝑒1, 𝜏2★ + 𝑒2) = 𝜏★ + 𝜙 (𝑒1, 𝑒2)

Fig. 10. Renaming function

Most of the rules are simple. Note that:

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

NNN:38 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

MatchingProd could be extended when the sizes of the first field do not match, but that
would be complicated (and probably not very useful in practice).

MatchingAddr could be smarter by making 𝜙 (𝜏1★ + 𝑒1, 𝜏2★ + 𝑒2) match if we can join the
pairs (𝜏1, 𝑒1) and (𝜏2, 𝑒2). This would make the formalization significantly more complex,
in a case where the precision is already very bad (as it represent addresses pointing to a
byte[W] region, with the additional knowledge that it contains a pointer).

With this operator in place, we can (implicitly) define our join operator on abstract type environ-
ments by stating that they preserve the following judgment for all the (𝑒1, 𝑒2) pairs in dom(𝜙):

JoingJudgments
𝑠
♯

1 ⊨ 𝑒1 : 𝜏11★ + 𝑒11 𝑠
♯

1 ⊨ (𝜏11, 𝑒11) ⊑
♯

P (𝜏111, 𝑒111)
𝑠
♯

2 ⊨ 𝑒2 : 𝜏22★ + 𝑒22 𝑠
♯

2 ⊨ (𝜏22, 𝑒22) ⊑
♯

P (𝜏222, 𝑒222)
⊨𝜙 𝜙 (𝜏111, 𝜏222) = 𝜏

𝑠
♯

1 ⊔ 𝑠
♯

2 ⊨ 𝜙 (𝑒1, 𝑒2) : (𝜏★ + 𝜙 (𝑒111, 𝑒222))

JoinJudgments explains how Γ♯ is computed: for each pair (𝑒1, 𝑒2) of expressions which
needs to be joined, we get their respective values 𝑠♯1 .Γ

♯ [𝑒1] and 𝑠
♯

2 .Γ
♯ [𝑒2], climb the ⊑♯P

equivalent to the ⊑P domination tree on the concrete types to find a matching pair of
(symbolic type, symbolic expression) pairs; that we can use as the result (after some renaming
using 𝜙 , which in turns may require new pairs of expression to be added to Γ♯, in the case
where these expressions could represent some adresses).

We define ⊔𝜙
Γ♯

as the smallest Γ♯ that can produce these judgments (given a 𝜙).

We suppose that ⊔𝜙ν♯
is given, and ⊔𝜙

Σ♯
is defined as follows:

𝜎
♯

1 ⊔
𝜙

Σ♯
𝜎
♯

2 ≜ 𝜆𝑥 ∈ X. 𝜙 (𝜎♯

1 [𝑥], 𝜎
♯

2 [𝑥])

We can now define the join between two abstract states as:

(𝜎♯

1 , Γ
♯

1 , 𝜈
♯

1) ⊔ (𝜎
♯

2 , Γ
♯

2 , 𝜈
♯

2) ≜ ∃ minimal 𝜙 : (𝜎♯

1 ⊔
𝜙

Σ♯
𝜎
♯

2 , Γ
♯

1 ⊔
𝜙

Γ♯
Γ♯2 , 𝜈

♯

1 ⊔
𝜙

ν♯
𝜈
♯

2)

where minimal means that dom(𝜙) should not rename arbitrary pairs of symbolic expressions,
only those that are bound to the same variable in both abstract stores, or whose definition is
required by rule JoinJudgments.

Theorem C.3. For all 𝑠♯1 , 𝑠
♯

2 ∈ S♯:

𝛾S♯ (𝑠♯1 ⊔ 𝑠
♯

2) ⊇ 𝛾S♯ (𝑠♯1) ∪ 𝛾S♯ (𝑠♯2)

.

C.4 Rules for compound commands
These rules are usual. Their meaning is given by the following soundness theorem:

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

A Dependent Nominal Physical Type System for the Static Analysis of Memory in Low Level Code NNN:39

skip
{𝑠♯} skip {𝑠♯}

seq
{𝑠♯0} 𝐶1 {𝑠♯1} {𝑠♯1} 𝐶2 {𝑠♯2}

{𝑠♯0} 𝐶1;𝐶2 {𝑠♯2}

if
{𝑠♯0} assume(𝐸);𝐶1 {𝑠♯1} {𝑠♯0} assume(¬𝐸);𝐶2 {𝑠♯2} 𝑠

♯

3 = 𝑠
♯

1 ⊔
♯ 𝑠

♯

2

{𝑠♯0} if(𝐸) 𝐶1 else 𝐶2 {𝑠♯3}

while-done
{𝑠♯0} assume(𝑒);𝐶1 {𝑠♯1} 𝑠

♯

1 ⊑ 𝑠
♯

0 {𝑠♯1} assume(¬𝐸) {𝑠
♯

2}

{𝑠♯0} while(𝐸) do 𝐶1 done {𝑠♯2}

while-again
{𝑠♯0} assume(𝐸);𝐶1 {𝑠♯1} {𝑠♯0∇𝑠

♯

1} while(𝐸) do 𝐶1 done {𝑠♯2}

{𝑠♯0} while(𝐸) do 𝐶1 done {𝑠♯2}

C.5 Rules for basic commands

assign
{𝑠♯0} 𝐸 ⇓ 𝑒 {𝑠

♯

1}

{𝑠♯0} 𝑥 := 𝐸 {𝑠♯2 [𝜎
♯ ← 𝑠

♯

1 .𝜎
♯ [𝑥 ← 𝑒]]}

assume
{𝑠♯0} 𝐸 ⇓ 𝑒 {𝑠

♯

1} 𝜈
♯

2 = 𝑠
♯

1 .𝜈
♯ ∧ (𝑒 ≠ 0) 𝑠

♯

1 [𝜈
♯ ← 𝜈

♯

2] ⇒ 𝑠
♯

3

{𝑠♯0} assume(𝐸) {𝑠
♯

3}

Assign evaluates an expression, which returns an updated state which contains new infor-
mation about this expression, and put in in the abstract store.

Assume updates the abstract valuation with the numerical constraints 𝑒 ≠ 0, propagates this
fact, and returns the result.

C.6 Rules for expressions

var
{𝑠♯} 𝑥 ⇓ 𝑠♯ .𝜎♯ [𝑥] {𝑠♯}

load
{𝑠♯0} 𝐸 ⇓ 𝑒1 {𝑠

♯

1} {𝑠♯1} ★ℓ𝑒1 ⇓ 𝑒2 {𝑠♯2}

{𝑠♯0} ★ℓ𝐸 ⇓ 𝑒2 {𝑠♯2}

const
{𝑠♯} 𝑘 ⇓ 𝑘 {𝑠♯}

binop
{𝑠♯0} 𝐸1 ⇓ 𝑒1 {𝑠

♯

1} {𝑠♯1} 𝐸2 ⇓ 𝑒2 {𝑠
♯

2}

{𝑠♯} 𝐸1 ⋄ 𝐸2 ⇓ 𝑒1 ⋄ 𝑒2 {𝑠♯2}

These rules just translate program expressions to symbolic expressions. Note that if we want
type safety to include absence of runtime errors like division by zero, we can add the hypothesis
𝑠
♯

2 ⊨ 𝑒2 ≠ 0 to the rule Binop when the binary operator ⋄ is the division.

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

NNN:40 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

C.7 The size operator on abstract types

size : T̂ ⇀ Ê

size(byte) ≜ 1

size(n(𝑒1, . . . , 𝑒ℓ)) ≜ size(Δ(n(𝑒1, . . . , 𝑒ℓ)))
size(𝜂★ + 𝑒) ≜W

size({𝑥 : 𝜏 | 𝑒}) ≜ size(𝜏)
size(𝜏1 × 𝜏2) ≜ size(𝜏1) + size(𝜏2)
size(𝜏[𝑒]) ≜ 𝑒 ∗ size(𝜏)

size(𝜏1 ∪ 𝜏2) ≜ size(𝜏1) if size(𝜏1) = size(𝜏2)
size(∃𝛼 : 𝜏1. 𝜏2) ≜ size(𝜏2) if 𝛼 ∉ size(𝜏2)

size(𝜏1/|𝜏2) ≜ size(𝜏1)

We note that this operator fails in two cases:
• when the size of an existential type depends on the existentially-bound variable, or
• when the size of components in a union type is different or cannot be proved equal.

When one of these cases happen, we just return an alarm.

C.8 Rules for load
Rules for load are important as it is the way the analysis has to gain information using the typing
invariant.

LoadSimple
𝑠
♯

0 ⊨ 𝑒1 : (𝜏★ + 𝑒2) 𝑠
♯

0 ⊨ size(𝜏) = ℓ 𝑠
♯

0 ⊨ 𝑒2 = 0 𝛼 fresh 𝑠
♯

0 ∧ 𝛼 : 𝜏 ⇒ 𝑠
♯

1

{𝑠♯0} ★ℓ𝑒1 ⇓ 𝛼 {𝑠♯1}

LoadLarger
𝑠
♯

0 ⊨ 𝑒1 : (𝜏★ + 𝑒2)
𝑠
♯

0 ⊨ 𝑒2 = 𝑘 𝑠
♯

0 ⊨ size(𝜏) = ℓ2 ℓ2 ≥ 𝑘 + ℓ {𝑠♯0} ★ℓ2 (𝑒1 − 𝑘) ⇓ 𝑒3 {𝑠
♯

1}

{𝑠♯0} ★ℓ1𝑒1 ⇓ 𝑒3 [𝑘..𝑘 + ℓ1] {𝑠
♯

1}

LoadUnionSplit
𝑠
♯

0 ⊨ 𝑒 : 𝜏1 ∪ 𝜏2
𝑠
♯

0 ∧ 𝑒 : 𝜏1 ⇒ 𝑠
♯

1 {𝑠♯1} ★ℓ𝑒 ⇓ 𝑒1 {𝑠′1
♯} 𝑠

♯

0 ∧ 𝑒 : 𝜏2 ⇒ 𝑠
♯

2 {𝑠♯2} ★ℓ𝑒 ⇓ 𝑒2 {𝑠′2
♯}

{𝑠♯0} ★ℓ𝑒 ⇓ 𝜙 (𝑒1, 𝑒2) {𝑠′1
♯ ⊔ 𝑠′2

♯}

LoadSimple applies when we load a interval of length ℓ and we have a pointer whose type is
𝜏★+ 0 with size(𝜏) = ℓ . In this cas, we create a fresh symbolic variable 𝛼 , we give it the type
𝜏 , and we propagate this information (e.g. we propagate with constraints to the numerical
domain). Note that when we have more information about the regions where the address
may point (e.g. when 𝜏 is of the form 𝜏1/|𝜏2), we can recover more information about the
pointed value.

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

A Dependent Nominal Physical Type System for the Static Analysis of Memory in Low Level Code NNN:41

LoadLarger applies when the pointer points inside an interval. We can then load the whole
interval, and extract the relevant part as the result. It is possible to extend this rule when 𝑒2
is not constant (by enumerating the possible values of 𝑒2, loading for each possibility, and
joining the resulting states), or by allowing loading of intervals of variable size.

LoadUnionSplit applies when the address is a union type 𝜏1 ∪ 𝜏2. We then fork the anal-
ysis according to both cases, assuming that the address is one of 𝜏1 or 𝜏2, propagate this
information, continue trying to load with both type, and then join the result.

Note that when the address at which the load is done, 𝑒1, is typed by an existential type, other
rules apply like Instantiate.

An alternative to LoadLarger is rule PtrClimbAddrLattice, but LoadLarger is more precise
if it can apply. However, our implementation does not yet have a good array abstraction and we
can only load fixed-size regions, so we use the PtrClimbAddrLattice rule in that case.
Sometimes, the analysis can encounter a situation where none of the above rules apply (e.g.

when loading a null pointer). In this case, we raise an alarm in practice.

C.9 Rules for store

StoreSimple
𝑠♯ ⊨ 𝑒1 : (𝜂★ + 𝑒2) 𝑠♯ ⊨ size(𝜏) = ℓ

𝑠♯ ⊨ 𝑒2 = 0 ∄(𝜂3, 𝑒3) s.t. 𝜂3 ≠ 𝜂 ∧ (𝜂3, 𝑒3) ⊑♯P (𝜂, 𝑒2) 𝑒4 : 𝜂
(
𝑠♯ ∧ (𝛼 : 𝜏)

)
⇒ 𝑠

♯

1

{𝑠♯} ★ℓ𝑒1 := 𝑒4 {𝑠♯}

StoreLarger
𝑠
♯

0 ⊨ 𝑒1 : (𝜏★ + 𝑒2) 𝑠
♯

0 ⊨ 𝑒2 = 𝑘 𝑠
♯

0 ⊨ size(𝜏) = ℓ2

{𝑠♯0} ★ℓ2 (𝑒1 − 𝑘) ⇓ 𝑒3 {𝑠
♯

1} {𝑠♯0} ★ℓ2 (𝑒1 − 𝑘) := 𝑒3 [0..𝑘] :: 𝑒4 :: 𝑒3 [𝑘 + ℓ1..ℓ2] {𝑠♯1}

{𝑠♯0} ★ℓ1𝑒1 := 𝑒4 {𝑠♯1}

StoreUnionSplit
𝑠
♯

0 ⊨ 𝑒 : 𝜏1 ∪ 𝜏2
𝑠
♯

0 ∧ 𝑒 : 𝜏1 ⇒ 𝑠
♯

1 {𝑠♯1} ★ℓ𝑒 ⇓ 𝑒2 {𝑠′1
♯}

𝑠
♯

0 ∧ 𝑒 : 𝜏2 ⇒ 𝑠
♯

2 {𝑠♯2} ★ℓ𝑒 ⇓ 𝑒2 {𝑠′2
♯}

{𝑠♯0} ★ℓ𝑒 := 𝑒2 {𝑠′1
♯ ⊔ 𝑠′2

♯}

StoreSimple The requirement that there is no region deriving from 𝜂 can be relaxed, in
that it is fine to have derived regions that can contain all the values that 𝜂 can.

StoreLarger allows to transform the proof that writing to a part of a region is correct to
the proof that writing to the whole region is correct. This is especially important for mild
updates, where the tag for the whole interval may change.

StoreUnionSplit does a case split to try to prove that storing the value is correct in every
case.

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

NNN:42 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

C.10 Other address-manipulating rules
PtrCombineInfo
𝑠♯ ⊨ 𝑒1 : 𝜏1★ + 𝑒2 𝑠♯ ⊨ 𝑒1 : 𝜏2★ + 𝑒2

𝑠♯ ⊨ 𝑒1 : ((𝜏1/|𝜏2)★ + 𝑒2)

PtrClimbAddrLattice
𝑠♯ ⊨ 𝑒 : (𝜏1★ + 𝑒1) 𝑠♯ ⊨ (𝜏1, 𝑒1) ⊑♯P (𝜏2, 𝑒2) 𝑠♯ ⊨ 0 ≤ 𝑒1 ≤ size(𝜏1)

𝑠♯ ⊨ 𝑒 : (𝜏2★ + 𝑒2)

PtrAdd
𝑠♯ ⊨ 𝑒 : (𝜏★ + 𝑒1)

𝑠♯ ⊨ (𝑒 + 𝑒2) : 𝜏★ + (𝑒1 + 𝑒2)
PtrClimbAddrLattice can be used as an alternative to LoadLarger in some cases, and

is particularly useful to transforming a load at multiple offsets in an array type into a load
at a single offset in an array element. For instance, if we have def ar := (self:byte
| self ≤ 14)[1870], and an address 𝑒1 of type 𝑎𝑟★ + 𝑒2 with 0 ≤ 𝑒2 < 1870, we can infer
that 𝑒1 : {𝑥 : byte | 𝑥 ≤ 14}★ to load the value without enumeration. Taking advantage of
the introduction of types of the form 𝜏★+ 𝑒 , we can infer that the loaded value will be ≤ 14.

PtrCombineInfo can be used to combine knowledge about a pointer, to limit the set of
regions where the pointer may point.

PtrAdd (and PtrSub, not shown) are the rules used to perform pointer arithmetics.

C.11 Typing rules
UseGamma
𝑠♯ .Γ♯ [𝑒2] = (𝜏, 𝑒)
𝑠♯ ⊨ 𝑒2 : (𝜏★ + 𝑒)

UpcastName
𝑠♯ ⊨ 𝑒 : 𝜂

𝑠♯ ⊨ 𝑒 : Δ(𝜂)

UpcastWith
𝑠♯ ⊨ 𝑒1 : {𝑥 : 𝜏 | 𝑒2}

𝑠♯ ⊨ 𝑒1 : 𝜏

PropagateWith
𝑠♯ ⊨ 𝑒1 : ({𝑥 : 𝜏 | 𝑒2})

𝑠♯ ⊨ 𝑒2 ≠ 0

UpCastProd1
𝑠♯ ⊨ 𝑒 : (𝜏1 × 𝜏2) size(𝜏1) = ℓ

𝑠♯ ⊨ 𝑒 [0..ℓ] : 𝜏1

UpCastProd2
𝑠♯ ⊨ 𝑒 : (𝜏1 × 𝜏2) size(𝜏1) = ℓ1 size(𝜏1 × 𝜏2) = ℓ

𝑠♯ ⊨ 𝑒 [ℓ1..ℓ] : 𝜏2

UpCastUnion
𝑠♯ ⊨ 𝑒 : (𝜏1 ∪ 𝜏2) 𝑠♯ ∧ 𝑒 : 𝜏2 ⇒ ⊥

𝑠♯ ⊨ 𝑒 : 𝜏1

DowncastName
𝑠♯ ⊨ 𝑒 : Δ(𝜂)
𝑠♯ ⊨ 𝑒 : 𝜂

DowncastWith
𝑠♯ ⊨ 𝑒1 : 𝜏 𝑠♯ ⊨ 𝑒2 ≠ 0

𝑠♯ ⊨ 𝑒1 : ({𝑥 : 𝜏 | 𝑒2})

DowncastProd
𝑠♯ ⊨ 𝑒1 : 𝜏1 𝑠♯ ⊨ 𝑒2 : 𝜏2
𝑠♯ ⊨ (𝑒1 :: 𝑒2) : (𝜏1 × 𝜏2)

DowncastUnion
𝑠♯ ⊨ 𝑒 : 𝜏1

𝑠♯ ⊨ 𝑒 : (𝜏1 ∪ 𝜏2)

DowncastExists
𝑠♯ ⊨ 𝑒1 : 𝜏1 𝑠♯ ⊨ 𝑒2 : subst(𝜏2, [𝛼 → 𝑒1])

𝑠♯ ⊨ 𝑒2 : (∃𝛼 : 𝜏1. 𝜏2)

TypEq
𝑠♯ ⊨ 𝑒1 : 𝜏 𝑠♯ ⊨ 𝑒1 = 𝑒2

𝑠♯ ⊨ 𝑒2 : 𝜏

AllByte
size(𝑒) = ℓ

𝑠♯ ⊨ 𝑒 : byteℓ

We call upcast the rules that go from a type to its subterm type, and downcast the rules that
go in the opposite direction (note that in general our upcast rules do not require side conditions
while downcast rules do; however it is the opposite for union types). In general, the Upcast rules

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

A Dependent Nominal Physical Type System for the Static Analysis of Memory in Low Level Code NNN:43

are used whenever necessary, in particular to find the target of addresses in a Load operation, or
to join pointer types when two states are merged. The Downcast rules are used for the Store
operation, where we try to to check that a given value can be casted into a given type for the store
operation to be safe.

Most of the rules are straightforward. Note however that:
• Our rules for UpCastProd1 and UpCastProd2 currently have fixed-size condition on some

of the types (that could be lifted if the symbolic expressions can represent variable-sized bit
vectors).
• The DownCastExists rule is difficult to apply, as it corresponds to quantifier elimination,

for which we need to find a correct 𝛼 . We have implemented a simple version which works
when 𝜏2 contains a refinement constrain of the form self = 𝛼 , as when such a rule exist,
finding the matching 𝛼 to be substituted is simple.
• There are different cases of propagation of numerical information to the type domain:

UpCastUnion eliminates of impossible members in a union type;
DownCastWith allows proving that a with constraint holds for a symbolic expression;
TypEq allows to combine equality information to type information.

• The most important numerical information obtained from types is obtained by the rule
PropagateWith.
• There is no rule UpcastExists: we always use it in the rule Instantiate, which also
propagates information learned during the instantiation.
• AllByte allows to combine equality information to type information, and can be used as
the starting point for applying Downcast rules.

C.12 Reduction rules
Reduction [18, 32] (also called constraint propagation) is an operation which improves the abstract
element without changing the concretization.

Instantiate
𝑠
♯

0 ⊨ 𝑒 : (∃𝛼 : 𝜏1. 𝜏2) 𝛼1 fresh
𝑠
♯

0 ∧ 𝛼1 : 𝜏1 ⇒ 𝑠
♯

1 𝑠
♯

1 ∧ 𝑒 : subst(𝜏2, [𝛼 → 𝛼1]) ⇒ 𝑠
♯

2

𝑠
♯

0 ⇒ 𝑠
♯

2

NumReduc1
𝑠♯ ⊨ 𝑒 ≠ 0 𝑠♯ .𝜈♯ ∧ (𝑒 ≠ 0) ⇒ 𝜈

♯

1

𝑠♯ ⇒ 𝑠♯ [𝜈♯ ← 𝜈
♯

1]

NumReduc2
𝑠♯ .𝜈♯ ⇒ 𝜈

♯

1

𝑠♯ ⇒ 𝑠♯ [𝜈♯ ← 𝜈
♯

1]

TypReduc
𝑠♯ ⊨ 𝑒 : 𝜂1★ + 𝑒1 𝑠♯ ⊨ (𝜂1, 𝑒1) ⊑♯P 𝑠♯ .Γ♯ [𝑒] ∨ 𝑒 ∉ dom(𝑠♯ .Γ♯)

𝑠♯ ⇒ 𝑠♯ [Γ♯ ← 𝑠♯ .Γ♯ [𝑒 ← (𝜂1, 𝑒1)]]

Instantiate this rule is used to open an existentially-bound type by instantiating its param-
eter 𝛼 into a fresh variable 𝛼1. We try to apply this rule as soon as possible; in particular
whenever we load a field in a structure, then we load all the fields of the structure and we
instantiate all the existentially-bound variables.

NumReduc1 propagates an inferred fact in the numerical abstract domain.
NumReduc2 performs constraint propagation in the numerical abstract domain (e.g. per-

forms transitive closure in the octagon [53] abstract domain), and updates the main domain
accordingly.

TypReduc saves typing judgments that have been infered in the abstract type environment
Γ♯. To ensure that we are performing reduction, we only save results that are more precise
than what already existed in Γ♯. The most important thing to note in this rule is that we

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

NNN:44 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

don’t save arbitrary (𝜏1, 𝑒1) in Γ♯, only rules of the form (𝜂1, 𝑒1). The reason is that arbitrary
𝑒 : 𝜏1★+ 𝑒1 rules may not be preserved when the store operation performs a mild update, as
we discussed in §6; so here we limit the contents of Γ♯ to only contain typing judgments
that are preserved by store. This can be relaxed in two ways; first, because judgments of
the form 𝑒 : (𝜏1/|𝜏2)★ + 𝑒1 will also be preserved when there is a mild update, so they can
be saved too. Second, it is possible to save arbitrary judgments 𝑒 : 𝜏1★ + 𝑒1 in Γ♯, provided
that the ones that are not preserved are removed when they may be affected by a store
operation. This would allow the analysis to be more precise (at the sake of more complexity
of the presentation).

D TRUE ALARMS AND PROBLEMS FOUND WHILE ANALYZING THE BENCHMARKS
The following summarizes the alarms that we found during the analysis of the benchmarks in §8.

• Olden/bh In the function maketree, if the mass of all the bodies are not massive, the
function hackcofm is called with a null pointer, which makes it fail.
• Olden/mst The code never checks if pointers returned by malloc are null.
• Shapes/javl The original code was adapted for use as a benchmark in Li et al. [47], and the

macros were changed (notably to remove some do ... while(0) constructs). But nested
inclusion of these new macros introduced variable capture issues on the ndir variable that
led to alarms during the analysis of function jsw_avlinsert.
• Shapes/graph The function node_add allocates some memory but does not write the
pointer anywhere, leading to a memory leak.

	Abstract
	1 Introduction
	2 Challenges for Low-level Spatial Memory Safety
	3 Physical Dependent Types
	3.1 Syntax and intuitive semantics
	3.2 Well-formed type definitions

	4 Semantics of physical dependent types
	4.1 Memory model
	4.2 Denotations of type expressions

	5 The DAG and lattice of type-offsets
	6 Concrete semantics
	7 Type-checking by Abstract Interpretation
	7.1 Abstract domains
	7.2 Flow-sensitive analysis

	8 Evaluation
	9 Related work
	10 Conclusion
	References
	A Physical Dependent Types
	A.1 Well-formed type definitions
	A.2 Lattice of type-offsets

	B A low level programming language
	B.1 Syntax
	B.2 Untyped semantics
	B.3 Typed concrete semantics

	C Analysis rules
	C.1 Rules's overview and their soundness theorems
	C.2 Inclusion rules
	C.3 Joining states
	C.4 Rules for compound commands
	C.5 Rules for basic commands
	C.6 Rules for expressions
	C.7 The size operator on abstract types
	C.8 Rules for load
	C.9 Rules for store
	C.10 Other address-manipulating rules
	C.11 Typing rules
	C.12 Reduction rules

	D True alarms and problems found while analyzing the benchmarks

