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ABSTRACT
Transparency, reproducibility, and validation are fundamental concepts in research. Their
definitions may vary among research disciplines (sometimes even lacking global agree-
ment), but they all share common elements and practices. This chapter introduces the
three concepts. Then, after discussing their definitions and interconnections, it illustrates
their role in three main components of medical imaging studies— analyses, software, and
data. For the three components, the chapter introduces methods and practical tools such
as cross-validation, pre-registration, notebooks, code and data sharing, containerization,
continuous integration, test-retest analysis, data quality, and challenges. Finally, some of
these tools are illustrated through a concrete example from an ongoing initiative.
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1.1 INTRODUCTION

In scientific research, transparency, reproducibility, and validation are fundamen-
tal for ensuring the integrity and reliability of research results. As we explore
these fundamental principles, it is essential to recognize the multifaceted nature
of these terms. Each term unfolds along a different dimension, bringing a unique
perspective to the overall integrity of the research effort. Although exhaustive
definitions exist, the aim of this chapter is not to describe every nuance, but rather
to highlight the general concepts and complexities inherent to their application.

Transparency advocates openness and clarity in research processes, inviting
researchers to document the subtleties of their methodologies. Reproducibility
calls for independent verification, underlining the need for others to reproduce
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results to reinforce their credibility. Finally, validation examines the robustness
and accuracy of results, ensuring that they conform to established standards.

These principles are especially important in medical image analysis. Re-
search efforts in this field have identified unique challenges and considerations.
The mix of technological advances and medical complexities requires a nuanced
understanding of how transparency, reproducibility, and validation manifest in
image analysis for medical purposes.

This chapter serves as a gateway to these essential concepts, highlighting the
difficulties encountered, evolving definitions, and practical applications in the
dynamic landscape of medical image analysis.

1.2 DEFINITIONS

1.2.1 Transparency

Transparency in research refers to the openness and clarity with which the
research process and its outcomes are communicated and made accessible to
others. Its main goal is to allow a critical reader to evaluate the work and fully
understand its strengths and limitations [1]. This generally requires the full
disclosure of the research design, which includes the methods used to collect
and analyze data, the public availability of both raw and manipulated data, in
addition to the computational scripts employed along the way [2].

In artificial intelligence (AI), transparency presents unique challenges. As
[3] points out, simply publishing an algorithm’s text or source code is not always
sufficient for full understanding. This limitation becomes particularly evident
for certain algorithms, notably those rooted in machine learning, where a holistic
understanding is intimately tied to the datasets used for training. In addition to
this limitation, the black-box nature of most AI systems renders transparency
even more challenging. Explanations of machine learning and AI results have
been proposed to mitigate such transparency issues [4].

The exact information which needs to be provided for thorough understand-
ing and evaluation depends on each study, but at a general level we identify three
key elements of transparency: share code, data and documentation.

Share code. Medical imaging research extensively uses numerical tools and
methods for data acquisition, analysis, or sharing. Software code is thus the
most accurate source of information for all the steps of a study. [5] considers
that the first and foremost strategy available to maximize the transparency of re-
search methods is openly sharing the code with the minimal restrictions possible.

Share data. Data is a central component of medical imaging research. Sharing
both raw and derived data is essential for transparency. In the field of MI, how-
ever, ethical and privacy constraints may hinder data accessibility, so a detailed
description of the data has to be provided.



Fundamentals on Transparency, Reproducibility and Validation Chapter | 1 3

Document choices and analyses (methodology). Clearly describing the re-
search design, data collection methods, and analytical procedures enables others
to understand how the study was conducted and assess the findings’ validity and
reliability.

Beyond these three elements that will be further discussed and illustrated in
the following sections, transparency is also important with respect to:
• Conflict of interest and funding sources. Disclosing potential conflicts of

interest (financial or personal) is important for understanding potential biases
and influences on the research.

• Publication practices and peer review process. Information about the publi-
cation practices and peer review process contributes to the study’s credibility.
Transparency enhances the credibility of research, fosters trust within the

scientific community and allows for the effective evaluation and application
of research findings. Transparency supports reproducibility and validation by
providing all the necessary information about a study.

1.2.2 Reproducibility

Reproducibility can be seen as an umbrella term encompassing multiple terms,
such as replicability, repeatability, reusability, and reproducibility itself, refer-
ring to the ability to recreate scientific results. [6] defines reproducibility as a
spectrum of concerns that starts at a minimum standard of same data + same
methods = same results to new data and/or new methods in an independent study
= same findings. While there is no global agreement on the use of the terms
reproduce and replicate for these two sides of the spectrum, this chapter adopts
the definition in [7]:
• Reproducible research implies that authors provide all the necessary data and

the computer codes to run the analysis again, re-creating the results.
• Replication is achieved when a study arrives at the same scientific findings

as another study by collecting new data (possibly with different methods) and
completing new analyses.
These definitions can be illustrated and extended in Figure 1.1 adapted from

the Turing Way Community1. In this context, a study is reproducible when
the same analysis steps performed on the same dataset consistently produce the
same results.

Taking this definition further, one may inquire about the precise meaning
of the same data, analysis, or results. For example, one could argue whether
using random seeds or different libraries/software versions satisfies the same or
different conditions. Results may also vary from bit-wise reproducible results to
confidence intervals. This chapter considers that the answer to these questions

1. https://github.com/the-turing-way/the-turing-way
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FIGURE 1.1 Reproducibility matrix

depends on the study one tries to reproduce, which should mention what is to be
considered the same data, analysis, or results.

Similarly, in [8], authors define exact reproducibility as the reproduction of
strictly identical results as those of a previously published paper, i.e., being able
to reproduce tables and figures as they appear in the original paper following
the same procedures as the authors. In this case, "the same result" corresponds
to what is reported in the paper (e.g., individual exact values, confidence inter-
vals, or higher-level conclusions), which depends, in turn, on the appropriate
validation method.

In addition to exact reproducibility, [8] also defines statistical reproducibility
as the reproduction of the results of a study under statistically equivalent con-
ditions, e.g., using another sample of data drawn from the same population. In
this case, the results should be statistically compatible but do not need to be
identical. Statistical reproducibility can also be part of the validation process
described in the following section.

Reproducibility is considered a cornerstone of the scientific method, as it
helps to establish the credibility of research and contributes to the cumulative
nature of scientific knowledge. As seen so far, reproducibility can refer to a large
spectrum of concerns. Depending on the study, their relevance may not be the
same. For instance, exact computational reproducibility can be very important
for detecting errors or differences and checking the robustness with respect to
environments. However, a certain degree of variability may be necessary for
certain studies, such as modeling physical uncertainties, making it impossible
to achieve bitwise computational reproducibility. Therefore, addressing issues
related to reproducibility requires a global view of the problem and efforts to
improve research practices beyond exact reproducibility.

1.2.3 Validation

In the common language, validation is the process of making something offi-
cially or legally acceptable or approved, but also proof that something is correct.
Validation in research refers to assessing and confirming the accuracy and re-
liability of research methods and findings. It involves demonstrating that the
measures used in a study are appropriate and that the results are meaningful
and trustworthy. As explained in [9], the word validation may have different
meanings depending on the discipline. In software engineering, it means as-
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sessing whether or not a particular system fulfills its intended purpose, which
is contrasted with terms such as verification. In machine learning, conversely,
validation means assessing how performant a system is on previously unseen
data.

Despite these differences, validation procedures often share common ele-
ments, such as validation metrics. In [10], authors highlight the importance of
metrics and their appropriate selection and propose a framework2 for problem-
aware metric recommendations. They explain that choosing the right metric is
particularly challenging in image processing because the suitability of a metric
depends on various factors, such as the (in)appropriate choice of the problem
category (e.g., confusing object detection with semantic segmentation).

Validation metrics often involve comparison with a reference or ground truth.
Acquiring an accurate reference or ground truth can be a major challenge due
to variability among experts and potential errors made by them [11]. Subjective
perception can lead to discrepancies between experts, emphasizing the need
for strict protocols and clear definitions. Additionally, the complex nature of
certainmedical conditions canmake it challenging to establish an unquestionable
ground truth, as even experts may have different interpretations. These factors
underscore the importance of carefully considering the nature of the reference
or ground truth used in the validation process and acknowledging its potential
limitations.

As mentioned in [10], beyond the "correctness" of an algorithm on a given
set of test cases, there should be a holistic assessment including robustness
and the ability to perform as well across different data sets (different protocols,
different distributions, etc). [12] distinguishes between internal, temporal, and
external validation for prediction models. Internal validation uses the patients
from the development population, i.e., the same data from which the model was
derived. The most well-known forms of internal validation in machine learning
are split-sample, cross-validation, and bootstrapping. Temporal validation uses
data from the same study but is sampled at a different time interval than the data
used for building the model. External validation includes patients that may differ
from the development population in different ways (different countries, different
types of care facilities, or different general characteristics). External validation
provides thus evidence of the generalizability to various patient populations.

Validation is thus a multi-layer, never-ending process. The remainder of
this chapter tackles aspects of evaluation rather than validation as a holistic
assessment.

1.2.4 Global overview

As seen above, transparency, reproducibility, and validation encompass many
principles for building accurate and precise models that meet the standards of

2. https://metrics-reloaded.dkfz.de/
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Open Science. The concepts of accuracy and precision are typically depicted in
Figure 1.2, where the optimum shot consistently lands in the center of the target
(upper left diagram). They illustrate a possible distinction between validation
and reproducibility.

FIGURE 1.2 Accuracy and precision

From a broader perspective, each of the three concepts is a necessary but
insufficient condition for producing a scientific investigation that others can
replicate and improve. This is shown in Figure 1.3, which provides positive and
negative examples of each concept (e.g. validated but non-reproducible or non-
transparent work). This diagram also illustrates how deeply these three concepts
are intertwined. For example, a successful replication can be seen as both a
reproduction and a validation of the original study, the former being possible
only if the latter is conducted with sufficient transparency.

These three concepts ultimately permeate every aspect of a scientific inves-
tigation. In computational analysis for medical imaging, these aspects can be
captured in three main components:

• The analysis itself (i.e., aspects that can be described in a scientific paper);
• The software tools (i.e., scientific code and computing environments);
• The data.

The remainder of this chapter examines how transparency, reproducibility,
and validation can be implemented in these three complementary elements of a
typical 2020s research project.
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FIGURE 1.3 Transparency, reproducibility and validation as prerequisites for a replicable study

1.3 ANALYSES

The following section considers the means at the disposal of a researcher to
evaluate and share a specific model or particular hypothesis. An analysis is
anything that can be described in a scientific paper (or part of a paper), including
the methods and algorithms used to produce such results.

1.3.1 Validation

Validation of a scientific analysis is a lifelong process that is not truly achieved
until the study has been widely disseminated and replicated within the research
community. The following paragraphs examine how a researcher can validate a
model or hypothesis at their level by evaluating it against a dedicated dataset.

Evaluation strategies. In cases where real-world data are missing, simulation
can be used as a substitute or complement (e.g. data augmentation). The
evaluation strategy depends on the research goal using a properly curated dataset
(see §1.5).
• Statistical tests evaluate a specific hypothesis regarding significance (p-value)

and effect size. In this approach, particular attention must be paid to the
sample size needed to analyze with sufficient statistical power [13].

• Validation metrics are used to assess the predictions of an existing model,
focusing on performance and uncertainty. Such metrics should be carefully
selected, as Section 1.2.3 explains.

• Cross-validation (CV) is used when the model is based on data-driven ap-
proaches such as machine learning.

Internal validity. Careful design of the CV strategy is crucial to the internal
validity of a machine learning model. The process divides the data into three
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distinct subsets: (i) the training set for model parameter learning, (ii) the valida-
tion set for hyperparameter tuning and model selection, and (iii) the test set for
final model evaluation. The procedure is illustrated in Figure 1.4.

FIGURE 1.4 Dataset splitting for cross-validation: illustration on a multicentric medical dataset.
The data is split group-wise across acquisition centers ("A"-"F") and stratified across classification
labels ("healthy", "diseased") and patient sex ("male", "female").

To avoid data leakage effects [14], the test subset should be kept separate
from the rest during the entire CV process3. Accurate model evaluation requires
careful selection of the appropriatemetric, depending on the intended application
[10].

With this in mind, the training/validation steps can be iterated in various
manners to enable model selection [15]. K-fold CV splits the dataset into k
equally sized partitions, trains the model on k −1 partitions, and validates on the
remaining one – the process is repeated k times. Monte-Carlo CV introduces
a stochastic component by randomly sampling the training and validation sets
over many iterations. The iteration strategy depends on the dataset’s size and
the time required for learning. According to [14], Monte-Carlo CV can provide
confidence intervals on model performance, but statistical testing should never
be used for model comparison. Finally, the splitting process should be planned
carefully following twomain principles (see figure 1.4): stratification and group-
wise splitting.

Stratification means that each class (e.g., disease state) should be equally
represented in all subsets (training, validation, and test). This ensures that each
subset is a representative sample of the original dataset. Ideally, the stratification
step should also consider potential subclasses (e.g., disease variant) to mitigate
so-called "hidden stratification" effects [16] and account for relevant characteris-
tics (e.g., sex, age) that may cause unfair predictions from the model. Additional
measures may be implemented when dealing with imbalanced datasets [17].

Group-wise splitting provides a more valid estimate of the model’s gener-
alization ability. In this approach, data points sharing common characteristics
that should not be learned by the model (e.g., same subject or same acquisition

3. This rule can be broken for small datasets using nested CV.
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center) are grouped, and the groups are segregated when making the data sub-
sets. This results in a better estimate of model performance on unseen data, as
illustrated by [18].

External Validity. Group-wise splitting in CV assesses how a model can
generalize in a given dataset. It cannot accurately estimate how the model will
perform with the general public since a study sample cannot fully represent the
target population. For instance, results for a mono-centric study may be subject
to batch effects (see §1.5.3). This issue of external validity needs to be addressed
before considering the output model for practical use.

In medical research, guidelines recommend testing the final model using data
collected later or from different hospitals, countries, collection devices, proto-
cols, and sociodemographic or clinical characteristics [14]. Blind assessment
of generalization skills can also be achieved through research challenges (see
§1.4.3).

As research datasets are often subject to quality control (see §1.5.3), field data
from clinical routines should also be considered for robustness testing. Class
prevalence should be considered when evaluating model performance, as it may
vary between datasets and may not match the target population. This can be
addressed with appropriate metric choice [10].

External validation is not specific to machine learning: testing a given model
or hypothesis on different cohorts is a cornerstone of medical and human sci-
ences. As this is a never-ending process, themost general guideline for increasing
external validity is to make the study easily reproducible by others (see §1.3.3).
Another fundamental way to externally validate a research work is through a
peer-review process – this is a matter of transparency.

1.3.2 Transparency

Research Methodology. Looking back at the whole research process, the risk of
false positive findings can be dramatically increased by the so-called "researcher
degrees of freedom", which are well documented in the human sciences [19].
Researchers may conduct multiple tests until a significant result is observed ("p-
hacking"), select data consistent with a particular hypothesis ("cherry picking"),
or formulate hypotheses post-hoc based on the analysis outcomes ("HARKing").
Such behaviors, which undermine the integrity of the scientific process, can be
driven by a variety of cognitive biases as well as unfortunate research incentives
[20, 21]. In medical data analysis, they can be exacerbated by the flexibility of
processing workflows [13, 22].

These challenges can be addressed by introducing proactive solutions into
scientific practice – such as pre-registration, where key aspects of the study are
registered before data are collected and analyzed [23, 20]. Online platforms
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(such as the Open Science Framework and AsPredicted)4 allow researchers to
preregister their studies, promoting transparency and reducing the risk of post-
hoc adjustments.

While originally designed for confirmatory studies (where hypotheses are
made before data collection), this approach is being increasingly used and
adapted for secondary data analysis [23]. This brings the practice within the
reach of exploratory processes such as machine learning, which often rely on
datasets not acquired for a specific purpose.

Registering a study can also be part of the publication process [24]. An
increasing number of scientific journals (over 300 in late 2023, according to
the Center for Open Science5) offer peer-review and paper acceptance based on
the study design, i.e. before the results are known. Registered reports offer
researchers a guarantee that the results will be published in the event of negative
findings in return for a rigorous and transparent research plan. However, a given
analysis cannot be fully reviewed or reproduced without transparent access to
its practical implementation, even if properly documented in a classical or reg-
istered paper.

Implementation. Computational analyses rely onmultiple, interdependent soft-
ware layers. All of them are founded on lower-level implementations (e.g. glibc)
and operated through a specific operating system on dedicated hardware, the sum
of which can be called the computing environment. Efficient sharing of software
components and computing environments is a delicate matter. This is discussed
in Section 1.4.

At the analysis level, computational notebooks (e.g. Jupyter or RMarkdown)
allow the combination of documentation in natural language (e.g., English) with
snippets of macros and source code in a single, interactive report. They can be
used to orchestrate an analysis from data curation to figure drawing, provided
this can be scripted in a few languages. The exponential growth in their adoption
(over 11 million Jupyter notebooks on GitHub in early 2023)6 has made them a
de facto new standard for scientific dissemination.

Guidelines for properly designing and sharing a notebook include code mod-
ularization and careful recording of all dependencies [25]. Comprehensive doc-
umentation of each analysis step is essential because of the increasing flexibility
of modern data processing workflows. From this perspective, the transparency
of an analysis is closely related to reproducibility.

4. https://osf.io/registries— https://aspredicted.org/
5. https://www.cos.io/initiatives/registered-reports
6. https://github.com/parente/nbestimate
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1.3.3 Reproducibility

A typical example of reproducibility problems caused by analysis flexibility was
presented in [22], where 70 research teams analyzed the same fMRI dataset
to test the same hypotheses. Since no two teams designed the same analysis
workflow, on average, 20% of the teams came to opposing conclusions on the
nine tested hypotheses. Transparent sharing of analysis methods and scripts
can help reduce such degrees of freedom (see §1.3.2), but rigorous reporting
of a research methodology is far from trivial. This can be done according to
institutional guidelines, such as a reproducibility checklist7.

Another critical (but still largely unknown) issue relates to the computing
environment. For example, [26] ran the same analyses (e.g. cortical thickness
extraction with CIVET) on two separate computing clusters and found statis-
tically significant differences between the two clusters. They could blame a
variation in versions of glibc for these differences. To mitigate such effects
and make "re-runnable" analyses, off-the-shelf solutions are available to couple
a Jupyter notebook with a computing environment, such as Jupyter Binder or
Google Colab8. These solutions rely on containerization (see §1.4), an efficient
but still imperfect approach to exact reproducibility.

In neuroimaging research, open platforms such as Neurolibre9 go the extra
mile by making all the elements of an analysis available in one place. In such
"reproducible preprints", the research paper can be accompanied by a dataset
archive, a source code repository, a notebook and a Docker container.

Beyond analysis reporting, however, it should be noted that notebooks are not
made for software development. In clinical applications, a full data processing
workflow would involve a workflow manager such as NiPype [27], Snakemake,
or Nextflow10. Scientific workflow systems automate the diverse but repetitive
steps involved in in-silico experiments, from input/output data management to
data analysis. They enhance reproducibility as shown in [28]. Workflows can
also record provenance [29], preserving essential metadata such as where, when,
and how data were produced.

The examples above show how any scientific analysis relies on the software
and data used to carry it out. The following sections provide guidelines for using
both components in a valid, transparent, and reproducible manner.

1.4 SOFTWARE TOOLS

Scientists spend 30% or more of their time developing software [30]. Medical
image analyses rely on complex software ecosystems composed of (a) soft-

7. https://miccai2021.org/files/downloads/MICCAI2021-Reproducibility-Checklist.
pdf

8. https://mybinder.org/— https://colab.google/
9. https://neurolibre.org
10.https://www.nextflow.io/— https://snakemake.github.io/
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ware implementing study design and analysis, typically implemented as custom
scripts or notebooks, (b) core image processing methods such as segmentation
and registration, such as Freesurfer [31] or FSL [32], (c) direct software depen-
dencies such as optimization toolboxes or data manipulation libraries, and (d)
contingent dependencies such as elementary mathematical functions, compilers,
interpreters, and other tools typically provided by operating systems. At all
these levels, software tools implemented in various programming languages are
commonly combined, including Python, C and C++, or Matlab. As explained
in [33], software variations at these four levels can substantially impact imaging
analyses. Therefore, transparency, validation, and reproducibility matter across
the entire software ecosystem.

1.4.1 Transparency

Software tool transparency primarily implies source code availability. Over the
past years, open-source development tools have matured and are widely adopted
in research communities.

Most notably, Git11 has emerged as a robust solution to manage source code
and share it on online platforms such asGitLab orGitHub. Best practices for code
sharing, including clear licensing, proper documentation, and code formatting
standards, are available, and all support code transparency [34].

Software version control and releases are particularly important to accurately
identify software tools. Platforms such as Zenodo12 and the Open Science
Framework13 associate permanent identifiers (Digital Object Identifiers or DOIs)
to software releases, which references them in the long term. Scientific software
tools can also be assigned Research Resource Identifiers (RRIDs14) to further
improve transparency. The work in [35] is an excellent example of transparent
software reporting.

1.4.2 Reproducibility

The exact reproducibility of entire software ecosystems is often out of reach,
given the breadth of software involved in image analyses. Therefore, some flexi-
bility in the scope implied by same code is generally admitted, given the expected
level of robustness of analyses to ancillary dependencies such as compilers or
parallelization frameworks.

In this context, software reproducibility is commonly facilitated by publish-
ing versioned software packages — for instance through the Python Package
Index (PyPI), operating system repositories, or directly on GitHub — or by re-

11.https://git-scm.com
12.http://zenodo.org
13.http://osf.io
14.https://www.rrids.org
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leasing software container images executable with the Docker15 or Apptainer16
engine. For instance, in neuroimaging, NeuroDebian [36] provides a collection
of popular software packages for the Debian and Ubuntu operating systems, and
NeuroDocker17 facilitates the creation of Docker images containing common
software tools.

Software packages and container images each have their own advantages and
address a different trade-off between reproducibility and generalizability: soft-
ware packages are generallymore lightweight and transparent, whereas container
images encompass a larger subset of the software ecosystem. Interestingly, the
Guix [37] package manager provides extensive tracking of software dependen-
cies — up to their compilation.

The current solutions still have important limitations regarding reproducibil-
ity. In particular, software tools are commonly compiled with hardware-specific
options to leverage recent CPU architecture advances, making containers and
packages less portable across execution environments.

1.4.3 Validation

Software testing. The validation of software tools is a field in itself, with
different implications across software ecosystems. Software tests are widely
used to assert software functionality, detect regressions across versions, and
ensure portability across environments. Software tests are usually executed
automatically throughout the software development process, using continuous
integration (CI) tools such asGitHub actions, CircleCI, Jenkins, or other systems.
Nibabel18, ITK 19, and fmriprep20 are excellent examples of medical imaging
software projects using software tests with different programming languages.

The validity of software tools, however, involves considerations broader than
can be captured using traditional software testing. In medical imaging, validity
varies across datasets due to differences in subject populations and acquisition
parameters. Besides, establishing evaluation references in in-vivo imaging is
not straightforward due to the absence of ground truth. As a result, specific
validation protocols have been defined, involving simulated data, human expert
references, and a variety of imaging protocols and subject populations.

Challenges. Ultimately, validation requires an objective third party to mitigate
the risk of overfitting software parameters to the validation dataset. For this
reason, challenges are commonly organized in the medical imaging and ML
communities, providing comparative evaluations of software tools tailored for

15.https://www.docker.com
16.https://apptainer.org
17.https://github.com/ReproNim/neurodocker
18.https://github.com/nipy/nibabel
19.https://github.com/InsightSoftwareConsortium/ITK
20.https://github.com/nipreps/fmriprep
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specific tasks.
Illustrating this, the works in [38] and [39] delve into two software challenges

organized by the MICCAI conference through the VIP platform. During these
challenges, participants submitted their software tools encapsulated in Docker
containers that the challenge organizers subsequently executed on an independent
validation dataset.

These challenges assume a pivotal role in the large-scale validation of AI
models, offering a dynamic and comprehensive testing ground across diverse ap-
plications. By presenting real-world scenarios and datasets that extend beyond
conventional training sets, challenges facilitate the assessment of AI models’
generalization capabilities. Within the structured frameworks of these chal-
lenges, standardized evaluation criteria create a common ground for researchers
and developers to objectively benchmark different models. This, in turn, aids in
the identification of effective approaches and driving advancements in the field,
as evidenced by works like [40], [41].

Moreover, challenges contribute substantially to the practical validation of
AI in real-world contexts, ensuring that models align with and perform well
in various scenarios. Despite their undeniable benefits, challenges come with
limitations, including variations in constraints on code availability and variations
in result presentation formats. These nuances underscore the need for meticulous
consideration in the validation process, as highlighted in [42].

1.5 DATA

Data undergomultiple changes fromacquisition to final processingwithin a given
study. The notions of transparency, reproducibility, and validation apply to each
of the multiple steps within a data’s lifetime. The following provides a non-
exhaustive overview of some of the principles, guidelines, and tools addressing
these concerns.

1.5.1 Transparency

As discussed in Section 1.2.1, transparency involves data sharing and documen-
tation. However, In the field of medical imaging, ethical and privacy constraints
may hinder the sharing and accessibility of data. Consent forms21 should address
these questions prior to data collection. When data access and sharing is not
possible, proper description and documentation should be provided to ensure
a certain degree of transparency. Metadata and documentation are essential to
transparency, both when data can and cannot be shared.

Various guidelines, such as [43, 5, 44], are available in the literature to
inform and help researchers follow best practices. The widely accepted FAIR

21.https://open-brain-consent.readthedocs.io/en/stable/
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principles22 also contribute to data transparency by guiding to make research
data:
• Findable. Metadata and data should be easy to find, e.g. by using globally

unique and persistent identifiers and indexing them in searchable resources.
• Accessible. Users need to be able to access the (meta)data, possibly including

authentication and authorization.
• Interoperable. Data should use a formal, accessible, and shared language

to facilitate the integration with other data, as well as with applications or
workflows for analysis, storage, and processing.

• Reusable. Metadata and data should be well-described to be replicated and/or
combined in different settings.
In this context, Data Management Plans (DMP) are key elements for good

datamanagement. They are formal documents outlining how data is handled dur-
ing and after a research project. Many funding agencies require a DMP as part of
their application processes. For example, the French National Research Agency
(ANR) requires all projects funded since 2019 to produce a DMP. This can
be done through the DMP OPIDoR23 online service, which provides guidance
through the drafting and implementation in practice of data or software manage-
ment plans. DMPs address important questions concerning data description and
collection or re-use of existing data, documentation and data quality, storage and
backup, legal and ethical requirements, data sharing and long-term preservation,
data management responsibilities, and resources.

Once these questions are addressed, multiple data management platforms
can help store, share, and retrieve data- ideally in compliance with the FAIR
principles. They can be dedicated to medical imaging, such as Shanoir [45],
Loris [46] and Neurobagel, allowing for the implementation of specific features
(e.g., support for ontologies or BIDS24 data), or general-purpose repositories or
warehouses, such as DataLad [47], Girder25 and Zenodo.

1.5.2 Reproducibility

Regarding data, reproducibility concerns the ability to reproduce their generation
and determine whether collecting/measuring them is not the result of chance but
corresponds to a mastered and understood process.

A test-retest experiment can be carried out to qualify the reproducibility of
a data acquisition process. Test-retest experiments consist of (i) repeating a
measurement procedure (e.g., a medical scan ) on the same subject or sample
within a short period and (ii) assessing the differences/variability between the
repeated measurements. Then, an assessment is often performed using Bland-

22.https://www.go-fair.org/fair-principles/
23.https://dmp.opidor.fr
24.https://bids.neuroimaging.io/
25.https://github.com/girder/girder
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Altman statistics or correlation. Thus, test-retest analysis can be found in all
imaging modalities. Still, there is always room for discussion and improvement
in this investigation, as it is wise to remember that promoting reliability should
not be done at the expense of validity [48].

Such "metrological" considerations apply as soon as the acquisition system
can be regarded as a measuring instrument. They can either relate to data
acquisition alone or extend to post-acquisition processing, such as quantitative
parameter estimation. These steps are essential to assess and find ways to
improve the reliability of medical imaging data [49], and tomake reliable clinical
interpretations or research development.

1.5.3 Validation

Data quality. Validating the data used in a scientific study is first and foremost
a question of "quality", i.e. determining whether the data are usable and corre-
spond to the behavior expected in the analysis process. The goal here is again to
warranty reliable and trustworthy data.

Data quality scores can be set up to check for artifacts due to motion blur or
ghosting, which could affect the accuracy of the analysis. Rejection criteria need
to be set up and clearly enunciated, knowing that objective criteria can be difficult
to design and should sometimes rely on an expert’s subjective perception [50].
Sometimes, data rejection, resulting in reduced data, can counter-intuitively
help gain statistical power. Still, the reason for the rejection must be clearly
defined and based on an objective data quality score [51]. Indeed, data selection
significantly impacts what will be considered statistically "representative of a
population" or "sufficiently general to capture diverse behavior patterns".

Multicentric datasets. A medical imaging study reaches a key validation stage
when the methods implemented are successful on widely collected data – i.e.
not just for one research site, but across multiple centers. Indeed, obtaining
scientific results from a set of data from a single center or learning a model
from data from a single type of machine can lead to misleading or biased results.
This "batch effect" needs to be addressed or questioned. The challenge of
validation on multi-centric data is to question the generalizability of a scientific
method/result/conclusion, i.e. its capacity to be applied to a larger population or
to conditions different from those initially studied (see also §1.3.1 about external
validity).

However, the use of multi-center data is not without pitfalls. Data must be
standardized to mitigate or eliminate the effects of different centers. Indeed,
some variations in the data can come from differences in data collection proce-
dures, equipment, demographics, and other factors across centers (actually, the
same aforementioned batch effect) and should not be misleading. Along with
multicentric data, the problem of their integration arises. The scientific commu-
nity is actively exploring innovative methodologies such as the Combat method
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and federated learning to address it. The Combat method, originally introduced
in the field of genomic [52], is now used in medical imaging to "combat the batch
effect" [53]. It is a harmonization technique to reconcile differences between
data collected from different sources to ensure a coherent, unified data set. With
a data-driven approach, it estimates the "site’s" effect. Its application enables re-
searchers to merge heterogeneous data while minimizing the risk of introducing
biases that could compromise the generalizability of results. On the other hand,
federated learning [54] is a cutting-edge approach in which models are trained
collaboratively at decentralized sites without exchanging raw data. While this
technique offers promising scalability and privacy preservation prospects, it also
presents some challenges. Among these is the need for effective communication
and coordination between distributed sites and the potential heterogeneity of
local datasets.

In conclusion, a delicate balance must be found between (i) increasing the
dataset size to improve the inferred model’s generalization skills and (ii) over-
coming the challenges inherent in harmonizing multi-centric datasets.

1.6 DISCUSSION

The following section concludes this chapter with a summary of the above-
mentioned concepts and tools and a practical example of how some have been
implemented in a recent project.

1.6.1 Summary

Table 1.1 sums up the main practices and tools presented in previous sections.
The list is not exhaustive but gives a glimpse of the bigger picture and the wide
range of existing tools. Given their diversity, it may be difficult for a young
researcher to master them all quickly (e.g., a PhD thesis) in addition to another
main research subject. To facilitate the use of these diverse tools, initiatives such
as Neurolibre offer high-level service solutions that combine different tools and
facilitate their adoption.

1.6.2 Practical example

TheReproVIP26 initiative aims at evaluating and improving the reproducibility of
scientific results obtained on theVirtual Imaging Platform (VIP)27. This practical
example attempts to bring together multiple solutions addressing transparency,
reproducibility, and validation at different layers. It is not meant to reflect a
perfect solution (since it is not) but rather one illustration of an existing initiative.

VIP is a free web portal for the analysis of medical imaging data. It renders
scientific software tools accessible as a service by deploying them on distributed

26.https://anr.fr/Projet-ANR-21-CE45-0024
27.https://vip.creatis.insa-lyon.fr/home.html
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TABLE 1.1 Summary table

Transparency Reproducibility Validation

Analysis

Pre-registration, access to
documentation and imple-
mentation, analysis note-
books (e.g. Jupyter, R)

Workflows (e.g.
NiPype, Snakemake,
Nextflow), open
platforms (e.g. Neu-
rolibre), reproducible
preprints

Statistical tests (e.g.
p-value), valida-
tion metrics, cross-
validation, external
validation

Software

Code versioning & sharing
(Git), licensing & documen-
tation, open platforms (e.g.
Zenodo, OSF), identifiers
(e.g. DOI, RRID)

Versioned software
packages (e.g. PyPI),
container images (e.g.
Docker, Apptainer),
Guix

Software testing, CI
tools (e.g. GitHub ac-
tions, Circle CI, Jenk-
ins), validation proto-
cols, challenges

Data

Data & metadata sharing &
documentation, FAIR prin-
ciples, DMP, standards,
data management tools

Test-retest, agree-
ment analysis (e.g.
BlandâĂŞAltman
statistics)

Data quality, multi-
centric data, statistical
methods (e.g. Com-
bat)

computing resources based on their Boutiques28 descriptors. VIP offers both a
web Graphical User Interface (GUI) and a REST API29 allowing for interoper-
ability and analysis automation.

Software tools. At the scientific software level, VIP handles their deployment
and execution but is not involved in their development. VIP fosters transparency
with the help of Boutiques30, which, among others, allows to easily publish
descriptors on open repositories, such as Zenodo, to make them findable and
accessible (e.g. the BraTSpipeline descriptor31). Boutiques also leverages the
use of containers associated with well-identified software versions.

Regarding reproducibility, since VIP uses distributed heterogeneous comput-
ing resources, it is particularly important to consider the execution environment.
Almost all applications available in VIP are based on containers. The ReproVIP
project also investigates using the Guix package manager to deploy applications
on heterogeneous resources.

Since tools are developed externally, their validation is generally out of reach
for VIP. Recently, however, a CI platform has been able to run tests on VIP auto-
matically and regularly to verify that an application produces the expected results
for known inputs. ReproVIP also introduces a web dashboard with visualization
components to display and interpret different VIP results. For instance, it can be
used to compare two images generated by two application versions over the same
input, offering side-by-side visualization and appropriate metrics to estimate the
differences in results.

28.https://github.com/boutiques/boutiques
29.https://github.com/CARMIN-org/CARMIN-API
30.https://figshare.com/articles/poster/fair-pipelines-poster_pdf/8143241
31.https://zenodo.org/records/7779113
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Analyses. At the analysis level, transparency is fostered by providing Notebook
templates32 allowing the integration of the whole exploration process, including
calls to the VIP API through the VIP client. If based on such Notebooks, anal-
yses are rendered reproducible by their simple re-execution either locally or on
platforms such as Binder. It should be noted that the execution of the software
tools is handled by VIP through boutiques, thus ensuring a certain level of repro-
ducibility. Since its latest version, VIP has allowed sharing a given experiment
with the community. Subject to validation by VIP admins, this functionality
allows us to push results and execution traces on Zenodo, as well as relaunch the
experiment by another user (provided that he/she can access input data).

Data. VIP is a computing platform lacking many data-dedicated functionalities
that data management platforms can provide. VIP handles data only temporarily
for processing purposes and interconnects with data management platforms such
as Shanoir and Girder for longer-term data management. At the CREATIS
laboratory33, multiple Girder warehouses are used. One of them is the PILoT
warehouse34 interconnected with the PILoT imaging facility35 and VIP. Data
acquired on PILoT can be automatically pushed to the warehouse with associated
metadata (extracted from DICOM headers or additional information sources
created at acquisition time). Both Girder and VIP provide RESTful APIs,
facilitating their interconnection. Data stored on Girder can be thus processed
on VIP and results stored back on Girder with processing metadata (see example
available on the client github repository36). The whole process is illustrated on
Figure 1.5.

As a reminder, results produced on VIP, along with processing metadata
can also be exported to Zenodo for long-term storage and DOI retrieval for
publication. Although not as detailed and powerful as a provenance system, it
provides a customizable, easy-to-implement solution to enhance transparency
and reproducibility. Flexible and customizable solutions can prove very useful
for small independent projects, but standardization becomes essential when
sharing at a larger scale.

1.6.3 Conclusion

This chapter discussed the essential concepts that should be found in all sci-
entific work. They include the need for rigor and documentation, as well as

32.https://github.com/virtual-imaging-platform/VIP-python-client/tree/
develop/examples

33.https://www.creatis.insa-lyon.fr/site/en
34.https://pilot-warehouse.creatis.insa-lyon.fr
35.https://www.creatis.insa-lyon.fr/site/fr/node/47253
36.https://github.com/virtual-imaging-platform/VIP-python-client/blob/
develop/examples/bruker\_preprocessing/preprocess.ipynb
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FIGURE 1.5 Illustration of an initiative of bridging data acquisition, storage, and processing
solutions to enhance transparency and reproducibility.

the constant questioning of the reliability and trustworthiness of any generated
results. Guidelines, consensus papers, recommendations, and requirements for
reproducibility need to be drawn up at a time of massive data manipulation and
staggering enterprise, as proposed by advances in artificial intelligence. How-
ever, giving fixed ways of doing things, definitions, and procedures should be
handled carefully. Researchers should keep questioning and revisiting them,
leaving space for thinking outside the box as sensitivity to new situations, vari-
ability, and the unknown. These key elements are part of the commitment to
research.
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