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Abstract

ArcZ is a small regulatory RNA conserved in Enterobacterales. It is a Hfg-dependent RNA that
is cleaved by RNase E in a processed form of 55 to 60 nucleotides. This processed form is highly
conserved for controlling the expression of target mRNAs. ArcZ expression is induced by abundant
oxygen levels and reaches its peak during the stationary growth phase. This control is mediated by
the oxygen-responsive two-component system ArcAB, leading to the repression of arcZ transcription
under low-oxygen conditions in most bacteria in which it has been studied. ArcZ displays multiple
targets, and it can control up to 10% of a genome and interact directly with more than 300 mRNAs in
Escherichia coli and Salmonella enterica. ArcZ displays a multi-faceted ability to regulate its targets
through diverse mechanisms such as RNase recruitment, modulation of ribosome accessibility on the
MRNA and interaction with translational enhancing regions. By influencing stress response, motility
and virulence through the regulation of master regulators such as FIhDC or RpoS, ArcZ emerges as a

major orchestrator of cell physiology within Enterobacterales.
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INTRODUCTION

In bacteria, adaptation to environmental changes, production of secondary metabolites or
virulence are highly controlled and regulated processes that allow the genes involved in these
pathways to be expressed at the right time (Schneider et al. 2009). Such control can occur directly on
the DNA via transcriptional regulation, on the mRNA via post-transcriptional regulation, or on the
proteins themselves via post-translational regulation. Major classes of post-transcriptional regulators
are riboswitches and antisense RNAs (asRNAs) that act in cis or small non-coding RNAs that act in
trans (sRNAs). sRNAs are the most abundant class of post-transcriptional regulators (reviewed in
Eichner et al. 2022).

asRNAs are transcribed in the reverse sense of the target gene. They pair with the mRNA, and
this pairing leads to the degradation of both RNAs (Dadzie et al. 2013). On the other hand, sSRNAs are
small untranslated RNAs, generally short, that regulate their mRNA targets post-transcriptionally
(reviewed in Eichner et al. 2022). These sSRNAs base pair directly to target mRNAs, often with the help
of a chaperone like Hfq or ProQ. In most cases, these sSRNAs pair to the 5' untranslated region (UTR)
region of the target mRNA. In this way, sSRNAs can have a repressive effect on mRNA expression,
either by hybridizing to the ribosome binding site (RBS) and/or by recruiting an RNase to degrade the
MRNA. They can also have an activating effect on mRNA expression by stabilizing and protecting
mMRNAs, or by activating translation initiation, for instance by preventing the formation of a
translation-inhibiting structure (reviewed in Dutta and Srivastava 2018).

The study of sSRNA function has taken a major turn since the advent of new high-throughput
sequencing methods. These new massive cDNA sequencing techniques have led to the invention of
global methods, RIP-seq, CLIP-seq, CLASH, RIL-seq, GRIL-seq, MAPS, and Term-seq, which enable
the study of the full range of interactions between Hfg, sSRNAs and their target mRNAs that occur in
vivo (reviewed in Saliba et al. 2017).

ArcZ is a small RNA found in most Enterobacterales bacteria (Fig. 1A) and its role has been

more specifically studied in bacteria such as Salmonella typhimurium, Dickeya dadantii, Escherichia
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coli, Erwinia amylovora and Photorhabdus sp. ArcZ was identified in initial genome-wide sRNA
screenings of E. coli and named either SraH (Argaman et al. 2001) or RyhA (Wassarman et al. 2001).
The sequence of this small RNA is relatively well conserved among the different species in which it
occurs, especially at the 3' end (Fig. 1A).

The transcriptional start site (TSS) of ArcZ has been identified precisely in Pantoea ananatis,
E. coli K12, S. typhimurium, Klebsiella pneumoniae, Photorhabdus laumondii and Xenorhabdus
nematophila by 5'/RACE or Genome-Wide Transcription Start Site Profiling (Fig. 1A, +1 indicated with
a red frame) (Argaman et al. 2001; Kim et al. 2012; Kréger et al. 2012; Shin et al. 2019; Neubacher et
al. 2020). It usually ranges in size from 121 to 130 nucleotides, except in Pantoea ananatis where the
5" end is particularly long (Soper et al. 2010; Shin et al. 2019; Neubacher et al. 2020). On the
chromosome, the gene encoding this sSRNA is located downstream of the arcB gene, in the reverse
direction (Fig. 1B). The 3' end of arcZ usually overlaps the 3' end of the arcB gene by ten bases and
ends at a Rho-independent terminator (Argaman et al. 2001) (Fig. 1B). arcZ does not overlap arcB in
Pectobacterium carotovorum (Wang et al. 2018). Due to its genomic location, the sraH/ryhA gene has
been renamed as arcZ (referring to arc-associated sRNA Z) (Papenfort et al. 2009). This small
regulatory RNA targets key regulators (rpoS, flhD, Irp) involved in various functions in the bacterial
cell, playing a pleiotropic role in diverse bacterial species (Papenfort et al. 2009). For instance, a
transcriptome analysis carried out in E. amylovora revealed that ArcZ regulates the expression of 10%
of its genome (Schachterle et al. 2019a). Recent RIL-seq data have shown that ArcZ may interact
directly with more than 10% of mRNAs in the E. coli and Salmonella genomes. ArcZ may have one of
the largest target regulons for sSRNA (Melamed et al. 2016; Liu et al. 2023). However, the arcZ gene is
not essential in any of the bacteria where it has been studied, and mutated strains lacking this gene
survive in laboratory conditions. The purpose of this review is to compile all presently accessible data
on ArcZ in various bacterial species of the Enterobacterales order. We will discuss the identified targets
of ArcZ and the molecular process through which ArcZ can regulate their expression.

WHEN AND HOW IS A MATURE FORM OF ArcZ OBTAINED ?
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arcZ is expressed during the stationary phase and in aerobic conditions.

The sRNA ArcZ is regulated by the two-component system ArcAB. ArcB is a sensor kinase
that can transfer its phosphate to ArcA under anoxic conditions, thereby activating this transcriptional
regulator (Brown et al. 2022). Once activated, phosphorylated ArcA represses arcZ transcription by
binding to the arcZ promoter region. Additionally, arcB mRNA directly contributes to the repression
of ArcZ. It is speculated that arcB mRNA acts as an asRNA and destabilizes ArcZ through pairing with
it. Therefore, the ArcAB system represses the transcription of ArcZ in situations of limited oxygen
supply. ArcZ is expressed under high oxygen conditions (Mandin and Gottesman, 2010). Additionally,
ArcZ exhibits maximum levels during the stationary growth phase (Chen and Gottesman 2017). ArcZ
also directly represses arcB transcription in E. coli, providing a negative feedback loop that may affect
the function of the ArcA-ArcB regulon (Mandin and Gottesman 2010)

After transcription, ArcZ is recognized by the chaperone Hfq and is rapidly cleaved by RNase
E into a shorter 56-nucleotide form (Fig. 1A and 1C). This processed form corresponds to the 3' part of
ArcZ, highly conserved in Enterobacterales, which is the active form that can enhance or repress

expression of its target mRNAs (Fig. 1A and 1C) (Chao et al. 2017).

Hfq and RNase E, two key players in ArcZ functions

Hfq binds broadly to mRNAs, sRNAs, and ribosomal RNAs (reviewed in Updegrove et al.
2016). It is the first protein chaperone discovered to bind with sRNAs (reviewed in Vogel and Luisi
2011). It is a hexameric protein abundant in many bacteria and crucial for the stability of mRNA and
sRNA expression. As an RNA chaperone, Hfg binds to UA-rich sequences of sSRNAs and promotes
hybridization of sSRNAs to their target mRNAs, which causes either negative or positive regulation of
gene expression. Thus, Hfq could be considered as a catalyst that stabilizes the sSRNA and promotes
the meeting and binding between the sRNA and the mRNA it regulates. It is also possible that Hfq

assists SRNA-mRNA binding by modifying the structure of the mRNA upon its own binding
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(Geissmann and Touati 2004). Like many other sSRNAs, ArcZ relies on Hfq for binding to target mRNAs
(Fig. 1C) (Soper et al. 2010). Hfg can increase the rate of binding of ArcZ to its MRNA targets and the

stability of the ArcZ/mRNA complex (Soper et al. 2010).

Hfq possesses two faces — a proximal face that enables it to bind to sSRNAs and a distal face
that facilitates its binding to mRNAs. The consensus binding site for Hfg at the mRNA level
corresponds to the motif (AAN),. This repeat is commonly located in the 5'UTR of target mRNAs, as
evidenced by studies carried out on rpoS or mutS in E. coli. It has been proposed that the binding of
Hfq alone to mutS mRNA creates a structure that inhibits translation, while ArcZ bound to Hfq binds
to a sequence near the RBS of mutS, preventing ribosome binding (Soper et al. 2010; Chen and
Gottesman 2017). Another known function of Hfg is to protect mRNAs and sRNAs from degradation
by RNase E. In the case of DsrA and RyhB sRNAs, Hfq binds to these SRNAs at the RNase E cleavage
site, preventing their degradation (Moll et al. 2003).

RNase E also plays a crucial role in the maturation of specific SRNAs, including MicL and ArcZ,
by processing them into functional forms (Guo et al. 2014; Chao et al. 2017). These sRNAs undergo
cleavage by RNase E, resulting in a shorter and stable form that corresponds to the 3' end (Updegrove
et al. 2019). In vivo, two forms of E. coli ArcZ have been identified: a full 2121-nucleotide form and a
processed 56-nucleotide form, which corresponds to the 3' end of ArcZ. Only the short form of ArcZ
has the ability to interact with its mMRNA targets, resulting in the activation or repression of their
translation and/or stability (Fig. 1C) (Chao et al. 2017). The short form was also detected by Northern
blotting in S. typhimurium, D. dadantii, Photorhabdus and Xenorhabdus sp. (Papenfort et al. 2009;
Yuan et al. 2019; Neubacher et al. 2020). The RNase E cleavage site of E. coli ArcZ consists of a
minimum consensus sequence of five nucleotides: R(G/A)N(G/A/U/C)W(A/U)UU with the cut occuring
between the nucleotide sequences RN and WUU (Fig. 1C). Hfq is required to obtain a unique cleavage.
In its absence, RNase E cleaves the ArcZ transcript into various fragments, failing to generate the
functional 56 nucleotide-long ArcZ (Chao et al. 2017). Another important factor for unique cleavage

of the full-length form of ArcZ by RNase E at the consensus site is the presence of the highly conserved
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sequence CCCUGGUGUUGGCGCA immediately following the consensus cleavage site (Chao et al.
2017). Indeed, ArcZ has other potential consensus sites for cleavage by the RNase E, but only one site
is cleaved to yield the transcript of 56 nucleotides in E. coli (Fig. 1).

The most likely hypothesis to explain why RNase E cleavage of ArcZ is essential to produce a
functional sSRNA is that the 5' region of ArcZ prevents the conserved 3’ sequence from being free for
base pairing with mRNAs. Cleavage releases the 3’ part of ArcZ, enabling its base pairing with its
mMRNA targets. Therefore, the chaperone Hfq and RNase E are two essential players in the processing
of ArcZ into a shorter sSRNA of 56 nucleotides, but also for the stabilization and pairing of this SRNA

with its targets (Chao et al. 2017).

THE mRNA TARGETS OF ArcZ IN ENTEROBACTERALES

ArcZ regulates the general stress response.

The RpoS-mediated general stress response in E. coli has been reviewed extensively (Battesti
et al. 2011). The first well-defined target of ArcZ in E. coliis the rpoS mRNA, as two studies pinpointed
this regulation and detailed its molecular mechanism (Mandin and Gottesman 2010; Soper et al. 2010)
(Fig. 2). RpoS (0%) is an alternative sigma factor responsible for activating genes that enhance
resistance against various stresses, including the gad genes during acid stress and the ots genes during
cold stress, through its interaction with RNA polymerase. Directly or not, RpoS regulates about 500
genes in E. coli. During the exponential phase of growth, RpoS production is repressed at various
levels, while it is activated during stationary phase. At the post-transcriptional level, the regulation of
rpoS is complex: the SRNAs ArcZ, DsrA and RprA are involved in activating the translation of the rpoS
mMRNA, while the sRNAs OxyS and CyaR repress it (Mandin and Gottesman 2010). In addition to the
aforementioned regulation of arcZ, the transcription of these various SRNAs is itself regulated. dsrA
expression is triggered during low temperature conditions, rprA expression is induced through the Rcs

phosphorelay, oxyS is induced by H,O, oxidative stress through the OxyR regulator, and cyaR is
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regulated by CRP (Colland et al. 2000). These sSRNAs, except DsrA, are known to be strictly dependent
on the chaperone Hfg, without which they can no longer regulate their target (Soper et al. 2010).

During acid stress in E. coli, ArcZ, by promoting translation of rpoS mRNA, increases the
synthesis of GadX, which in turn activates transcription of the gadE gene. GadE is the primary
transcriptional activator of the gadA and gadB genes, which encode glutamate decarboxylases, as
well as gadD, which encodes a glutamate transporter (Fig. 2) (Castanié-Cornet et al. 2010; Bak et al.
2014). The harmful impact of acid stress is thus counteracted by the production of GABA via the
decarboxylation of glutamic acid (De Biase et al. 1999).

Another aspect of ArcZ’s influence on rpoS mRNA operates through regulatory cascades,
specifically through the interaction between ArcZ and CyaR (Fig. 2). CyaR transcription is controlled
by the global transcriptional repressor CRP, the CpxAR two-component system, and the sigma factor
RpoE (De Lay and Gottesman 2012). CyaR has the ability to interact with rpoS mRNA and to down-
regulate rpoS mMRNA expression (Kim and Lee 2020) (Fig. 2). ArcZ has the ability to directly interact
with CyaR and inhibit its function by causing its degradation by the RNase E (Kim and Lee 2020).
Conversely, CyaR has no effect on the activity of ArcZ (losub et al. 2020). Moreover, since the
interaction region between ArcZ and CyaR corresponds to their rpoS mRNA binding sites, there may
be competition between these two sRNAs for interacting with the rpoS mRNA (Kim and Lee 2020).
CyaR also represses the translation of nadE, which encodes an enzyme involved in NAD* biosynthesis
(Hughes et al. 1988). Under anaerobic conditions, ArcZ, which is absent, is unable to repress the action
of CyaR. Thus, CyaR reduces the concentration of NAD* by repressing nadE translation. Conversely,
in aerobiosis, ArcZ prevents CyaR action, providing greater NAD* availability (Fig. 2). These ArcZ-
CyaR interactions could thus enhance the regulation of rpoS expression, allowing E. coli to respond
more effectively to various stresses (Kim and Lee 2020).

In E. coli, ArcZ directly represses mutS mRNA translation (Fig. 2). Bacteria under stress
accumulate mutations to better survive and adapt (reviewed in Foster 2007). The DNA mismatch

repair (MMR) system limits the occurrence of mutations (Wyrzykowski and Volkert 2003). The MutS
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protein, a crucial component of the MMR system, identifies mispaired bases in DNA and triggers the
repair process via the MMR system (Su and Modrich 1986). The repression of mutS by ArcZ occurs
during the stationary growth phase when ArcZ is abundant. Due to this repression, the MMR system
is no longer active and an increase in unrepaired mutations is observed (Chen and Gottesman 2017).
Furthermore, the SRNA SdsR directly represses mutS (Chen and Gottesman 2017). SdsR is transcribed
by the RNA polymerase only when this latter is associated with RpoS. Since ArcZ is able to activate
the translation of rpoS mRNA in E. coli, ArcZ represses mutS both directly by acting as a post-
transcriptional repressor on mutS mRNA and indirectly through SdsR. Repression of mutS by ArcZ
contributes to stress-induced mutagenesis in E. coli (Fig. 2).

Erwinia amylovora is a phytopathogenic bacterium that causes fire blight and has a wide range
of host species within the Rosaceae family (e.g., apple, pear, raspberry) (reviewed in Piqué et al. 2015).
ArcZ is required for the full virulence of E. amylovora (Zeng et al. 2013). In E. amylovora, ArcZ
modulates the levels of the catalase KatA and of the thiol peroxidase Tpx (Fig. 3). These two enzymes
are essential for E. amylovora to fight against the free radicals produced by the plant during infection
such as hydrogen peroxide produced during apple infection (Santander et al. 2018). ArcZ indirectly
regulates katA at the transcriptional level through the ArcA regulator. By increasing the translation of
ArcA, which is a transcriptional activator of katA, ArcZ enhances the response to oxidative stress (Fig.
3) (Schachterle et al. 2019a). Previously, it was demonstrated that the ArcAB system in E. coli
represses the expression of arcZ (Fig. 3). If such a regulation exists in E. amylovora, the three-way
interaction of ArcZ-ArcA-KatA should create a positive feedback loop, increasing the amount of
KatA. Conversely, ArcZ directly controls tpx at the post-transcriptional level by binding to its mRNA,
resulting in reduced level of the thiol peroxidase Tpx (Fig. 3). Thus, through these two regulatory
modes, ArcZ finely tunes the cellular response to oxidative stress based on oxygen availability and
oxidative status (Schachterle et al. 2019a). Post-transcriptional repression of tpx was also described

in S. typhimurium (Papenfort et al. 2009).
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ArcZ targets mRNAs involved in virulence.

ArcZ is also able to regulate genes important for bacterial virulence, such as motility, biofilm
formation and secretion of antimicrobial compounds.

S. typhimurium is a bacterium that is commonly associated with food poisoning. The
bacterium's ability to cause disease is primarily attributed to the secretion of virulence factors through
a type lll secretion system encoded by a pathogenicity island called SPI1. This T3SS enables the
secretion of effectors that facilitate the internalization of bacterial cells into host cells. The hilA gene
is crucial for the synthesis of the S. typhimurium T3SS as it activates the T3SS structural genes present
in SPI1. hilA transcription is requlated by HilC, HilD and RtsA (Ellermeier et al. 2005). The SRNAs ArcZ
and FnrS indirectly repress hilA expression by repressing the translation of hilD mRNA through direct
interaction, but this process relies on the oxygen levels and can be antagonistic. In aerobic conditions,
ArcZis expressed and represses the translation of hilD. On the other hand, the two component system
Fnr activates the transcription of FnrS in anoxia, which in turn represses the translation of hilD (Fig. 4)
(Durand and Storz 2010; Kim et al. 2018). This regulatory network enables the most efficient
expression of T3SS genes when exposed to fluctuating oxygen levels (Kim et al. 2018).

Interestingly, ArcZ was the first SRNA found to bind to the mRNA of a horizontally acquired
virulence gene. This gene, known as STM3216, is specific to S. typhimurium, and it is predicted to
function as a receptor involved in chemotaxis. ArcZ directly inhibits the translation of STM3216 mMRNA
(Fig. 4). This discovery highlights the potential of sSRNAs to regulate the expression of horizontally
acquired genes (Papenfort et al. 2009). ArcZ also controls biofilm formation in S. typhimurium,
through the transcriptional regulator CsgD. CsgD regulates several genes responsible for curli's
assembly, transport, and structural component synthesis. These components are important for
biofilm formation (Hammar et al. 1995; Mika and Hengge 2014). CsgD is also the main regulator of
the expression of the rdar morphotype, which relates to multicellular behavior characterized by the
production of adhesive extracellular matrix and curli expression (reviewed in Romling 2005). CsgD is

regulated by RpoS, but ArcZ has been shown to partially requlate csgD independently of RpoS
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(Monteiro et al. 2012). Furthermore, ArcZ appears to regulate attachment to surfaces for biofilm
formation by repressing the synthesis of type 1 fimbriae (Monteiro et al. 2012).

Escape from the host immune system is also a crucial aspect for successful pathogen
infection. The bacterial surface lipopolysaccharides (LPS) are perceived by the host immune system
as a foreign element. Consequently, bacteria synthesize enzymes that modify LPS to evade
recognition. In E. coli, eptB encodes an LPS-modifying enzyme. The synthesis of EptB is under the
control of the sigma factor RpoE. eptB mRNA is directly repressed by ArcZ in E. coli (Fig. 2) (Moon et
al. 2013).

Motility is an essential virulence factor for flagellated bacteria such as E. coli, E. amylovora, D.
dadantii and many others. In E. coli, the major regulator of motility is FInDC, a class | transcriptional
activator of the flagellar regulatory cascade (Zhao et al. 2007). In E. coli, ArcZ binds directly to flhD
mMRNA and inhibits its translation, along with that of flhC, since they are included in the same operon.
Consequently, the motility of E. coliis reduced when ArcZ is expressed (De Lay and Gottesman 2012)
(Fig. 2).

A mechanistically identical repression of flhDC by ArcZ is also observed in E. amylovora (Fig.
3). Interestingly, in contrast to results in E. coli, this post-transcriptional repression of flhDC by ArcZ
actually enhances the motility of E. amylovora. This difference could be explained by an indirect
activation of flhDC by ArcZ in E. amylovora, not present in E. coli (Schachterle and Sundin 2019;
Schachterle et al. 2019b). LrhA is a direct transcriptional repressor of flhDC. In E. coli, the Leucine-
responsive Regulatory Protein (Lrp) binds to the [rhA promoter, which leads to its transcriptional
activation (Kroner et al. 2019). In E. amylovora, ArcZ directly interacts with Irp mRNA to post-
transcriptionally repress it. Thus, in E. amylovora, ArcZ directly represses flhDC directly while
indirectly promoting flhDC transcription through the lrp-IrhA pair. Therefore, the ArcZ-Lrp-FIhDC trio
operates as a 'feed-forward' type of regulatory loop (Schachterle and Sundin 2019). This regulatory
loop may accelerate the response through faster FIhDC production when ArcZ levels vary. This effect

has been previously demonstrated for the "feed-forward" regulatory loop Fur-SodA-RyhB (Semsey
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2014). It is worth noting that FIhDC activates levan production and that Lrp represses the production
of the exopolysaccharide amylovoran, both of which are key compounds essential for biofilm
formation in E. amylovora. Thus, ArcZ not only regulates motility through Lrp and FIhDC, but also
influences biofilm formation in E. amylovora (Fig. 3) (Schachterle and Sundin 2019).

In the Pectobacteriaceae family of plant pathogenic bacteria, one of the key regulators of
virulence factor synthesis is named PecT in D. dadantii (Condemine et al. 1999) or HexA in
Pectobacterium carotovorum (Mukherjee et al., 2000). PecT represses the expression of the SRNA
RsmB, a Hfg-independent small regulatory RNA. The rsmB RNA binds to RsmA, an RNA binding
protein, preventing it from repressing the expression of its target genes, including those encoding the
main virulence factors, the T3SS and pectinases, which are Plant Cell Wall-Degrading Enzymes
(PCWDE) (Hyytidinen et al. 2001; Yang et al. 2008). It has been demonstrated that ArcZ directly
represses the translation of pecT. This repression results in anincrease in the amount of rsmB available

to titrate RsmA, leading to increased production of the T3SS and of the PCWDE (Yuan et al. 2019)

(Fig. 5). Consequently, an arcZ mutant in D. dadantii has a drastically reduced virulence (Yuan et al.

2019). Amutant of P. carotovorum lacking arcZ was also found to be less virulent. However, the targets
of ArcZ in this bacterium were not investigated (Wang et al. 2018).

Similarly, ArcZ induces the expression of the secondary metabolite clusters sol and zms in
Dickeya solani, resulting in the production of the antimicrobial molecules solanimycin and zeamine,
respectively. Nevertheless, the precise targets of ArcZ in D. solani are still unknown, although it is
suspected that pecT may be involved, as its target site in the 5'UTR of pecT is conserved (Brual et al.
2023).

Secondary metabolites play a significant role in the mutualistic associations of nematodes
with Xenorhabdus and Photorhabdus (Tobias et al. 2017b). HexA, known for its ability to repress
secondary metabolite production in Photorhabdus (Tobias et al. 2017a), is repressed by ArcZ. This is

achieved through direct binding to hexA 5'UTR mRNA in Photorhabdus and Xenorhabdus.
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Consequently, secondary metabolites that modulate the nematode immune response (Fig. 5) are

produced more abundantly when ArcZ represses hexA translation (Fig. 5) (Neubacher et al. 2020).

ArcZ and the bacterial metabolism.

A few genes targeted by ArcZ that play a role in nutrient metabolism or transport have been
identified. In E. coli, the ppsA gene encodes a phosphoenolpyruvate synthetase that is required for the
conversion of pyruvate to phosphopyruvate, which initiates the process of gluconeogenesis. ArcZ
directly or indirectly regulates ppsA in a positive manner. Hence, ArcZ regulates gluconeogenesis
initiation by activating ppsA transcription or translation when E. coli is grown in the presence of
pyruvate (Rachwalski et al. 2022).

Another potential target involved in specific serine transport in S. typhimurium is sdaC, which
is directly repressed by ArcZ at the mRNA level. In this case, sdaC is co-transcribed with sdaB, a serine
deaminase, suggesting that SdaCB is involved in serine catabolism (Fig. 4). Thus, ArcZ may play a

potential role in repressing serine catabolism (Papenfort et al. 2009).

MOLECULAR MECHANISMS USED BY ArcZ TO REGULATE TRANSLATION

As previously shown, ArcZ possesses the ability to inhibit or activate its target mRNAs. The
processed 56 nt transcript that binds to mRNAs is highly conserved (Fig. 1A). This transcript is capable
of regulating targets in diverse ways (Fig. 6). The various targets can be categorized into five groups
based on the ArcZ pairing location in the target mRNA: 1) ArcZ can pair at the RBS or in close
proximity to it, such as with the mutS mRNA ; 2) it can pair in the coding region of a gene such as with
the tpx mRNA; 3) it can pair in the 5'UTR region of the mRNA approximately 5o nucleotides from the
AUG, as demonstrated with pecT or flhDC ; 4) it can prevent Rho-mediated premature termination ;

5) it can pair directly with an sRNA like CyaR.

Binding of ArcZ near the RBS
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In the case of mutS, ArcZ pairs near to the ribosome binding site (RBS) to repress translation
of mutS. In fact, after being made mature and stable by Hfq and RNase E, ArcZ will pair at the level of
the 5'UTR of mutS between positions -25 to -15 relative to the ATG, upstream of the RBS of mutS that
is located from -11 to -5. This pairing is proposed to alter the secondary structure of the mutS
translation initiation region, making it unavailable to ribosomes (Fig. 6) (Chen and Gottesman 2017).

ArcZ can bind directly to the RBS region of STM3216 mRNA between position -25 to -5. A
similar phenomenon is observed with the sdaC mRNA, where ArcZ hybridizes directly with the RBS
of the region from -13 to -2. This type of pairing effectively masks the RBS, rendering it inaccessible

for translation initiation (Papenfort et al. 2009).

Binding of ArcZ in the coding region of the target mMRNA

ArcZ can bind to the coding region of the tpx gene mRNA, specifically between positions +10
to +26. Inhibition may occur through the inhibition of 30S ribosome subunit association, as well as
through the degradation of the mRNA via RNase recruitment (Papenfort et al. 2009) (Fig. 6). A similar
mechanism is observed with the binding of the MicC sRNA to the coding region of the ompD mRNA,
resulting in the repression of ompD translation due to accelerated degradation by RNase E (Pfeiffer

etal. 2009).

Binding of ArcZ upstream of the RBS

In Photorhabdus, ArcZ binds to a g-nucleotide region located on the 5'UTR of the hexA mRNA
between positions -50 to -42 (Neubacher et al. 2020). This results in inhibition of hexA's translation.
The region of binding is distal to the RBS, making it improbable for ArcZ to prevent the RBS's
recognition in a way comparable to that observed for mutS. Hence, the inhibition mechanism of ArcZ
is different from that of mutS. The regions where ArcZ pairs in the 5' UTR of hexA are rich in Cand A
nucleotide bases. This type of sequence in the 5'UTRs of mRNAs can enhance translation (Sharma et

al. 2007). Previous research suggests that the GcvB sRNA can regulate several ABC transporter
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mMRNAs using this mechanism (Sharma et al. 2007). The hypothesis is that ArcZ, by binding to these
C/A-rich regions, covers up these translation enhancers and thus decreases the translation of hexA
mRNA (Neubacher et al. 2020).

Torepress pecT in D. dadantii, ArcZ pairs at a region located between positions -84 to -58 from
the start codon, which is considerably far from the RBS. Additionally, the region involved in the pairing
is notrich in C/A. Therefore, this repression could be due to a modification of the secondary structure
of pecT mRNA leading to the formation of a hairpin structure that masks ribosome access to the RBS

(Fig. 6) (Yuan et al. 2019).

Duval Site Binding of ArcZ in the 5'UTR flhDC mRNA in E. coli.

In E. coli, the interaction of ArcZ with the 5'UTR region of flhDC is more complex than the previously
cited cases. Actually, the same region of ArcZ pairs with two sites in the 5'UTR of flhDC: one located
between nucleotides -23 to -7, in close proximity to the RBS of flhD, and the other situated between
positions -63 to -47. The farthest region from the RBS corresponds to a region exhibiting high C/A
levels. An hypothesis proposes that ArcZ, by pairing, removes a hairpin structure predicted for the
flhDC mRNA in this region, changing the steric constraints for base stabilization at the RBS level (Fig.
6). Nevertheless, it appears that the pairing of ArcZ at the location farthest from the RBS is the most
potent in suppressing flhDC translation (De Lay and Gottesman 2012; Schachterle et al. 2019b). It is
noteworthy that the SRNA McaS activates the translation of flhD (Thomason et al. 2012), an effect
that is opposite to that of ArcZ. However, McaS and ArcZ share a common binding site between
positions -61 to -52 on the flhD 5'UTR (De Lay and Gottesman 2012). McaS$, like ArcZ, has a second
binding site on the 5'UTR of flhD, but further upstream of the start codon between positions -86 to -
770onthe flhD 5'UTR. It was proposed that Mca$S may initially bind to an overlapping ArcZ site on flhDC
mRNA, aiding a second Mca$ site to pair and expose the mRNA for ribosome entry (De Lay and
Gottesman 2012; Thomason et al. 2012). This suggests that despite targeting the same area, two

sRNAs can regulate differently the same target. Ultimately, ArcZ and McaS likely compete for the
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same flhDC mRNA site, affecting cell motility based on which sSRNA prevails (De Lay and Gottesman

2012).

ArcZ prevents Rho-mediated premature termination and liberates the RBS for rpoS translation
ArcZ linked to Hfq binds to the rpoS mRNA at the region -91 to -63 relative to the translation
start. However, only 23 of the 28 bases in ArcZ match those in rpoS mRNA, so this binding is not
perfect. In the absence of ArcZ, the RBS of rpoS is locked in a hairpin loop, making the RBS
inaccessible to the ribosome and preventing translation initiation (Mandin and Gottesman 2010). By
pairing in this region of the 5'UTR of rpoS, ArcZ unfolds the hairpin loop and frees up the RBS, allowing
fortranslationinitiation (Fig. 6). Additionally, binding of DsrA, RprA and ArcZ appears to stabilize rpoS
MRNA in E. coli and protects it from degradation by RNase E (McCullen et al. 2010). In the absence of
ArcZ, the Rho factor causes premature termination of rpoS transcription by binding to the 5'UTR of
rpoS. When ArcZ binds to the 5'UTR of rpoS mRNA, it prevents interaction between the Rho factor
and this region. Therefore, ArcZ functions as an antiterminator for transcription and thereby activates

the translation of rpoS (Fig. 6) (Sedlyarova et al. 2016).

Binding of ArcZ directly to another sRNA

In E. coli, CyaR is a CRP-regulated RNA whose pairing to a region close to the ArcZ binding
site in the 5'UTR of rpoS mRNA leads to its degradation (Kim and Lee 2020). RIL-seq data revealed
the presence of ArcZ-CyaR interactions (Melamed et al. 2016). The direct interaction between CyaR
and ArcZ results in the degradation of CyaR by the RNase E, thereby alleviating the CyaR-mediated

repression of rpoS and maximizing the activation of rpoS by ArcZ (Kim and Lee 2020).

PERSPECTIVES
ArcZ is a major regulator of gene expression in Enterobacterales, as it regulates 10-15% of the

genome in various species. The Ril-Seq technique, which allows the identification of SRNA-mRNA

14


http://rnajournal.cshlp.org/
http://www.cshlpress.com

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

Downloaded from rnajournal.cship.org on July 16, 2024 - Published by Cold Spring Harbor Laboratory Press

target pairs pulled down with the Hfq protein, has been employed to identify more than 300 putative
new ArcZ mRNA targets in E. coliand S. enterica (Melamed et al. 2016; Liu et al. 2023). Of note, 330 of
the 335 base-pairing interactions identified involve the seed domain at the 5' end of the processed
form of ArcZ (Figure 1A) (Melamed et al. 2016). Known ArcZ targets were identified (rpoS, flhD, sdaC
and tpx). Although further validation is required for the majority of these targets, these

studies provide compelling evidence that ArcZ plays a central role in regulating a wide
variety of targets.

Determining ArcZ's targets in a new bacterial model remains challenging in silico. Prediction
softwares of SRNA-mRNA interaction such as CopraRNA or IntaRNA (Wright et al. 2014) may fail to
identify complex interaction targets, such as the interaction zones between ArcZ and flhD. Therefore,
there are still numerous targets and regulatory mechanisms that are yet to be uncovered.
Additionally, an interesting hypothesis has been proposed by Papenfort et al. (Papenfort et al. 2009).
These authors observed that ArcZ is an sSRNA conserved in Enterobacterales and that its inhibitory or
activating action on mRNA translation is in many cases achieved by pairing at the site of the SD
sequence, the most conserved element of bacterial MRNAs. They suggested that when ArcZ is in high
intracellular concentration and once ArcZ has paired with all of its primary targets, excess ArcZ
molecules will be able to pair with secondary targets at the RBS. This type of regulation has been
observed in the post-transcriptional regulatory machinery at the mammalian level (Saxena et al.
2003; Papenfort et al. 2009). If confirmed, this hypothesis will likely expand the range of ArcZ-
controlled genes beyond expectation.

A remarkable observation concerning ArcZ is the remarkable degree of conservation of the
seed region located after the cleavage site and, in mirror image, the high degree of conservation of
the pairing region with the 5' UTR of rpoS. Indeed, an alignment of the rpoS 5' UTR in Enterobacterales
(Fig. 7A) showed that the region of the 5' UTR that pairs with ArcZ is highly conserved. Given that
RpoS is a major regulator of the general stress response, it can be assumed that regulation of the

stress response by ArcZ via RpoS is also conserved in most Enterobacterales. However, some
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nucleotide changes, of the order of 1 to 2 bases, exist in the seed region of ArcZ (Fig. 1A) as in D.
dadantii, P. carotovorum, E. amylovora and E. tarda. It can be observed that compensatory nucleotide
changes for these mutations are not systematically found in the 5'UTR of rpoS (Fig. 7A). This suggests
that the ArcZ-rpoS pairing may be less stable in these bacteria. It would be of interest in the future to
conduct a systematic analysis to verify the interactions between ArcZ and rpoS 5'UTR in bacteria
containing nucleotide modifications in either arcZ or rpoS. In some cases, the interaction may no
longer occur. In addition, the conservation of pairing between the seed region of ArcZ and other
targets is less clear. For instance, an alignment of the 5' untranslated region of flhD in different
Enterobacterales species (Fig. 7B) revealed that this pairing is less conserved than the ArcZ/rpoS
pairing. It is therefore possible that ArcZ does not regulate motility via the control of flhD in some of
these bacteria, or does not regulate motility at all. Nevertheless, in E. amylovora, although the 5'UTR
of flhD is different from that of E. coli, an interaction could be detected (Schachterle et al. 2019b) (Fig.
7B). This putative pairing zone is not conserved in D. dadantii, whereas ArcZ deletion results in a
difference in motility of the mutant compared to a wild-type strain. It was proposed that regulation
of motility in D. dadantii by ArcZ occurs through an as yet unknown mechanism (Yuan et al. 2019). A
significant amount of work remains to be done before a clear picture can be drawn of the manner in
which ArcZ fulfills its requlatory role in each of the major bacterial genera of Enterobacterales.

A single-point mutation was found in the 3' region of ArcZ in the D. solanitype strain IPO2222
(Brual et al. 2023). This G-to-A mutation is positioned 17 bases downstream of the RNase E cleavage
site. Despite being distant from the cleavage site, it prevents processing of the full-length ArcZipo22,2
into a short, stable form. Consequently, ArcZo.., is not functional. The predicted secondary structure
of the full-size form of ArcZpo.,. is altered in comparison with non-mutated ArcZ from other D. solani
strains where ArcZ is active. This indicates the potential of some tertiary structures in small RNAs to
prevent cleavage by RNase E. This is supported by the observation that when point mutations are
introduced experimentally in ArcZ and alter its secondary structure, ArcZ variants may not be

processed by the RNase E (Yuan et al. 2019). Notably, the ArcZ loss-of-function mutation found in D.
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solani IPO2222 is shared by other Dickeya species, including D. fangzhongdai and D. parazeae (Brual
et al. 2023). Expanding the search for this mutation to other species reveals its presence in strains of
Citrobacter youngae, S. typhimurium, S. enterica, Proteus mirabilis, Yersinia pestis, Y.
pseudotuberculosis, Y. ruckeri. Another G-to-T mutation has been found at the same location in other
strains (Fig. 8). It would be worthwhile to compile a comprehensive list of arcZ alleles in
Enterobacterales and investigate their systematic processing by the RNase E.

Why do certain isolated strains exhibit arcZ mutations that result in functional loss? It cannot
be ruled out at present that the isolation of these bacteria on a nutrient-rich laboratory medium has
resulted in the selection of a mutated strain in arcZ. Bacteria cultivated in laboratory conditions are
known to accumulate mutations (Nahku et al. 2011; Spira et al. 2011; Chandler et al. 2019; Artuso et
al. 2022; Jacques et al. 2023), some of these mutations, particularly those in arcA and rpoS, which are
two prime targets of ArcZ, contribute to enhancing the catabolism of amino acids that are abundant
inrich environments (Saxer et al. 2014). Nevertheless, mutations in arcZ have not beenisolated during
experimental evolution assays in vitro. Another possible hypothesis is that mutations in arcZ can lead
to the emergence of cheaters. Cheaters are individuals who do not cooperate with others in the
population, but still benefit from the public goods generated by cooperators without contributing to
costs of producing those goods (Smith and Schuster 2019). Since ArcZ regulates a variety of genes
associated with flagellum apparatus and secretion systems machineries in various bacteria, it is
plausible that bacterial cells with arcZ defect can benefit from wild-type cooperators' secretion in a
host organism. The secretion of virulence factors can be costly for bacteria. For example, S.
typhimurium mutants deficient in T3SS cannot cause independent mouse infections, but they
outcompete isogenic wild-type bacteria during coinfections (Diard et al. 2013). In co-infection
experiments within a host, it would be interesting to investigate whether arcZ-deficient mutants

could outcompete the wild-type strain.
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Figure 1 : ArcZ, a cleaved sRNA that is highly conserved in its 3' part.

25


http://rnajournal.cshlp.org/
http://www.cshlpress.com

743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776

Downloaded from rnajournal.cship.org on July 16, 2024 - Published by Cold Spring Harbor Laboratory Press

(A) Alignment of ArcZ sequence from Pantoea ananatis (NZ_CMo12203), Escherichia coli
(NC_000913.3), Salmonella typhimurivm (NC_o003197.2), Klebsiella pneumoniae (NC_009648),
Photorhabdus laumondii (CPo24901.1), Xenorhabdus nematophila (CPo60401.1), Dickeya dadantii
(CP002038.1), Pectobacterium carotovorum (CPos1652.1), Yersinia enterocolitica (CP107102.1 ),
Serratia marcescens (CP139958.1), Proteus mirabilis (CPo45257.1), Erwinia amylovora (FN666575.1),
Providencia alcalifaciens (CP084296.1), Edwardsiella tarda (CPo84506.1), Shigella sonnei
(CP026802.1), Citrobacter freundii (CPo49015.1), Enterobacter cloacae (CP001918.1), Cronobacter
sakazakii (CPo11047.1). Conservation score is plotted below, and the conserved region is colored in
red. This alignment was carried out using ClustalW and Jalview (Thompson et al. 2003; Clamp et al.
2004; Troshin et al. 2011). The red squares correspond to known transcription starts.

(B) Synteny analysis of chromosomal regions surrounding ArcZ performed using Annoview (Wei et al.
2024). The same genome accession numbers as panel A were used.

(C) Model of ArcZ maturation in E. coli The stem-loop represents the Rho-independent
transcriptional termination site of arcZ. The 3' region of ArcZ is recognized by Hfq through binding.
RNase E cleaves ArcZ at a consensus sequence, producing a mature processed form of ArcZ that binds

to target mRNA.

Figure 2. ArcZ targets in Escherichia coli.

Green arrows indicate activation, red arrows indicate repression, and the black arrows indicate either
translation or activity. CyaR is an sSRNA capable of repressing the translation of nadE mRNA, which
encodes an enzyme involved in NAD* biosynthesis but also capable of repressing the translation of
rpoS mRNA. ArcZ degrades CyaR via RNase E, thereby increasing the translation of nadE and the
availability of NAD* and rpoS. ArcZ enhances the translation of rpoS mRNA, which induces the Gad
pathway, leading to better acid stress resistance. Additionally, ArcZ reduces the translation of mutS
MRNA, both directly and indirectly, by activating the translation of rpoS, which in turn transcribes
SdsR. SdsR directly represses mutS translation. ArcZ also directly represses flhDC translation and
competes with the McaS sRNA, which has a common flhDC mRNA pairing site with ArcZ. McaS
activates flhDC translation, while ArcZ inhibits LPS modification by repressing eptB mRNA

translation. Created with BioRender.com.

Figure 3. ArcZ targets in Erwinia amylovora.
Green arrows indicate activation, red arrows indicate repression, and the black arrows indicate either
translation or activity. ArcZ plays a role in regulating the response to oxidative stress by modulating

the levels of the anti-oxidant enzymes KatA and Tpx. The abbreviation NC stands for 'Non-
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characterized' protein. ArcZ modulates motility and biofilm formation through the control of flhDC

and Irp translation. Created with BioRender.com.

Figure 4. ArcZ targets in Salmonella typhimurium.

Green arrows indicate activation, red arrows indicate repression, and the black arrows indicate either
translation or activity. ArcZ represses the expression of STM3216, a potential chemoreceptor
acquired through horizontal gene transfer. As previously described, ArcZ modulates the response to
oxidative stress by repressing tpx mRNA. Additionally, ArcZ represses the translation of sdaC mRNA,
which is involved in serine catabolism. ArcZ and FnrS inhibit the translation of hilD, which is
responsible for activating the T3SS synthesis. However, fnrS is transcribed under anoxic conditions
due to Fnr, whereas arcZ is transcribed under strong aerobic conditions. Therefore, the activation of

T3SS is limited by the presence of oxygen. Created with BioRender.com.

Figure 5. Regulation of hexA/pecT by ArcZ in Dickeya and Photorhabdus.

Direct and indirect targets of ArcZ are shown in Dickeya (green panel) and Photorhabdus (brown
panel). Green arrows indicate activation, red arrows indicate repression, and the black arrows indicate
either translation or activity. In Dickeya, ArcZ inhibits the translation of pecT, which prevents the
inhibition of rsmB transcription by PecT. RsmB is a small Hfg-independent regulatory RNA that binds
to RsmA and prevents it from repressing the expression of T3SS and pectinases. In Photorhabdus,
ArcZ inhibits the translation of hexA and thus enhances the production of secondary metabolites,

which are essential for nematode symbiosis. Created with BioRender.com.

Figure 6. ArcZ's modes of action.

ArcZ can activate the translation of mRNA (green panel). (A) ArcZ interacts with the 5'UTR region of
the rpoS mRNA and releases its RBS, which is initially involved in a hairpin structure, allowing for
translation of rpoS. (B) Additionally, during transcription of rpoS, ArcZ prevents the Rho termination
factor from binding to the mRNA, thus blocking premature termination. ArcZ can also repress the
translation of mMRNA (red panel), such as with mutS or flhDC. (C) ArcZ can repress translation by
binding to the RBS of the mRNA, preventing access of the ribosome. Additionally, it can bind
upstream of the RBS, such as with pecT or flhD, forming a secondary structure that is incompatible
with translation. (D) ArcZ can also bind to the coding region of the mRNA or sRNA, making it more

susceptible to RNase such as with tpx and cyaR. Created with BioRender.com.

Figure 7. rpoS and flhD, two ArcZ targets conserved in Enterobacterales.
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Alignment of (A) rpoS mRNA sequence and (B) flhD mRNA sequence from Pantoeae ananatis,
Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae, Photorhabdus laumondii,
Xenorhabdus nematophila, Dickeya dadantii, Pectobacterium carotovorum, Serratia marcescens,
Proteus mirabilis, Erwinia amylovora, Providencia alcalifaciens, Edwardsiella tarda, Shigella sonnei,
Citrobacter freundii, Enterobacter cloacae, Cronobacter sakazakii (genomes are the same as those used
in Figure 1). Conservation score is plotted below, and on this plot the interaction zone between ArcZ
and rpoS [ ArcZ and flhD shown in E. coliand E. amylovora is colored red. The interaction of E. coli ArcZ
(in red) with rpoS and flhD mRNA and of E. amylovora ArcZ (in green) with flhD mRNA is shown
(Mandin and Gottesman 2010; De Lay and Gottesman 2012; Schachterle et al. 2019b). The red squares
correspond to ArcZ binding site regions conserved between E. coli and other bacteria. Alignments

were performed using MUSCLE (Edgar 2004) and processed with Jalview (Clamp et al. 2004).

Figure 8. Alignments of mutated arcZ alleles in Enterobacterales.

A BLASTN analysis was conducted on the enterobacterales NCBI RefSeq genomes using the
conserved nucleotide sequence that contains the mutation (A) G to A or (B) G to U at position go in
comparaison with the E. coli MG1655 reference genome. The mutation is indicated by a red arrow and
surrounded by a red rectangle. Alignments were performed using MUSCLE (Edgar 2004) and

processed with Jalview (Clamp et al. 2004).
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A

P. mirabilis
P. alcalifaciens

E. coli A UG
S. Typhimurium C UG A
C. sakazakii (& UG
E. cloacae G UG
C. freundii A UL A
S. sonnei A UG
S. marcescens A cgu
P. carotovorum C CUG
D. dadantii © cuu
D. solani U cyu
E. amylovora U ullG
P. ananatis © ulG
P. laumondii U =
X. nematophila G ciu
E. tarda U ClG

K. pneumoniae (@ ugA CAAAGU- - - ACGGAUAAGCGAAGCA
u -uUG
A ugA

UAAAUCGAUCUCAUUAAGAGCGUCG]

1
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UUuuya e Uuuac £ :
UGg UGGGG . CO/
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P. mirabilis AUGGG oo - .- - AUUAAUUlUCCUCBGGAUCUU CUUUAAAgAAGAU -----
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A

E. coli str. MG1655 GUGCGBcCl- - - - - - - - - - - - - - - A
C. youngae str. CCUG-30791- - CUUAAC A UGA- UA A
S. Typhimurium str. STm8-85 - - GCUAUCBUAACUGCGUGCGGCCUG u o A
S. Moscow str. S-1843 - - GCUAUCBUAACUGCGUGCGGCCUG UCAUCAU- - - A
D. parazeastr. S31- - - - - CCAGAUGAUGEG A A AUGAcAucliG ¢
D. fangzhongdai str. DSM-101947 - - - - - CCAGAA UGIGG A A A C CUG Cl
D. fangzhongdai str. QZH3 - - - - - CCAGAA UGGG A A A C CUG C
D. fangzhongdai str. LN1 - - - - - CCAGAA UGGG A A A CAUCUG C
D. fangzhongdai str. CGMCC1.15464 - - - - - CCAGAA UGEG A A A C CuUG C
D. solani IPO2222 - - - - - CCAGAAGAUGEG A A A UAUCUG C
D. solani str. DsR34 - - - - - CCAGAAGAUGEG A A A UAUCUG ©
D. solani str. DsR207 - - - - - CCAGAAGAUGEG A GUACCAA UAUCUG €
P. mirabilis str. NRZ-41444 - - - AUGUAU- - - GBA c GCCUAUGUAAUGA- UA
S. inhibens str. PRI-2C - - - AUGUUU—.GGAAU C AGAACACUG- AAUACCAAU
Y. pseudotuberculosis str. B-7194 - - - AAGA C - CGAA
Y. pestis str. 42028 - - - AAGA C Al- CGAA
Y. ruckeri str. NVI-701 UUGU U ACIGA C
A C

Y. ruckeri str. NVI-494 UUGU U AUGUAUCAAC

B

E. coli str. MG1655 - GUGC Cu ACUCAUC uuu
Salmonella sp. str. L-S1477 GCUAUCBUAACUGC GGAC U CAUCAUC - GC

C. werkmanii str. FDAARGOS1524 - - - - UCBUAACUGC GGGC! u CACAAUG uuu
C. werkmanii str. NBRC105721- - - AUCBUAACUGC AUAGGGC u CACAAUGAC uuu

D. parazeae str. 586 GUGUGUBGCCAGAU GAUUUCAAAAACGCU UAC- - - CAAUGACAUCUG GCGA

Y. enterocolitica str. E7T01AGUAAGUGA CUGGG AACGAAGGCAGCCAACGCABAUGCAACUUGARGUAUGACGGGUAUUGCA
P. miralbilis str. NRZ-54154b GUUGCU GUHUGAU aAlAGcuucAuccuAaliu ArUIAUG UAAUC rAGCGA UA
Y. enterocolitica str. YE519)36/88 - - UGCUGUAUGAU AA- GAAUCCUBACAACCUGEAAAUUCACUCGAAAUCG UAAURUGCA
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