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We present a direct experimental confirmation of the max-
imization of entropy which accompanies the thermalization
of a highly multimode light beam, upon its nonlinear prop-
agation in standard graded-index (GRIN) optical fibers. ©
2024 Optica Publishing Group
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The spatial beam self-cleaning effect consists of the nonlin-
ear transformation of a multimode beam at the output of a
multimode fiber (MMF) from speckles into a bell shape. This
is typically observed in standard graded-index (GRIN) MMFs
when the beam input power overcomes a certain threshold value
[1-5]. The beam self-cleaning effect can be described in a
thermodynamic framework: it represents the evolution of a dis-
ordered optical state toward a state of thermal equilibrium, or
maximum entropy [6,7]. While the thermodynamic model can-
not inherently encompass certain properties of self-cleaning,
such as its preservation of spatial coherence and increase of
beam brightness [1,8], which appear to be related to modal
phase-locking mechanisms [9], mode-decomposition experi-
ments have confirmed that indeed, as the input power grows
larger, the output mode power distribution of self-cleaned beams
approaches the Rayleigh—Jeans (RJ) law [10,11].

At first glance, it may seem counterintuitive that a self-
cleaned bell-shaped beam contains more information than a
beam with a seemingly chaotic speckled intensity distribution.
This led to speculations that either the thermodynamic approach
to multimode optical systems breaches the second law of ther-
modynamics or that the observed beam cleanup is due to the
presence of some nonlinear dissipative effects [12].

Baudin ez al. have experimentally determined the equilibrium
entropy in the classical RJ condensation of light waves in an
MMEF [13]: in good quantitative agreement with the RJ theory
[14], they found that the equilibrium entropy decreases with
the internal energy of the beam (which corresponds to progres-
sively higher values of fractional occupation of the fundamental

fiber mode). In their experiments, the input power % is kept
at constant, and the beam energy U is varied by controlling
the spatial correlation of the speckle input beam with a dif-
fuser. As a matter of fact, the thermodynamic theory considers
%P and U as constants of motion. However, in order to verify
that beam self-cleaning is consistent with the second princi-
ple of thermodynamics, it is necessary to measure the entropy
of out-of-equilibrium multimode states and verify that as ther-
mal equilibrium is approached, the entropy indeed reaches a
maximum value.

On the other hand, Ferraro er al. have demonstrated the valid-
ity of the second principle of thermodynamics for an ensemble
of different optical multimode beams: in an optical calorime-
try experiment, by using two orthogonally polarized beams
at different temperatures (or internal energies), it was shown
that heat flows from a hor to a cold beam and not vice versa
[15]. As a result, the optical entropy grows larger in the pro-
cess of heat exchange between the two beams. Incidentally, the
growth of entropy accompanying the thermalization of a differ-
ent highly multimode optical system, consisting of a photonic
time-synthetic mesh lattice, has been recently reported [16].

In this work, we present the first experimental evidence of
the growth of entropy in the thermalization of a single beam,
an adiabatic process that is shown to occur in the absence of
energy exchanges with the environment. Incidentally, it should
be noted that wave thermalization in MMFs does not always
lead to bell-shaped beams. Experiments have shown that, when
increasing the beam power well above the self-cleaning thresh-
old, a thermalized beam may still yield a speckled intensity
pattern [17,18].

Let us provide first a simple theoretical proof that indeed the
entropy of a highly multimode beam should always increase with
power, in the process of transition from an out-of-equilibrium
state to a state of thermal equilibrium. When propagating in
a short length of the MMF, a multimode beam conserves
its power P = 3, |c,|* and internal energy U = - ¥, Bl =
~P L, Blfil* = Pu, where |ci* (|fi]*) is the power (fraction)



carried by each mode (i = 0,1,...M — 1). In GRIN fibers, the
mode propagation constant f; is supposed to be degenerate
within each group of size [(V1 + 8i—1)/2], where [-] is the
ceiling function. The RJ mode power distribution

T
u+pi

is obtained from the condition of maximizing the Boltzmann
entropy, which can be written as [6,19]
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where M is the number of the fiber modes. Here, the beam
temperature 7" and chemical potential ¢ can be determined from
the knowledge of # and U.

In typical practical experiments, the increase of entropy
occurs at a fixed fiber length. Therefore, increasing # has the
beneficial effect of facilitating the beam thermalization. Fur-
thermore, beam cleanup is obtained by increasing %, for a fixed
injection condition of the laser into the fiber. This corresponds
to maintaining a constant ratio between the internal energy and
power, i.e., u = const. As such, by exploiting the equation of
state U — uP = MT 6], we can write

Uu wmr MT
St i bl o
which derived by P yields

dy)_MT M (ﬂ') @)

P P

At thermal equilibrium, the entropy can be written as
/i
9 = —— - — — —
5 Zln( ﬁ.+u) M In(T) Zln( B-w. (5)

Now, by deriving S by P, it easily follows that
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which recalling the definition of % and Eq. (4), leads to
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i.e., the entropy at thermal equilibrium increases with power at
u = const. This is sketched in Fig. 1(a) (black dashed curve),
where we show a map of the values of S as a function of .

By definition, at fixed power % and internal energy U, the
entropy at thermal equilibrium is maximal. Therefore, all values
of S above the black dashed curve in Fig. 1(a) are inaccessible
(nonphysical) states. The process of thermalization is illustrated
by the red curve in Fig. 1(a): by increasing ., a multimode sys-
tem evolves from an out-of-equilibrium state A with an entropy
Sa to a final state B which is at thermal equilibrium, i.e., it
has an entropy S; = §9. As it follows from the graph, since
S$*(P) is a monotonically growing function, S must have a final
value that is higher than its initial one, i.e., S5>S, VA. Still, it
has to be noted that in its transient evolution toward thermal
equilibrium, the entropy of a photon gas does not necessarily
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Fig. 1. (a) Illustration of beam trajectory from an out-of-
equilibrium state A to an equilibrium state B via intermediate states
A’ and A", in the phase plane of optical entropy S versus beam
power #. (b) Normalized mean power fraction of the fiber modes
grouped by the same propagation constant for states A, A", A”, and
B, respectively.
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need to increase monotonically (as indicated by the oscillat-
ing red curve in Fig. 1(a)) [20]. In Fig. 1(b), we illustrate the
relative mode power distribution of the fiber modes (which are
considered for simplicity as populating the first four groups of
degenerate modes only), corresponding to states labeled as A,
A’, A", and B in Fig. 1(a). Before presenting our experimental
results, it is worth emphasizing that we compute the out-of-
equilibrium entropy from the mode distributions by directly
applying Eq. (2). which is valid at thermal equilibrium only.
Nonetheless, our claim of entropy increase still holds, for it can
be shown that S, as written in Eq. (2), provides an upper bound of
the out-of-equilibrium entropy under the hypothesis that the fiber
modes have Gaussian correlations (e.g.. provided by random lin-
ear mode-coupling caused by a small variation of the refractive
index) in addition to their individual fluctuations during pulse
propagation within the fiber, leading to thermalization [19.21].

In our experiments, for giving a direct proof that the mode
power distribution of a beam evolves toward a state of maximum
entropy (i.e., it thermalizes), we kept the initial beam fixed and
varied both the input power and the fiber length by means of a
fiber cutback. A standard 12-m-long 50/125 GRIN MMF was
coiled around a 15 cm diameter plastic drum, with a transparent
tape securing the fiber every 2 m, for mitigating any undesired
movement during the cutback procedure. The fiber output was
directed onto a spatial light modulator through the combination
of two confocal lenses. The near-field profile was subsequently
imaged after being reflected from a flip mirror by using a CCD
camera. The spatial light modulator reflection, corresponding to



06
07
A
% 0s 06
03 04 os
Soz I 03 s
Ham

by I 02
) l-_‘ .
01234567 901234567 @

05 e
03 .

0.4 a4

1g02 03 03
02 I 02

0.1 l 01

l | [ T™ R o=

01234567

03 07

a4 06

g" b :2
+= II 02 I 03

Fiber length (m)
o
+

9 01234567

~

& B ]
-

o1
o lns. . | 1 :
1234567 01234567 01234507
Modes grouped by Modes grouped by Modes grouped by
propagatica constant propagation constant propagation constant
+ 4 T
37 9.3 149

input peak power (kW)

Fig. 2. Normalized mean power fraction of fiber modes (grouped
by their propagation constant) versus the fiber length and the input
peak power, respectively. Insets show the corresponding measured
near-field intensities.

the Fourier transform of the output beam, was imaged by another
camera after passing through a convex lens. To counteract the
loss of temporal coherence resulting from self-phase modulation
(SPM), a bandpass filter was introduced into the optical path. We
verified that no significant power-dependent loss was introduced
by the presence of the filter, meaning that the effects of SPM
can be neglected [17]. Additionally, a half-wave plate and a
linear polarizer were incorporated to control the intensity and
linear polarization state of the output beam on the spatial light
modulator; for more details on the mode decomposition (MD)
method, we refer to Ref. [11,22

Figure 2 summarizes the results of our MD experiments: here
we show the variation of the output mode power distribution
when either the input power or the fiber length are varied, respec-
tively. We report the normalized mean power fraction of the fiber
modes, according to their degeneracy group. One can appreci-
ate that, when moving in both directions, an RJ distribution
(see red dashed line in the top right panel of Fig. 2) is always
approached. This underlines the fact that beam thermalization
can be obtained by increasing either the input power or the prop-
agation distance. Moreover, the RJ distribution has a dominant
(>70%) contribution from the fundamental mode of the GRIN
fiber, which leads to the characteristic bell-shaped transverse
intensity profile of a self-cleaned beam.

Now, the Boltzmann entropy S can also be written as

S=MInP+ > Inlf: @)

In the experiments, we have isolated the contribution of the
second term in Eq. (8):

M
3= Zln T2 9)

which only implicitly depends on the input power P, through
the nonlinear change of the mode power distribution. As such,
we will refer to S as the configuration entropy (or the entropy
per particle as in [15]). Sis a useful parameter to estimate in our
experiments because it increases with % and reaches a steady-
state value whenever thermal equilibrium is achieved. Since the

first term in Eq. (8) is proportional to the input power, if we
can demonstrate that § grows larger toward a maximal value as
the out-of-equilibrium beam tends toward thermalization, then
the Boltzmann entropy § is also maximized necessarily when
approaching S¥. Note that when u = const as it occurs in our
experiments, Eq. (7) predicts that $% = cons: in order words,
at thermal equilibrium—i.e., for sufficiently long fibers or high
input powers—the contribution to the entropy from the mode
power distribution is independent of input power.

Before presenting our results, it is worth remarking that our
MD tool has limited accuracy when measuring the population
of higher-order modes (HOMs). As a result, it may occur that
the measured power fraction of some HOMs is nearly vanishing.
This can be easily anticipated, given that the power fraction of
HOMs progressively decreases, as their mode order grows larger,
according to the RJ law (1) at thermal equilibrium. Now, a value
of ¢; = 0 makes the logarithmic term in Eq. (9) diverging. When
measuring the entropy. this may result in a significant limitation
to its accuracy, unless a proper data regularization is applied.
We circumvented this issue by introducing a threshold value for
the mode power fraction, as already discussed in detail in Refs.
[7.15]. Specifically. here has been set to zero the power of HOMs
such that |f;|*<0.032. Such a stratagem, which is largely justified
by the limited accuracy of our holographic MD tool, allows us to
strongly reduce measurement fluctuations when evaluating the
entropy.

Our experimental findings about the evolution of the config-
uration entropy S are summarized in Fig. 3. In the first set of
experiments (see Fig. 3(a)), we measured the increase of entropy
of the output beam from a fixed length of the MMF, when
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Fig. 3. (a) Variation of the beam entropy versus the input peak
power for fiber lengths of 2 (blue line) and 12 m (red line). (b)
Variation of the beam entropy versus the fiber length for different
input beam powers (the legend shows the average and the peak
power of the optical pulses, respectively). Dashed curves are guides
for the eye.
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Fig. 4. Conservation of the beam power (a) and normalized
energy u (b) versus the fiber length, for different input beam powers;
the legends show the average and the peak power of the optical pulse
trains, respectively.

increasing the input power above the self-cleaning power thresh-
old. Note that when out-of-equilibrium states are concerned.
oscillations in the evolution of both S and $ are possible.

It is interesting to note from Fig. 3(a) that for the shorter fiber
length (2 m), a clear increase of S is observed as the input power
is first increased up to 5 kW: at higher powers, the configuration
entropy tends to saturate, as it is expected when the beam is
nearly thermalized. Figure 3(a) also shows that at the longest
length (12 m), the evolution of S with power exhibits oscillations
superimposed on a relatively slow growth, which indicates that
the multimode gas is relatively close to its state of equilibrium
for all power values.

Next, we fixed the input power and carried out a series of cut-
back experiments, which permitted us to monitor the evolution
of § along the propagation distance in the fiber (which plays the
role of evolution time of the photon gas). Note that in this par-
ticular case, it is fully equivalent to study the evolution of S or
S, since the input power is fixed and the second term in Eq. (8)
remains a constant. As can be seen in Fig. 3(b), S exhibits a
general trend of growing larger with distance. Consistently with
the results of Fig. 3(a). for the lowest peak power value of 3.7
KW (light blue dots and dashed curve), a rapid growth of § over
the first 6 m is observed. followed by a saturation of its growth
with distance, again as expected when thermal equilibrium is
reached. On the other hand, at the highest peak power of 14.9
kW, for lengths longer than 4 m, § remains essentially flat since
at this high power level, thermalization is achieved at shorter
distances.

Finally, we verified the pillars on which the thermodynamic
theory relies, i.e., the conservation of  and u: this is shown in
Fig. 4). Figure 4(a) shows that the power transmissivity of the
fiber itself is essentially determined by input coupling loss. As
can be seen, the transmissivity remains essentially constant at
all lengths and for all power levels, which rules out the possible
presence of dissipative effects in determining the beam self-

cleaning. In addition, Fig. 4(b) demonstrates the invariance of
the normalized internal energy « at all propagation distances and
for all tested power values.

In conclusion, multimode fiber cutback studies combined
with mode decomposition experiments could provide a direct
experimental demonstration that the mode power distribution
associated with a self-cleaned state evolves toward a global max-
imum of optical entropy, which indicates that the optical field
has reached a state of thermal equilibrium.
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