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Abstract 

The IUPAC working group on “Experimental Methods and Data Evaluation Procedures for 

the Determination of Radical Copolymerization Reactivity Ratios” recommends a robust 

method to determine reactivity ratios from copolymer composition data using the terminal 

model for copolymerization. The method is based on measuring conversion (X) and 

copolymer composition (F) of three or more copolymerization reactions at different initial 

monomer compositions (f0). Both low and high conversion experiments can be combined, or 

alternatively only low conversion experiments can be used. The method provides parameter 

estimates, but can also reveal deviations from the terminal model and the presence of 

systematic errors in the measurements. Special attention is given to error estimation in F 

and construction of the joint confidence interval for reactivity ratios. Previous experiments 

measuring f0-F or f-X can also be analyzed with the IUPAC recommended method. The 



influence of systematic errors in the measurements on the reactivity ratio determinations is 

investigated, including ways to identify and mitigate such errors. 

Introduction of the method 

There are several kinetic models describing the incorporation of monomers into polymer 

chains during radical copolymerizations,1 of which the terminal model, where only the last 

unit in the chain affects the reactivity of a chain-end radical, is the most widely applied for 

copolymer composition. Other models include the penultimate model2, in which the 

penultimate unit also affects the reactivities, and the non-terminal model, where the chain 

ends do not affect reactivities. The non-terminal model only applies to the special case of 

ideal copolymerization, where there is no difference in reactivity for the monomers towards 

the propagating species3. Then there are several models to cater for complexation between 

monomers (the complex participation model) or complexation between monomer and 

polymer chain end (the bootstrap model)4. Copolymerization models serve to create 

mechanistic understanding of copolymerization reactions, but are ultimately most 

important in modelling of composition in manufacturing of copolymers. A high conversion is 

typically pursued for commercial manufacturing of copolymers. For batch reactions, or 

reactions conducted in a plug-flow reactor, high conversion almost inevitably leads to 

composition drift, i.e. the shift in monomer and copolymer composition due to different 

monomer consumption rates. In conventional radical copolymerizations, composition drift 

results in heterogeneous copolymers. In reversible-deactivation radical polymerizations, 

however, drift in monomer composition results in a gradient in the composition of all the 

growing polymer chains, which can be a desirable feature for generating gradient 

copolymers5. 

The core assumption of the terminal copolymerization model is that the reactivity of the 

growing chains is entirely determined by their final monomer unit. Thus a copolymerization 

of two monomers, M1 and M2, contains two types of growing chains, and a total of four 

propagation reactions, as shown in Scheme 16. Reactivity ratios1, ri are defined as the ratio 

of the rate coefficients of propagation kii and kij, corresponding to homopropagation and 

crosspropagation of chains containing a terminal unit Mi. 



 

 

 

 

 

 

 

Scheme 1, Terminal model for copolymerization of two monomers M1 and M2 

Defining fi as the mole fraction of Mi in the comonomer mixture (fi = [Mi]/([M1] + [M2])), and  

and 𝐹𝑖
inst as the mole fraction of Mi that is instantaneously being incorporated into the 

copolymer (𝐹𝑖
inst = d[Mi]/d([M1]+[M2]), gives the well-known Mayo-Lewis7 copolymer 

composition equation (eq. 1): 

𝐹1
inst =

𝑟1𝑓1
2 + 𝑓1𝑓2

𝑟1𝑓1
2 + 2𝑓1𝑓2 + 𝑟2𝑓2

2  (1) 

Differentiating f1 with respect to the total monomer concentration (equation 2) and 

integration after separation of variables leads to the Skeist equation8 (eq. 3) relating total 

monomer conversion, X, to the change in monomer    composition: 
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The Skeist equation may be solved numerically. Alternatively, an analytical solution to this 

equation was provided by Meyer and Lowry9 (equation 4) which relates X to the current 

monomer composition fi and the initial monomer composition fi0.  
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It should be noted that this equation contains singularities at r1 = 1, r2 = 1 and r1 + r2 = 2 and 

these can complicate its utilization (for specific solutions at the singularities see SI-1). 

Finally, the cumulative monomer composition, 𝐹1
cum can be obtained from equation 5. 

𝐹1
cum =

𝑓10 − (1 − 𝑋). 𝑓1

𝑋
 (5) 

If we isolate a copolymer sample during a copolymerization and analyze the copolymer 

composition, we always deal with the cumulative copolymer composition, which from now 

on will be denoted as F. 

Reactivity ratios play a central role in equations 1-4, but as the equations are non-linear in 

nature, it is not immediately evident how to determine these reactivity ratios from 

experimental data. Several methods have been proposed over the last 75 years, many of 

which involve linearization of the copolymer composition equation. Widely used linearized 

methods such as Fineman-Ross10 and Kelen-Tüdős11 distort the error structure of the 

experimental data, however, and can lead to biased and imprecise results. For this reason, 

non-linear least squares fitting (NLLS) is greatly preferred. Further problems are 

encountered when the assumptions of the models are violated: for example, by applying 

equation 1 to copolymerizations with non-negligible conversion, where equation 4 would be 

more appropriate. These incorrect procedures can lead to significant errors in the 

estimation of reactivity ratios.  



One of the early advocates of establishing methods for determining reactivity ratios more 

correctly was Prof. Ken O’Driscoll. In a recent paper on his work6 we presented his insights, 

which we fully support and which formed the basis of this present work of our IUPAC 

working group on “Methods and Data Evaluation Procedures for the Determination of 

Radical Copolymerization Reactivity Ratios”. 

From reference 6 we repeat the eight key insights: 

1. Model discrimination and parameter estimation normally require two different sets 

of experiments. 

2. To apply the instantaneous copolymer composition equation (eq. 1), low conversion 

data needs to be used (O’Driscoll indicates < 5% conversion). 

3. The outcome of the statistical method applied should not depend on the indexing of 

the monomers (i. e., whether a monomer is designated M1 or M2)(many workers do 

not realise that this is commonly a problem). 

4. The starting point of the calculation should not affect the estimates (this is in 

reference to the use of iterative methods to find the optimal values). 

5. Linearized methods cannot be expected to give good estimates of the reactivity 

ratios due to distortion of the error structure by the linearization process. 

6. Correct design of experiments is of great importance. 

7. Results should be reported as a point estimate together with a joint confidence 

interval (JCI). 

8. If there is also an error in the monomer composition (fi), the errors in (all) variables 

method (EVM) should be used, and this is especially relevant for the determination 

of reactivity ratios from conversion dependent data using the integrated 

copolymerization equation (eq. 4). 

O’Driscoll also pointed out that the ease of doing the calculation plays an important role in 

the choice of the method, writing “The ease criterion was, even in 1970, satisfied by the 

“advent of the digital computer” (unfortunately, the subsequent advent of the pocket 

calculator with its linear least squares button has made the Fineman-Ross and related 

techniques seem more convenient)”12. The unavailability of a simple-to-use NLLS computer 

program likely contributed to the continued use of linearized methods by many researchers. 



In the early 1990s O’Driscoll therefore worked with Reilly and others at the University of 

Waterloo to develop a microcomputer program, RREVM, based on the errors in all variables 

method (EVM) in order to alleviate this issue.13  

In 1995 van Herk attempted to simplify NLLS fitting through visualization of the sum of 

squares space (VSSS), a method that can be easily implemented by scientists themselves in 

Visual Basic, Python or any other computer language.14 The VSSS method maps the 

weighted sum of squares of residuals in a large parameter space (a grid of r1 and r2) and 

simply finds the lowest value (the minimum) to be the optimal parameter set for the 

reactivity ratios.14 It was also stressed that proper weighing of the data (with their individual 

errors) is important to obtain correct reactivity ratios and joint confidence intervals.14-16 

Until recently this was the only rigorous approach to obtain unbiased estimates and 

unbiased errors for arbitrary non-linear models.17 

However last year a new correct method was introduced using a Bayesian hierarchical 

approach addressing the issue of a non-Gaussian structure of the error estimates that is a 

consequence of the nonlinearity of the copolymerization model17. 

Unfortunately, today many researchers still use linearized methods. In 2023 alone, more 

than 400 papers using the Finemann-Ross method10 were reported. Furthermore, several 

papers were published using copolymer compositions determined at too high conversions, 

where composition drift will be significant, and eq. 1 cannot be used. Another issue is that 

some works report incorrect joint confidence intervals (see reference 18 for a re-evaluation 

of a collection of published data). Even worse, many works report no uncertainty or JCI at 

all. 

In this paper we present an example of the application of NLLS using the VSSS method 

keeping in mind the eight core insights of O’Driscoll. 

 

 

 

Data collection 

a). Polymer composition vs comonomer composition at low conversion (f0-F). The most 

common method for determination of reactivity ratios involves collecting copolymer 



composition data (F) at low conversion across a range of initial comonomer mixture ratios 

(f0). At sufficiently low conversion, the change in monomer composition (f) during 

polymerization is negligible, and the cumulative and instantaneous copolymer compositions 

can be assumed to be equivalent, allowing direct fitting of the Mayo-Lewis equation 

(equation 1).  

There is, however, no unique interpretation of “low conversion” in the f0-F method, as with 

unfavorable reactivity ratios, strong composition drift can occur even at conversions below 

5%. This may introduce significant errors in F (point 2 of O’Driscoll and see Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Cumulative copolymer composition (F1) versus conversion (X) at different 

monomer-1 starting fractions (f10). The blue dotted line represent the cumulative copolymer 

composition at 100% conversion, which equals f10.These data  have been calculated using r1 

= 23 and r2 = 0.02, as these exemplify well the discussed ideas. Indicated in the graph: low 

conversion experiments (*, f0-F) with the f0-F curve in dotted green, which is method a) of 

the text; following conversion and f (*, f0-f-X), (f not shown in graph), which is method b); 

IUPAC method, starting from several f0 values and monitoring the copolymer composition 

with conversion (*, f0-X-F), method c). 

 

 

 

 

 

F1 

X 

f10 



 

 

We therefore investigated several methods to correct for shifts in F at lower conversions. 

This includes, amongst others, using the average monomer composition over the conversion 

range instead of f0. However, all of these approximate correction strategies require 

knowledge of the conversion, suggesting that direct application of an integrated form of the 

copolymer equation such as the Meyer-Lowry equation (equation 4) is then possible. In such 

a case application of the integrated expression is preferable. 

b). Conversion vs monomer composition (f0-f-X). An alternative approach is to measure the 

change in monomer composition across a range of conversions. The Meyer-Lowry equation 

(eq. 4) relates the conversion X to the monomer composition f and therefore one most 

commonly fits X vs f and not vice-versa. This is how historically most fits are done, making X 

the dependent variable. This approach lends itself to online monitoring (for example with 

NMR), and in principle would allow determination of both reactivity ratios from a single 

copolymerization, monitored from low to high conversion. In practice, however, use of a 

single copolymerization is highly susceptible to systematic errors, for example resulting from 

errors in the initial monomer composition, and furthermore it is generally not possible to 

find a single initial monomer composition that gives accurate estimates of both reactivity 

ratios. These problems can be alleviated by carrying out multiple f0-f-X experiments starting 

from different initial monomer mixture ratios. Random errors are also likely to be high as 

changes in f are small and relatively insensitive to the copolymer composition at low 

conversions, while at high conversions, little monomer remains to be measured, leading to a 

low signal to noise ratio. Very accurate measurements are thus required in order to obtain 

estimates of reactivity ratios of useful precision. 

c). Copolymer composition vs comonomer composition, while monitoring the conversion 

(f0-X-F).  

The recommended approach by the authors of this paper for data collection is to measure 

both cumulative copolymer composition and global monomer conversion, starting from 

multiple initial comonomer compositions. The resulting dataset can be fitted using an 

integrated form of the copolymer composition equation (equation 4). One of the first 

reports on this approach was in 1979 by the group of Hamielec19. 



The way copolymerization experiments are performed does not change with this approach, 

but the measured conversion is now taken explicitly into account.  

This also means that there is no longer any real difference between low and high conversion 

experiments, as in both cases copolymer composition and conversion are measured, 

starting from a particular f0. Low and higher conversion data may be mixed to calculate 

reactivity ratios. This is illustrated in Figure 1, where data points are fitted on a f0, X, F 

surface. Other methods using low conversion data or measuring f-X data from a single f0 can 

still be seen as special cases of this more general preferred method of performing several 

experiments starting with different f0 values. It is also very important to have error 

estimates for the F value, either directly measured or calculated from changes in monomer 

concentrations.15, 16 Note that the error in F is very different depending on whether it was 

measured directly or calculated from changes in f. 

In this approach, both F and X may be expected to be subject to experimental errors, and as 

such the error in variables method (EVM) is preferred. However, in many cases it is likely 

that errors in determination of X will be small relative to errors in determination of F, as the 

measurement of X is more straightforward. In these cases, X can be treated as the error-free 

independent variable for the purposes of fitting. 

It is also important to weight data appropriately. For example, if the experimentally 

obtained data is copolymer composition (F) and conversion (X), but the data is fitted using 

the Meyer-Lowry equation (equation 4), which relates the comonomer composition (f) and 

conversion (X), calculated f values should be weighted using Gaussian propagation of errors, 

as follows (note, an error in f0 is not taken into account in this equation): 

∆𝑓1 ≈ √(∆𝐹1
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In the current approach we use f0-X-F data and make the physically reasonable assumption 

that the major error is in F. Besides comparing the errors per datapoint, the overall error 

estimated by the user and the overall error obtained from the fit (sF) can also be compared 

using a Fisher test (see for example SI-Tables 4 and 5). 

 

 𝑠𝐹 = √
ssmin(𝑟1,𝑟2)

𝑛−2
                                              (7) 



 

where ssmin(r1, r2) is the sum of squares of the residuals at the minimum and n the number 

of datapoints.  

In the case where f is monitored as a function of conversion (for example with in-situ 

NMR20), these values can easily be converted to f0-X-F data via the mass balance (equation 

5). As O’Driscoll highlighted in point 8, a non-negligible error in f0 or f should be taken into 

account. In the conversion, the errors assumed in f and X are then converted to errors in F 

through Gaussian error propagation (note, an error in f0 is not included in this equation): 
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 (8) 

We believe the best option is to do the calculations with f0-X-F data and not directly with the 

f0-f-X data, because in the end we are interested in the best values for the reactivity ratios 

for predicting copolymer compositions. In the f0-f-X approach a potential problem is that 

some of the monomer can evaporate if the reactor is not a closed system, so even if f data 

are converted into F data it is advised to measure at least the final average composition of 

the copolymer to check for internal consistency.  

It is likely that the analysis of f0-f-X data and the analysis of those data converted into f0-X-F 

might give slightly different results (see SI-Tables 7-9) if EVM is not used. This is due to the 

fact that in the f0-f-X approach fitting is of the conversion data, X, while in the f0-X-F 

approach, fitting is on the composition data, F. The latter is the more robust approach and 

furthermore the desired application of the reactivity ratios is to predict the composition of 

the copolymer. Another advantage is that in the conversion from f0-f-X to f0-X-F both the 

errors in f (and if needed f0 ) and in X  can be taken into account and through error 

propagation this gives a well estimated error in the calculated F (Eq. 8). This should also 

result in more realistic errors for the reactivity ratios. Note that this is not a full errors-in-

variables method as the result is only optimized on the copolymer composition F. Proper 

weighting of those data can however take place14, 15. 

Advantages of the IUPAC recommended method 

We will now address key insights made by O’Driscoll in the light of our preferred method. 



1. Model discrimination and parameter estimation normally require two different sets 

of experiments. 

Model discrimination should select those experiments that distinguish the different models 

in the best way. For example, if we compare the terminal model with the complex 

participation model21 we should maximize the range of monomer concentrations and 

monomer fractions. In case of interactions between the comonomers and the formed 

copolymers we should also investigate the influence of conversion. For parameter 

estimation the best experiments are those that are most sensitive to parameter variation, 

for example according to the well-known criteria of Tidwell and Mortimer for the terminal 

model at low conversion22. 

In the IUPAC recommended method variation in initial monomer fractions (f0) as well as 

conversion (X) is highly advised, as this variation may be sufficient in itself to reveal 

deviations from the terminal model6 and systematic errors in the measurements. Looking at 

the individual fit residuals (calculated F minus measured F i.e. Fcalculated - Fmeasured) it is 

possible to detect trends (e. g. deviations at high conversion, deviations at low or high f0).  

In principle, we have combined parameter estimation with some investigating whether the 

(terminal) model is adequate for compositional data in this IUPAC recommended method. 

As an example of an alternative model, the penultimate model might be required for 

describing propagation rate coefficients as a function of monomer composition23, 24, but 

could also be applicable to compositional data. 

2. To apply the instantaneous copolymer composition equation, low conversion data is 

required (O’Driscoll indicates < 5% conversion). 

This is a very important point, but in practice a threshold of 5% is not always sufficient, and 

for cases of strong composition drift (e.g. see low f10 values in Figure 1) even 5% conversion 

might already introduce a significant change in F.  

 

Our working group initially looked at methods to correct for conversion (at relatively low 

levels) but it turned out that if the conversion is known, it is simpler to take it into account 

explicitly through the use of the integrated copolymerization equation. This also opens the 

possibility to no longer be restricted by a threshold conversion but instead use data at any 



conversion. Including data at higher conversion has the additional benefit that any influence 

of the presence of formed copolymer on reactivity ratios might be revealed, which then 

would show up as a systematic error at higher conversions (see point 1). A prerequisite is of 

course that the conversion is measured for each experiment, which largely improves on the 

quality of the data in all cases. In the case that only low conversion data is used, it is again 

important to carefully compare the estimated errors in F with the fit residuals (looking at 

individual datapoints and also utilizing the Fisher-test described in equation 8). In case of 

doubt the f0-X-F method should be used. 

3. The outcome of the statistical method applied should not depend on the indexing of 

the monomers. 

The model used to fit the data should be identical, regardless of the way in which the 

monomers are numbered. This is the case for the Mayo-Lewis and Meyer-Lowry equations 

(1 and 4 respectively), but not for the linearized Fineman-Ross method, which will give 

different values of r1 and r2 depending on the indexing.10,11 In addition to the model itself, 

the weight given to each result should also be independent of the indexing. While the 

simplest assumption is to give equal absolute weight to all experimental data points, this 

assumption is not always correct. An incorrect alternative approach of using equal relative 

weightings (e.g. assuming an uncertainty of 10% in all experimental data) will lead to 

weights that depend on indexing. For example, f1 = 0.1 can be equivalently expressed as f2 = 

0.9, but the uncertainties, assuming a constant relative error of 10%, will be ± 0.01 in the 

first case and ± 0.09 in the second. This can lead to parameter estimates and joint 

confidence intervals that differ depending on the monomer indexing, even when the 

underlying model is symmetrical with respect to indexing. 

For the copolymerization of 2-methylene-1,3-dioxepane (MDO) and vinyl acetate (VAc), 

using the RREVM program (see above), Scott et al. found slightly different reactivity ratios 

and joint confidence intervals (JCIs) when the indexing was switched, as shown in Figure 225.  

The origin of this discrepancy lies in the assumption of constant relative errors, as pointed 

out above. 



 

        

 

Figure 2 Influence of indexing the monomers on reactivity ratios and 95% JCI, reproduced 

from ref 25 with permission. 

    

To avoid such mistakes entirely in the future we recommend that errors in the 

measurements be expressed in absolute numbers. If we take the absolute numbers based 

on the 10% error in F for the dataset of reference 25 and, switch the index but use the same 

absolute errors for F, we get identical reactivity ratios and identical JCIs (see SI-Figures 1 and 

2).  

Related to the indexing issue (see above) is how the estimation of the errors in the 

dependent variable is done and we will see that this in turn can influence the size of the JCI. 

We would like to emphasize the importance of some knowledge of the error (structure) in 

the measured data. If there is a large variation in the size of the error within a dataset, the 

error can be used to weight the data in the fit16.  

In many cases, monomer mixture composition data is obtained by integrating NMR spectra 

of the reaction mixture. In this situation, the intensity of the signals due to monomer 

decreases as the conversion increases, and an appropriate weighting function is given by 

equation 926: 



∆𝑓1 = ∆(1 − 𝑓1) ∝ √
1 + (1 − 2𝑓1)2

4(1 − 𝑋)2
(9) 

 

This function will be appropriate to other methods of determining monomer composition as 

a function of conversion in which the intensity of a signal is directly proportional to the 

amount of monomer present and so eq. 9 can be generally recommended for use. 

 

In the event that the errors are known, for example through an error propagation exercise 

or through replicate measurements, the errors can be used to construct the joint confidence 

interval using the 2 distribution27 with ss(r1,r2)z the boundary of the JCI at level z (for 

example a 95% probability): 

 

ss(r1,r2)z  ssmin(r1,r2)+22
z(p)       (10) 

 

Here 2 corresponds to the average absolute variance of the dependent variable (in this 

case F) and is calculated from the known errors as entered by the user. ssmin(r1,r2) is the sum 

of squares of residuals at the minimum and with p degrees of freedom (p equals two in the 

present cases). 

4. The starting point of the calculation should not affect the estimates (this is in 

reference to the use of iterative methods to find the optimal values). 

In general, in iterative methods the values of the optimum depend slightly on the starting 

point of the calculation12. Luckily for determinations of reactivity ratios from the terminal 

copolymerization model there are no false minima. The VSSS method is not an iterative 

method, which means that even upon expansion to more complex models, falls minima will 

not be an issue. 

5. Distortion of the error structure by linearization methods cannot be expected to give 

good estimates of the reactivity ratios. 

 



While the copolymerization equation can be linearized using the Fineman-Ross10 ,Kelen- 

Tüdős11 and other methods, doing so introduces bias into the results. In addition, these 

methods can only be used for low conversion data. We therefore strongly recommended to 

use NLLS, which provides an estimate of the reactivity ratios which is not biased by 

linearization.  

In Figure 3 we show the differences in output using the Fineman-Ross (F-R),10 Kelen- Tüdős 

(K-T)11 and NLLS14 methods applied to simulated data with noise. It can be seen that the F-R 

method is always liable to give poor results (compared to the true values), NLLS always gives 

good results, and the K-T is sometimes OK (left-hand figure), other times not (right).  

 

 

 

Figure 3. Differences using Fineman-Ross (F-R)10 and Kelen-Tüdős (K-T)11 and NLLS methods 

applied to simulated data with noise, where the true values are given in the upper left of 

each figure, and the circles are the values obtained from each analysis of simulated 

composition data with different noise (more details see SI-Tables 1-3). 

 

As the NLLS method does not involve any linearization, distorting the error structure is not 

an issue. However, it is important to stress that some knowledge of the errors in the 

measurements (error in copolymer composition F) is needed.  
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In the case that the errors are exactly known, the errors are also used to construct the JCI 

(equation 10). If the errors are only estimates (which is often the case), the JCI at level z is 

constructed through the following equation: 

 

ss(r1,r2)z  ssmin(r1,r2)(1 + p/(n – p) Fz(p,n–p))         (11) 

 

where Fz(p,n-p) represents a value from the Fisher-distribution at level z (for example at 90 

or 95 % probability) with p and n-p degrees of freedom (p equals two in these cases), n data 

points and ssmin(r1,r2) sum of squares of residuals at the minimum. 

Another aspect that needs to be discussed with respect to errors is that statistics can only 

deal with random errors. As soon as systematic errors appear, the JCI will no longer give a 

useful reflection of reality. For example, if through a weighing error the true f0 is 

significantly different from the reported value, all the data from that experiment are 

systematically biased. For this reason, it is recommended that several different starting 

values for f0 are used (see also point 6). If each of these f0 sets (e.g. the different curves in 

Figure 1) have different systematic errors, the overall fit with all the different f0 values and 

associated systematic errors is more likely to transpose to a random error. After all, if the 

source of the systematic error is for example a weighing error for f0, it might be expected 

that these weighing errors across the different f0 values are again randomly distributed. The 

sum of squares of residuals at the minimum will be larger than for the individual f0 sets and 

ssmin(r1,r2), through equations 10 or 11 will increase the size of the JCI. We will address this 

issue in more detail in the paragraphs on systematic errors. 

6. Correct design of experiments is of great importance. 

Design of experiments can also be applied on the IUPAC recommended method. In the case 

of low conversion data, we recommend use of at least three different f0 values, where two 

of them can be chosen through the Tidwell-Mortimer D-optimal design criteria22. Some 

estimate of the reactivity ratios is needed. We realize that the Tidwell-Mortimer approach is 

only applicable to low conversion experiments and cannot be extended to higher 

conversions. We are currently working on developing appropriate criteria for high 



conversion experiments. The third value (and other values) can be chosen on the basis of 

potential complications (e.g. complex formation between monomer and polymer, influence 

of high conversion). 

7. Results should be reported as a point estimate together with a joint confidence 

interval. 

Because we calculate the full sum of squares space in the VSSS approach, the unbiased joint 

confidence interval with exact shape for the parameter estimates is given as a contour line 

in the sum of squares space using equation 10 or 11. Some software report the approximate 

JCI estimate in the form of an ellipse, see for example Figure 2 and compare to SI-Figures 2 

and 3 for unbiased joint confidence intervals (see reference 15 for an extensive discussion 

on this topic). Reporting the JCI in some form is strongly recommended. 

8. If there is also an error in the monomer composition (fi), the errors in (all) variables 

method (EVM) should be used, and this is especially relevant for the determination 

of reactivity ratios from conversion dependent data using the integrated 

copolymerization equation. 

In the IUPAC recommended method (f0-X-F) we measure the copolymer composition (or the 

monomer composition which is then converted into a copolymer composition using the 

mass balance in equation 5) and estimate the error in F. The error in X can either be 

transposed into an error in F (see for example reference 16) or taken into account via the 

EVM25. In the VSSS method, the EVM can also be applied26 . The errors in f0 have been 

discussed already with point 3. 

The errors are important in three ways: (1) They can be used to weigh the data; (2) They 

determine the size of the JCI (in case of known errors and applying equation 10); and (3) 

They can be used to determine whether the fit is adequate by comparing the actual fitting 

residues with the estimated errors (equation 7). 

Besides these eight points, O’Driscoll also highlighted the “ease criterion”. The easier it is for 

the polymer chemist to apply a method to obtain reactivity ratios, the more likely it is that 

the method will be used. This is why our working group undertook to make free software 



available for applying the IUPAC recommended method as a stand-alone program 

(Contour)28, as open source Python code29 and as an Excel workbook with macro30, all 

containing the VSSS method for f0-X-F data. We recommend that either f0-X-F (either 

directly measured F-values or converted from f) or (very) low conversion (f0-F) data may be 

used. 

Application of the IUPAC recommended method 

We implemented the IUPAC method in the existing freeware Contour14-16. There we used 

the VSSS method and f0, X, F, ∆F (absolute error in F) data. The software carries out 

numerical integration of the copolymerization equation during the parameter estimation 

process. This means that software issues due to singularities are minimized, but that 

calculation time can be a couple of seconds up to a few minutes. A JCI is generated, as well 

as a graphical display of the residuals in the 3-dimensional f0-X-F plot. It is determined 

whether the fit is adequate by comparing the actual fitting residues with the estimated 

errors through a Fisher test (Eq. 7).  

We first generated a dataset with random noise (±0.005 on X and F) and original reactivity 

ratios of r1= 0.4 and r2= 0.6 (exact values), (see SI-table 4). 

a)                                                                                    
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Figure 4a plot of f10, X, F1 data for a simulated copolymerization with reactivity ratios r1= 0.4 

and r2= 0.6. Points in red are indicating a positive fit residue and in blue a negative fit residue, 
black are residues less than 10% of the estimated error. b) Individual X-F1 plots for different 
values of f10 (f0 for monomer 1) 

The resulting reactivity ratios are r1= 0.401 ± 0.003 and r2= 0.601 ± 0.003 (SI-Table 4 and for 

the JCI SI-Figure 3). 

We see that the residuals space (Figure 4a) shows an even distribution of positive, negative 

and even close to zero residuals. Of course, because this is a dataset with limited random 

errors added, this result is as expected. 

We also used an experimental dataset from the group of Schmidt-Naake31 which is shown in 

Table 1: 

Table 1. f10, X, F1, ∆F1 data* for the copolymerization of 2-acrylamido-2-methyl-1-

propanesulfonic acid (APSA, monomer 1) and 1-vinylimidazole (Vim, monomer 2)31 

    

f10 X F1  ΔF1 

0.05 0.04 0.404 0.030 

0.05 0.093 0.381 0.030 

0.05 0.209 0.316 0.030 

0.05 0.195 0.282 0.030 

0.05 0.279 0.227 0.030 
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0.05 0.434 0.146 0.030 

0.1 0.1 0.458 0.030 

0.1 0.182 0.457 0.030 

0.1 0.194 0.407 0.030 

0.1 0.301 0.396 0.030 

0.1 0.389 0.347 0.030 

0.1 0.474 0.235 0.030 

0.3 0.109 0.547 0.030 

0.3 0.168 0.491 0.030 

0.3 0.201 0.484 0.030 

0.3 0.383 0.486 0.030 

0.3 0.456 0.488 0.030 

0.3 0.731 0.467 0.030 

0.7 0.068 0.658 0.030 

0.7 0.186 0.654 0.030 

0.7 0.274 0.677 0.030 

0.7 0.332 0.642 0.030 

0.7 0.482 0.635 0.030 

0.7 0.577 0.649 0.030 

0.7 0.739 0.658 0.030 

0.9 0.13 0.872 0.030 

0.9 0.273 0.856 0.030 

0.9 0.43 0.83 0.030 

0.9 0.585 0.915 0.030 

0.9 0.71 0.91 0.030 

0.9 0.82 0.88 0.030 

 

* f10 initial ratio of APSA in the monomer mixture, X overall monomer conversion, F1 the 

content of APSA in the copolymer. 

 

We selected this experimental dataset because the necessary f0-X-F data are directly 

available (not indirectly through f measurements) and this system might not behave 

according to the regular terminal model as acid-base interactions are expected between the 

APSA and the VIm 31. 

With the IUPAC method the obtained reactivity ratios are 0.40 for r1 and 0.022 for r2 (see SI-

Table 5) whereas in the original paper values of 0.31 for r1 and 0.026 for r2 were reported 

using a slightly different fitting procedure31. Based on comparison of the estimated errors in 

F (0.030) with the actual fit residues it is determined that the terminal model gives an 

adequate fit to the data (SI-Table 5). The JCI is shown in Figure 5. 

As in this case it is expected that complexation between the two monomers will occur, some 



systematic trend in the residuals is expected. Schmidt-Naake et al.31 report that maximum 

complexation between the two monomers takes place at f10 of 0.5. We see that in the 

middle region most residuals are negative whereas at low f10 values most residuals are 

positive, indicating some systematic deviations. Also it has to be noted that at low f10 values 

monomer 1 is depleted at higher conversions. 

The best way to investigate this further is by deleting some data structurally (e.g., take out 

low f0 values or high conversion data) from the set and see whether the reactivity ratios 

change. For example, if we take out the f10=0.05 and f10=0.1 data, we obtain 0.42 and 0.058 

(SI-Table 6) for r1 and r2 respectively, more than doubling the value of r2. 

 

 

 

 

 

 

 

 

Figure 5 95% Joint confidence interval based on eq. 11 for the reactivity ratios of 

copolymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid (APSA, monomer 1) and 

1-vinylimidazole (Vim, monomer 2)29 

 

 

 



 

Figure 6 plots of X, F1 data for the copolymerization of 2-acrylamido-2-methyl-1-
propanesulfonic acid (APSA, monomer 1) and 1-vinylimidazole (Vim, monomer 2) 

 

 

 

Effect of systematic errors in the initial monomer fraction in copolymerization 

experiments 

 

In order to investigate how sensitive an analysis of an f0-X-F dataset is in errors in f0 we generated a 

dataset with little composition drift from reactivity ratios of r1=0.40 and r2=0.60 respectively and 

with initial monomer fraction (f10) of 0.1, 0.3, 0.5 and 0.8. We superimposed an absolute random 

error on both conversion (X) and cumulative copolymer composition (F1) of ± 0.005 each. 
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Figure 7 95% JCI’s based on eq. 11 for original reactivity ratios r1= 0.6 and r2= 0.4 (Δ), with random 

errors added but without systematic errors in f10  (      ) and with systematic errors in f10, modification 1 

is adding/subtracting 0.01 with signs + - + - (----), modification 2 is - + - + ( )). 

 

 In Figure 7 the original reactivity ratios (triangle) and the fitted reactivity ratios with the noisy data 

(circle) are shown (r1=0.396 and r2=0.595) as well as the corresponding JCI’s. Now we alternatingly 

added and subtracted 0.01 to the four f10 values given above (in modification 1 we added first, in 

modification 2 we subtracted first) to create a systematic error in each experiment starting from a 

(incorrectly determined) f10 value only. All the other measurements are assumed to only have a 

random error. With these new data the fit is obviously worse and the JCI is much larger (see Figure 

7), due to the poor fit and thus the sum of squares of residuals at the minimum increases (we used 

the Fisher-distribution for the JCI).  

It is important to note that the minima can shift considerably and differently, depending on the 

systematic errors introduced on the original f10 values. Although the 95% JCI’s are much bigger, they 

barely touch the correct values. The systematic errors introduced in f10 in the individual experiments, 

overall seen over the different f10 values, are more or less random (2 +0.01, and 2 -0.01), but it 

makes a difference how we apply them (modification 1 vs modification 2).  

We plotted the residuals for the data (modification 1 in Figure 7), which clearly indicate systematic 

deviations per experiment (see SI-Figure 6). 

This means that particular care has to be taken to avoid an error in the f10 values, but a residuals plot 
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(like Figure 4a) can be used to identify such issues. However, if we only take a single experiment with 

the systematic errors included, we obtain reactivity ratios diverging significantly from the true values 

with very large JCI’s. It is an option to vary f10 values in a single experiment and see how the quality 

of the fit improves. This approach is recommended as very small variations in f10 have a major 

influence on the SSR and on the obtained reactivity ratios in for example X vs f data (see SI-Figure 8) 

We also investigated a system with more composition drift and reactivity ratios of r1=13 and r2=0.3 

(SI-Figure 5-7). Applying systematic errors in f10 again, like we did before, there is hardly any overlap 

of the JCI’s. (SI-Figure 7). If we use a single experiment (one f10) with systematic error, hugely 

incorrect reactivity ratios are likely to be obtained. However, by taking a series of different f10 

experiments we can still obtain reasonable estimates for the reactivity ratios. However, the JCI’s 

with systematic errors seem to be not large enough to overlap with the true reactivity ratios (SI-

Figure 7). The increase in JCI due to a larger sum of squares of residuals at the minimum is not 

sufficient to reflect the increased error in the reactivity ratios. One of the assumptions in the non-

linear least squares method is that the errors are independent, which is obviously violated here 

within a single experiment starting from a wrong f10 value.  

The conclusion is that errors in the value of f10 should be avoided at all costs. One option is to 

investigate the residuals space and see whether there is a systematic pattern in one or more of the 

experiments starting from a particular f10. If that is the case, an error in f10 could be assumed and a 

correction could be made by varying f10 and looking for the best value (see SI-Figure 8). These 

variations in f10 could be as small as ±0.002, so usually well within the estimated error range for f. 

This option is available in Contour, with the optimized f10 value suggested by the software then used 

to see if the overall fit improves.  

 

 

 

 



 

Recommendations: 

-Use only non-linear regression or VSSS methods.  

-Either use low conversion f0-F data or conversion dependent data in the form of f0-f-X or f0-X-F, in all 

cases with at least three different starting monomer compositions f0. 

-If using low conversion f0-F data, check that no significant (more than the expected random error) 

change in F has occurred due to composition drift. Once the reactivity ratios are estimated, the 

predicted change in F with conversion should then be calculated. If this indicates too much 

composition drift over the range of X used experimentally, then one should go back and use the f0-X-F 

method instead. 

-Obtain the best possible information about the errors in the measurements, and utilize weighting 

according to the errors in the dependent variable (in most cases F). 

-If the independent variable (usually f) has considerable error, use EVM. 

-If using f0-f-X data without EVM, convert the f0-f-X data into f0-X-F with proper error propagation, 

taking errors in f (also f0 if needed) and X into account. 

-Be aware of errors in f0, especially in conversion dependent experiments. 

-Mitigate errors in f0 through 1) measuring f0 (eg through NMR), and/or 2) investigating limited 

variations in f0 though fitting f0-f-X single experiments, and/or 3) looking at the residuals in a set of 

experiments and detecting systematic patterns (if so, vary f10 again). 

-Analyse the residuals and compare the fit residuals with the estimated errors. 

-Investigate if fit residuals exceed the expected errors; if they do, this usually indicates either that the 

terminal model is not valid for the copolymerization system under investigation and/or that 

systematic errors are present. 

-The obtained reactivity ratios should be reported with the correct number of significant digits 

(typically 2) and a measure of the uncertainty in those values (preferably a joint confidence interval). 

 

 



 

Conclusion 

The IUPAC working group on “Experimental Methods and Data Evaluation Procedures for 

the Determination of Radical Copolymerization Reactivity Ratios” has established a robust 

method to determine reactivity ratios from composition data following the terminal model. 

The method is based on measuring conversion (X) and (cumulative) copolymer composition 

(F) in a few copolymerization reactions at different starting monomer compositions (f0), 

although a set with only low conversion can also be used (f0-F). Importantly, we make freely 

available the analysis software for this method, and we strongly recommend that it be used 

for reactivity ratio determination. The method not only provides parameter estimates but 

can also reveal deviations from the terminal model and systematic errors in the dataset. It is 

shown that error estimation for the F-values is important for weighing the data, determining 

the size of the joint confidence interval (in case of accurately known errors) and discerning 

whether the fit with the terminal model is adequate (when only estimated errors are 

available). In principle previous experiments measuring f0-F (if conversion is known or 

sufficiently low) can still be analyzed with the IUPAC recommended method. Some 

examples have been given of reactivity ratio determinations, both with experimental data as 

well as simulated data. Special attention has been given to the occurrence of systematic 

errors in the f0-X-F and f0-f-X experiments. It is shown that the current statistical treatment 

is not able to properly accommodate systematic errors occurring within such experiments. 

However, with the analysis of the residuals space (f0-X-F) these errors can be identified and 

where possible corrected through optimization of f0 as a third parameter. 

The design of experiments procedure for the recommended method is under development. 
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