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Mean-field models are a class of models used in computational neuro-
science to study the behavior of large populations of neurons. These mod-
els are based on the idea of representing the activity of a large number of
neurons as the average behavior of mean-field variables. This abstraction
allows the study of large-scale neural dynamics in a computationally effi-
cient and mathematically tractable manner. One of these methods, based
on a semianalytical approach, has previously been applied to different
types of single-neuron models, but never to models based on a quadratic
form. In this work, we adapted this method to quadratic integrate-and-
fire neuron models with adaptation and conductance-based synaptic in-
teractions. We validated the mean-field model by comparing it to the
spiking network model. This mean-field model should be useful to
model large-scale activity based on quadratic neurons interacting with
conductance-based synapses.

1 Introduction

Modeling brain activity over different scales is a relevant challenge. Mul-
tiple models and approaches have been proposed over the years, going
from subcellular to whole-brain scales, to serve various purposes and ap-
plications. In order to model the mesoscopic scale in particular, one option
is to build phenomenological neural-mass models describing observations
made at this scale. Another alternative is a bottom-up approach where the
dynamics of the mesoscopic scale are derived by developing a mean-field
model of the microscopic scale (i.e., of spiking neural network models).
The mean-field approximation is a powerful tool for modeling the behav-
ior of large populations of neurons, enabling multiple applications (Depan-
nemaecker et al., 2023). Over the past decade, many mean-field approaches
based on different spiking models have been proposed (El Boustani & Des-
texhe, 2009; di Volo et al., 2019; Zerlaut et al., 2018; Carlu et al., 2020;
Chen & Campbell, 2022; Montbrió et al., 2015; Cakan & Obermayer, 2020;
Bandyopadhyay et al., 2021). One of these methods, based on a semiana-
lytical approach (El Boustani & Destexhe, 2009; Zerlaut et al., 2018), was
successfully applied to many different single-neuron models (di Volo et al.,
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Mean-Field Model of Adaptive Quadratic LIF Neurons 1435

2019; Carlu et al., 2020), but never to a quadratic neuron model. In this work,
we aimed to adapt and apply this method to a quadratic neuron model pro-
posed by Izhikevich (2003).

Mean-field or neural-mass models are appropriate to model clinically
recorded signals such as fMRI, EEG, or MEG (Tesler et al., 2022; Tesler, Linne
et al., 2023) because they provide a simplified representation of the complex
electrical and synaptic activity of large populations of neurons, helping to
bridge scales (Depannemaecker et al., 2021). These models are based on the
idea that the activity of a large group of neurons can be described by the
average electrical activity of the group without having to consider the indi-
vidual activity of each neuron.

One of the most widely used models in computational neuroscience
is the quadratic integrate-and-fire neuron model (QIF). In this model, the
membrane potential of a single neuron is described by a quadratic dif-
ferential equation, and spikes are generated when the membrane poten-
tial reaches a given threshold. In an extension of this model, the adaptive-
quadratic-integrate-and-fire neuron model (aQIF), a second slower variable
describes the adaptive behavior and enables the system to capture a large
repertoire of electrophysiological patterns (Izhikevich, 2003).

In this work, we build a model of cortical columns based on a balanced
spiking network of aQIF neurons, composed of a population of excitatory
regular-spiking (RS) neurons and a population of inhibitory fast-spiking
(FS) neurons interacting through conductance-based synapses. This sparse
network exhibits asynchronous irregular dynamics (Brunel, 2000) as ob-
served in awake brain states. We build the corresponding mean field based
on a previously developed master equation formalism (El Boustani & Des-
texhe, 2009; di Volo et al., 2019; Zerlaut et al., 2018), and we compare its
dynamics to the spiking neural network. We show that the mean-field can
correctly capture the dynamics of the network for both constant and time-
varying inputs. In addition, we show that our semianalytical model remains
valid for a wide range of cell parameters, which guarantees the robustness
and generality of this formalism.

2 Methods

2.1 Spiking Network Model. To build the spiking network model, we
consider a system made by two neuronal populations: regular spiking ex-
citatory cells (RS) and fast spiking inhibitory cells (FS). Each cell in the
network is described by the quadratic point neuronal model proposed by
Izhikevich (2003; equations 2.1 and 2.2):

dv

dt
= 0.04v2 + 5v + 140 − u + Isyn, (2.1)

du
dt

= a(bv − u), (2.2)
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1436 C. Alexandersen et al.

where the first equation represents the membrane potential (being Isyn the
incoming synaptic currents) and the second equation represents a slow
adaptation variable. These equations can be rewritten in a more general
form:

τIz
dv

dt
= gIz(v − EIz)2 − u + Isyn, (2.3)

τu
du
dt

= bv − u, (2.4)

When an action potential is emitted (i.e., the membrane potential crosses
a threshold), the system is reset as in the equation 2.5 (and maintained at
this state during a refractory period tre f ):

if v ≥ vD then

{
v ← c

u ← u + d
(2.5)

With this formulation, gIz could be thought of as a conductance, EIz as a
leak reversal potential, and VD and c as the value of the membrane potential.
Following the original model (Izhikevich, 2003), we keep these parameters
dimensionless.

Neuronal interactions are mediated through synaptic inputs Isyn,

Isyn = gE (EE − V ) + gI(EI − V ), (2.6)

where gE,I can be understood as the conductance of the excitatory and in-
hibitory synapses, respectively, and EE,I as the corresponding reversal po-
tential. We model the conductances gE,I as a decaying exponential function
that takes kicks of amount QE,I at each presynaptic spike,

gE,I = QE,I

∑
Npre

�(t − tsp)e− t−tsp
τe , (2.7)

where the sum goes through all presynaptic spikes, � is the Heaviside func-
tion, τe = τi = 5 is the decay timescale of excitatory and inhibitory synapses,
and QE = 1.5 (QI = 5) is the excitatory (inhibitory) quantal increment (the
change in conductance generated by a single spike). All the parameters used
for simulations are indicated in Table 1. For the refractory period we used
tre f = 5 × 10−3. We assume that τu � τIz, making the adaptation a slow vari-
able with respect to the membrane potential.

2.2 Mean-Field Model. To build the mean-field model of our system,
we follow the formalism proposed by El Boustani and Destexhe (2009;
di Volo et al., 2019). This formalism provides a second-order mean field
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Mean-Field Model of Adaptive Quadratic LIF Neurons 1437

Table 1: Parameters of the Mean-Field Model and the Network Model of a QIF
Neurons.

Excitatory Neurons/Regular-Spiking Neurons

Parameter Description Value

Ne Number of excitatory neurons 8000
p Probability of connection 0.05
Ke Average number of excitatory synapses per neuron Ne × p
gIz,e Leakage conductance of excitatory neurons 0.01
EIz,e Reversal leakage potential of RS neurons −65
τIz,e Time constant of membrane dynamics for RS neurons 1
T Time constant of mean-field dynamics 5.10−3

bRS Constant for voltage-related adaptation current for RS neurons 0
cRS After-spike reset voltage parameter for RS neurons −65
dRS Spike-triggered adaptation parameter for RS neurons 1.5
τu,e Time constant of adaptation variable for RS neurons 10
Ee Reversal potential for excitatory synapses 0
Qe Quantal increment in excitatory conductance 1.5
τe Decay time constant of the excitatory synaptic conductance 5.10−3

Inhibitory Neurons/Fast-Spiking Neurons

Parameter Description Value

Ni Number of inhibitory neurons 2000
p Probability of connection 0.05
Ki Average number of inhibitory synapses per neuron Ni × p
gIz,i Leakage conductance of FS neurons 0.04
EIz,i Reversal leakage potential of the inhibitory neurons −60
τIz,i Time constant of membrane dynamics for inhibitory neurons 1
T Time constant of mean-field dynamics 5.10−3

bFS Constant for voltage related adaptation current for inhibitory
neurons

0

cFS After-spike reset voltage parameter for inhibitory neurons −55
dFS Spike-triggered adaptation parameter for inhibitory neurons 0
Ei Reversal potential for inhibitory synapses −80
Qi Quantal increment in conductance 5.0
τsyn,i Decay time constant of the inhibitory synaptic conductance 5.10−3

allowing us to derive a set of differential equations that describe the evo-
lution of the mean firing rate νμ of each population, the covariance cλη be-
tween populations λ/η, and the average adaptation of the excitatory popu-
lation U (we assume that only excitatory RS population is affected by adap-
tation; see the parameters in Table 1), with μ, λ, η = e, i (for excitatory and
inhibitory, respectively):

T
dνμ

dt
= (Fμ − νμ) + 1

2
cλη

∂2Fμ

∂νλ∂νη

, (2.8)
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1438 C. Alexandersen et al.

T
dcλη

dt
= δλη

Fλ(1/T − Fη )
Nλ

+ (Fλ − νλ)(Fη − νη )

+ ∂Fλ

∂νμ

cημ + ∂Fη

∂νμ

cλμ − 2cλη, (2.9)

∂U
∂t

= dνe + (bμV (νe, νi,U ) − U )/τu, (2.10)

where the Einstein index notation (summation over repeated indices) is
used and μV is the mean membrane potential, which we describe in fur-
ther detail below. The parameter T, the time constant of the firing rate equa-
tions and covariance equations, is related to a main assumption used in this
mean-field derivation: the network dynamics is considered to be Markovian
within a time resolution T (El Boustani & Destexhe, 2009). In this work, we
set T equal to the maximum neuronal firing rate T = ν−1

max = tre f , a common
criterion used in previous work (El Boustani & Destexhe, 2009; Zerlaut et al.,
2018).

The functions Fe and Fi correspond, respectively, to the transfer function
of the excitatory and inhibitory neurons (i.e., each neural subtype’s output
firing rate when receiving excitatory and inhibitory inputs with rates νe and
νi). They are a function of the firing rates and of the adaptation: Fe,i(νe +
νext, νi,U ), where νext is the firing rate of an external drive, corresponding
to the Poissonian external input in the spiking network model. Following
Zerlaut et al. (2018), we can use the following general template function to
write the transfer function for each neuronal type:

Fν = 1
2τV

er f c

(
Veff

thre − μV√
2σV

)
, (2.11)

where er f c is the Gauss error function; Ve f f
thre is an effective neuronal thresh-

old; and μV , σV , and τV are the mean, standard deviation, and correlation
decay time of the neuronal membrane potential.

To estimate the effective threshold, we write Ve f f
thre using a second-order

polynomial expansion:

Veff
thre(μV , σV , τV ) = P0 +

∑
x∈{μV ,σV ,τN

V }
Px ×

(
x − x0

δx0

)

+
∑

x,y∈{μV ,σV ,τV }2

Pxy ×
(

x − x0

δx0

) (
y − y0

δy0

)
, (2.12)

The coefficient of the expansion (Pxy) will be determined via a fit of equa-
tion 2.11 over the numerically obtained transfer function from simulation
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Mean-Field Model of Adaptive Quadratic LIF Neurons 1439

of spiking cells for each neuronal type. The parameters x0 and δx0 (nor-
malization constants) are defined according to the characteristic values of
the associated variables for the range of inputs and parameters used. For
these last constants, we use μ0

V = −45, δμ0
V = 2, σ 0

V = 4, δσ 0
V = 5, τ 0

V = 0.005,
δτ 0

V = 0.005.
Considering asynchronous irregular regimes (Brunel, 2000), we make the

assumption that the input spike trains follow Poissonian statistics (di Volo
et al., 2019; El Boustani & Destexhe, 2009; Zerlaut et al., 2018) to calculate
the averages (μGe,Gi) and standard deviations (σGe,Gi) of the conductances,
described in equation 2.13:

μGe(νe, νi) = νe Ke τe Qe,

σGe(νe, νi) =
√

νe Ke τe

2
Qe,

μGi(νe, νi) = νi Ki τi Qi,

σGi(νe, νi) =
√

νi Ki τi

2
Qi. (2.13)

In these equations, Ke and Ki are the average input connectivity received
from the excitatory or inhibitory population respectively. As in the spiking
network, τe = τi = τsyn are synaptic time constants and Qe and Qi are the
quantal increments of the conductances, respectively, for the excitatory or
inhibitory population.

We can calculate the mean subthreshold membrane potential value by
taking the stationary solution of equation 2.3. The quadratic form of equa-
tion 2.3 in v gives rise to two solutions, of which only one is stable and used
for the analysis, and the other is discarded. We thus obtain equation 2.14,
which differs from the form obtained for other point neuron models (Zer-
laut et al., 2018; di Volo et al., 2019; Carlu et al., 2020). Then, applying the
approach described in previous work (Zerlaut et al., 2018), we determine σv

and τv as follows:

μV (νe, νi) =

⎛
⎝(2gizEiz + μGe + μGi )

−
√

(2gizEiz +μGe +μGi )2 −4giz(gizE2
iz +μGe Ee +μGi Ei −U )

⎞
⎠

2giz
.

(2.14)

Following Zerlaut et al. (2018), we can obtain σV and τV by computing
the power spectrum density of the membrane fluctuations. Within the as-
sumption that in the asynchronous irregular state the spiking activity fol-
lows a Poissonian process, the power spectrum density of the fluctuations
resulting from the sum of events PSPs(t) (single postsynaptic potential) at
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1440 C. Alexandersen et al.

frequency Ksνs can be obtained from shot noise theory (Daley & Vere-Jones,
2008),

PV ( f ) =
∑

s∈{e,i}
Ksνs‖PŜPs( f )‖2, (2.15)

where PSPs is the solution of equation 2.1 around the voltage μV for a single
input spike of type s and PŜPs( f ) is its Fourier transform. Then we can write
(Zerlaut et al., 2018):

σ 2
v =

∫
R

PV ( f ), (2.16)

τv = 1
2

∫
R PV ( f )
PV (0)

. (2.17)

Calculating PV from equation 2.15 and replacing in equations 2.16 and
2.17, we get

σV (νe, νi) =
√√√√Keνe

(
2AeBeτ 3

se

τ 2
Ize

+ τ 3
se

B2
e

8τIze

+ B2
e τ

3
se

8τ 2
Ize

)
+Kiνi

(
2AiBiτ

3
si

τ 2
Izi

+ τ 3
si

B2
i

8τIzi

+ B2
i τ

3
si

8τ 2
Izi

)

(2.18)

τV =
0.5

(
Keνe

(
B2

e τ
4
se

2πτ 2
Ize

)
+ Kiνi

(
B2

i τ
4
si

2πτ 2
Izi

))

Keνe

(
2AeBeτ 3

se
τ 2

Ize
+ τ 3

se B2
e

8τIze
+ B2

e τ
3
se

8τ 2
Ize

)
+Kiνi

(
2AiBiτ

3
si

τ 2
Izi

+ τ 3
si

B2
i

8τIzi
+ B2

i τ
3
si

8τ 2
Izi

) (2.19)

where

Ae = giz(μve − Eiz)2,

Ai = giz(μvi − Eiz)2,

Be = Qe(Ee − μve),

Bi = Qi(Ei − μvi). (2.20)

We point out that even if the model is dimensionless, we used units in the
section 3 for the quantities that can be directly compared to experimental
measurements, as Izhikevich (2003) did.

3 Results

In this section, we implement and validate the mean-field model for the
adaptive quadratic integrate-and-fire model (Izhikevich, 2003) described in
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Mean-Field Model of Adaptive Quadratic LIF Neurons 1441

Figure 1: Validation of the fitted semianalytical transfer function of the mean-
field model. (a) Firing rates of a single aQIF cell with varying excitatory and
inhibitory input. (b) Comparison of the firing rates of the fitted transfer func-
tion (dashed line) to the corresponding rates obtained from a single excitatory
aQIF cell (dots) for varying external input. The transfer function is calculated
using equation 2.11, where the corresponding stationary value of the adapta-
tion U is used for each pair of excitatory and inhibitory inputs. (c) Comparison
of the predicted mean-membrane voltage obtained from equation 2.14 (dashed
lines) with the corresponding mean potential of a single excitatory aQIF neu-
ron (dots) for varying external input. (d) Mean excitatory (black) and inhibitory
(gray) conductances for the excitatory population in aQIF network simulations
(dots) compared to the corresponding prediction from the mean field according
to equation 2.13 (dashed lines) for varying external input.

the previous sections. The first step to implement the mean-field formalism
is estimating the semianalytical transfer function (TF) described in equa-
tions 2.12 and 2.11. The parameters of the TF are estimated by fitting the
template transfer function with the output firing rate obtained numerically
from a single Izhikevich neuron for varying inputs rates νe and νi. The out-
put of the single neuron is shown in Figure 1a. In Figure 1b, we show the
comparison of the semianalytical TF obtained from the fit with the corre-
sponding output rate of the single neuron. We see that the TF accurately
captures the output rate obtained from the numerical simulations.
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1442 C. Alexandersen et al.

Two other relevant quantities predicted from the mean-field formalism
are the membrane potential and the synaptic conductances. We display in
Figures 1c and 1d the values obtained numerically for these quantities, to-
gether with the mean-field prediction as a function of the excitatory input
rate, showing a good match between the numerical value and the one ex-
pected from the mean-field.

3.1 Spontaneous Activity and Second-Order MF Evaluation. Once the
transfer function has been obtained and validated, we continue with the
analysis of the mean field response and its comparison with the correspond-
ing network simulations. We begin by analyzing the response of the mean
field to constant external excitatory drives. We show in Figure 2a the re-
sults of the firing rates of the mean field together with the results obtained
from the network as a function of the external excitatory drive. In addition,
we show in Figures 2b and 2c the distribution of firing rates obtained from
the network, together with the distribution predicted by the second-order
mean field (equations 2.8 and 2.9).

As described in section 2, one of the key features of the Izhikevich model
is the inclusion of the slow adaptation variable. Thus, capturing the effect
of the adaptation on the system is of great relevance for the validation of
the mean field. To this purpose, we show in Figure 2d the response of the
mean field to a constant input as a function of the adaptation parameter d,
and in Figures 2e and 2f the firing rate distribution together with mean-
field prediction for different values of d. As we can see, the mean-field
correctly estimates the impact of the adaptation on the firing rate of the
network.

3.2 Time-Varying Inputs. In the previous section, we tested our formal-
ism for a constant external input. We now turn to study the response of the
mean field for a time-varying input. In particular, we test the mean-field re-
sponse to stimuli of different amplitudes and speeds. We show in Figure 3
the results of our simulations together with the response of the network for
a gaussian-shaped stimulus of various widths and amplitude. As we see in
the figure, the mean field model can correctly capture the response of the
network to the different inputs.

3.3 Model Robustness and Parameter Exploration. In principle, the es-
timation of the semianalytical transfer function (see equations 2.11 and 2.12)
should remain valid under variation of the neuronal parameters, as these
are explicitly taken into consideration within the formulation. This provides
a large flexibility to our formalism and makes it analyzing different regimes
emerging from the network suitable. To test the validity of the mean-field
model under different parameters, we performed a parameter exploration
and compared the results of the network with the predictions of the mean
field. The results of this analysis are shown in Figure 4. We show the firing
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Mean-Field Model of Adaptive Quadratic LIF Neurons 1443

Figure 2: Validation of the second-order mean-field model through compari-
son of the mean-field prediction and the corresponding result from the spiking-
network. (a) Mean firing rates of the excitatory (green) and inhibitory (red)
populations, with fixed adaptation d = 15 for different values of the constant
external input νext. Dots show the results obtained from simulation of the full
network (receiving an external Poissonian input with the frequency νext), with
error bars of 1 standard deviation. The dashed lines show the average activ-
ity predicted from the mean field reduction, the shaded area spanning over ±
1 predicted standard deviation. (b), (c) Probability distributions of the average
excitatory (green) and inhibitory (red) population firing rates for two different
constant inputs (indicated in panel a). The histograms show the results from full
network simulation, obtained by binning a large time realization of the activity.
The shaded line is the gaussian distribution with mean and standard deviation
predicted by the corresponding mean-field reduction. (d) Mean firing rates of
the excitatory and inhibitory populations, with fixed external input νext = 10 Hz
and for different values of the adaptation parameter d. Colors and style are the
same as in panel a. (e)–(f) Probability distributions of the average excitatory and
inhibitory population firing rates for two different adaptation values (indicated
in panel d). Colors and style are the same as in panels b and c.

rates obtained from the network and the mean field predictions for both
excitatory and inhibitory neurons, together with the adaptation variable ue.
In particular, we explored the parameters EIz and gIz that regulate the ex-
citability of the system. As shown in the figure, the mean field can capture
the behavior of the network for a wide range of parameters (one order of
magnitude in gIz), although a discrepancy appears for low values of EIz and
high gIz.
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1444 C. Alexandersen et al.

Figure 3: Mean-field response to time-varying inputs. We show the response
of the mean field (darker colors) for different time-varying inputs and the cor-
responding network simulation (lighter colors). The applied input is shown in
dashed blue. We see that the mean-field can correctly capture the variation in the
mean-firing rates driven by fast and slow inputs of different amplitude. (a) The
input shown represents a fast and strong signal. (b) A fast but weaker signal.
(c) A slow and strong signal. (d) A slow but weak signal.

4 Discussion

In this letter, we have derived a mean-field model of populations of neu-
rons described by the quadratic integrate-and-fire model, interacting with
conductance-based synapses. We discuss the limitations and usefulness of
this model relate it to previous work.

Amajor advantage of the mean-field approximation is that it allows large
populations of neurons to be studied in a computationally efficient manner,
while still capturing the important features of the dynamics. By capturing
the average behavior of the population, it provides a computationally effi-
cient and mathematically tractable way to study the dynamics of large-scale
neural systems. It is worth noting that our analysis is limited to simple fir-
ing patterns, where neurons fire consistently in an asynchronous-irregular
pattern in response to an external stimulus, in which case the validity of our
formalism is guaranteed. A more in-depth study of the capacity of this for-
malism to capture other dynamical behavior of the spiking network, such
as bursting, would be interesting for the future, and some initial analysis
in this direction has been recently presented (Overwiening et al., 2023).
As the model of a single neuron presents properties similar to those pre-
viously used (di Volo et al., 2019; Goldman et al., 2020, 2023; Stenroos et al.,
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Figure 4: Robustness of the mean-field model. We analyzed the validity of the
mean field for an extensive parameter exploration. In the figure, we show the
stationary values of the firing rates (panels a–c for excitatory and d–f for in-
hibitory). The adaptation variable (panels g–i) resulted from the computation
of the mean-field model (panels a, d, and g) and the spiking network (b, e, h)
as a function of the parameters EIz and gIz, which regulate the excitability of the
system. Panels (c, f, and i) show the difference between the mean-field calcu-
lations and the spiking network results. The original values used to build the
transfer function are indicated with a pink square. We see that the mean field
remains valid for a wide range of parameters, showing the robustness of the
formalism.

2023), we can expect that oscillatory dynamics such as slow waves must
exist. In this work, we focused on the basic dynamics for which this mean-
field approach was designed (El Boustani & Destexhe, 2009; asynchronous-
irregular regimes), and we have shown that this mean field can capture
this type of dynamics for different input types. Other approaches using the
same type of neuron model have been developed (Chen & Campbell, 2022).
These have the advantage of not being limited in temporal resolution by
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the timescale of T. However, they do not account for network size effects or
probability of connection (an all-to-all connection is assumed, which is far
from biologically plausible).

It must be noted that a previous mean-field approach was proposed for
the quadratic integrate-and-fire model (Montbrió et al., 2015), which was
more recently extended to adaptive quadratic integrate-and-fire neurons
(Chen & Campbell, 2022). To consider adaptation, the mean-field had to
use a particular mathematical technique (called the Lorentzian ansatz) to
enable the inclusion of adaptation in the mean field. In our approach, we
directly integrate adaptation in the formalism and in the transfer function
(di Volo et al., 2019), which is simpler. Another key difference is that these
previous models work at the thermodynamic limit (when the number of
neurons tends to infinity), while our approach is finite size and includes
the network size in its parameters (El Boustani & Destexhe, 2009). Hence,
our approach can also be seen as complementary to these previous works.

Finally, it is clear that the mean-field approximation is an important tool
for studying large populations of neurons. By capturing the average be-
havior of the population, this approach provides a computationally efficient
and mathematically tractable way to study the dynamics of large-scale neu-
ral systems up to entire brain regions (Tesler, Kozlov et al., 2023; Lorenzi
et al., 2023) and the whole brain scale (Goldman et al., 2020, 2023). Future
studies could characterize, as done for previous derivation (Kusch et al.,
2023) and extend this approach to explore other possible dynamics, such
as bursting, while also considering the limitations and advantages of other
modeling approaches that use the same type of neuron model.

5 Conclusion

Modeling brain activity across different scales is a complex task, and there
are various methods available to achieve this. Neural mass models and
mean-field approaches have emerged as powerful tools to describe the dy-
namics of large populations of neurons and have been successfully applied
to model clinically recorded signals such as fMRI, EEG, and MEG. In this
work, we have adapted a mean-field method to the adaptive quadratic
integrate-and-fire neuron model, a widely used model in computational
neuroscience. We have built a model of cortical columns based on a
balanced spiking network and compared its dynamics to the mean-field
approximation. Our results demonstrate that the mean-field approach cap-
tures the asynchronous-irregular dynamics of the spiking neural network
for different input types, making it a computationally efficient and mathe-
matically tractable way to study the behavior of large-scale neural systems.
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