
HAL Id: hal-04649192
https://hal.science/hal-04649192

Submitted on 16 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Separation of functional and time interference concerns
for efficient AMC 20-193 compliance

Damien Chabrol, Jean Guyomarc’H, Fabien Siron, Guillaume Phavorin, Sam
Thompson, Eric Jenn, François Thurieau

To cite this version:
Damien Chabrol, Jean Guyomarc’H, Fabien Siron, Guillaume Phavorin, Sam Thompson, et al.. Sep-
aration of functional and time interference concerns for efficient AMC 20-193 compliance. ERTS2024,
Jun 2024, Toulouse, France. �hal-04649192�

https://hal.science/hal-04649192
https://hal.archives-ouvertes.fr

Separation of functional and time interference

concerns for efficient AMC 20-193 compliance
Damien CHABROL1, Jean GUYOMARC’H1, Fabien SIRON1, Guillaume PHAVORIN1,3,

Sam THOMPSON2, Eric JENN3, François THURIEAU4

1
Asterios Technologies, Massy, France

{firstname.lastname}@asterios-technologies.com

2
Rapita Systems Ltd, York, UK

sthompson@rapitasystems.com

3
IRT Saint Exupéry, Toulouse, France

{firstname.lastname}@irt-saintexupery.com

4
Safran Electronics & Defense, Massy, France

francois.thurieau@safrangroup.com

Abstract—Safety-critical real-time systems must comply

with stringent certification requirements, including temporal

ones. Failure to comply with these temporal requirements may

contribute to system failure. Therefore, timing considerations,

such as response times, are of the foremost importance for such

systems. As the use of multi-/many-core hardware platforms is

becoming inevitable in the avionics industry due to the

increasing computing performance required by modern

embedded systems, integration activities are getting more and

more complex. Increasing concurrency and parallelism

exacerbates integration issues and introduces new challenging

problems. To answer those challenges, certification authorities

have issued guidelines, referenced as A(M)C 20-193, describing

some additional objectives to fulfill for multi-/many-core

integration. The present paper describes how a time-aware

approach, based on the Synchronous Logical Execution Time

paradigm (sLET), makes the design and integration of A(M)C

20-193 compliant safety-critical multi-/many-core systems

easier by separating functional and time interference concerns.

Keywords—safety-critical real-time systems, strong

determinism, synchronous Logical Execution Time, multicore

timing analysis, AMC 20-193.

I. INTRODUCTION

Avionics systems, and more particularly safety-critical
ones, are usually subjected to stringent certification
constraints to ensure their compliance with safety
requirements. Indeed, failure of such systems may result in
catastrophic consequences. In particular, for high-criticality
real-time systems, functions should be ensured to complete
within strict timing constraints. In addition, the avionics
industry increasingly relies on modular systems, where
multiple applications of possibly different criticality levels can
safely share a common hardware platform. Integration
activities must ensure that all hosted applications still meet
their functional and temporal requirements after their
composition in the final system.

Driven by the increasing computing performance required
by modern embedded systems and the obsolescence of high-
performance single-core processors (SCPs), the avionics
industry is moving towards the use of multi-/many-core
processor (MCP) hardware platforms. But the increasing
parallelism and potential throughput brought by MCPs comes
at a cost: integration activities are getting more and more
complex, and thus time-consuming and costly [1].

The use of MCPs exacerbates integration issues already
present for SCPs. Moreover, it introduces new challenging
problems [2]. In particular, when multiple cores are used and
different threads of execution simultaneously access the same
hardware resource (e.g., a shared memory, a bus, etc.), the
hardware must arbitrate these concurrent accesses, effectively
introducing additional latency on some of the accesses. This
time interference may lead to the violation of the system’s
temporal requirements. It can also result in new or different
data or control coupling paths, and thus functional interference
causing the system to behave in a non-deterministic way, or
possible data corruption [3]. For example, with MCPs,
functional modules can be allocated to different CPU cores,
which may create inter-core execution dependencies due to
inter-task synchronization (e.g., for communication or to
prevent race conditions). Thus, one task could prevent another
task, allocated to a different core, from running, and thus
forestall any other computation. This may have a significant
impact on efficiency and testability for MCP systems.

As per DO-178C/ED-12C, safety-critical systems are
usually associated with the highest Design Assurance Levels
(i.e., DAL-A or DAL-B). Certification of MCP systems to the
highest criticality levels presents the greatest challenge for the
avionics industry. As functional and time interference may
degrade the system safety, applicants must elaborate an
argumentative strategy defending that their systems are indeed
robust to such interference. Certification authorities have been
working on guidelines to address this specific topic, with the
AMC 20-193 document recently issued by EASA [3], and its
AC counterpart from the FAA [4]. Few safety-critical MCP
systems have been certified until now, and very often at the
cost of underusing the additional CPU cores. Thus, new
methodologies and tools are needed to support the
development and integration process of MCP systems and
meet the objectives defined in the A(M)C 20-193.

In this paper, (i) we propose a time-aware strategy based
on the Synchronous Logical Execution Time (sLET)
paradigm, which encompasses time from system-level design
to integration on the final hardware (Section III), (ii) then we
show how sLET helps to tackle the MCP functional and
temporal interference problem (Section IV), and (iii)
eventually, we discuss the application of such time-aware
strategy to avionics safety-critical systems (Section V) and
illustrate it on an industrial case study, using the combination
of ASTERIOS and Rapita’s on-target analysis tools and
MACH178 multicore certification solution (Section VI).

These works have been supported by the French Defense Procurement

Agency (DGA) and the French National Research Agency (ANR) in the

context of respectively the ASTERLINK and ARCHEOCS projects.

II. POSITIONING

A. Time-aware approaches

Many programming abstractions have been developed to
model and reason about real-time systems. For safety-critical
systems, they are often coupled with a time-triggered
execution model due to its determinism and predictability [5].

The Synchronous-Reactive (SR) model, implemented by
synchronous languages [6], totally abstracts execution time to
focus on logical instants on which computations are triggered.
Each computation should be completed before the next
possible instant, and its output must be available before any
other computations could use it on the same instant. Thus, SR
languages offer both determinism and concurrency. For an
implementation on an actual target, logical instants are then
mapped to physical time. Multiple logical clocks can exist in
SR programs to design multi-rate systems. But due to the
causality between computations, induced by instantaneous
communications, compilation of SR languages can be quite
complex, in particular for multicore platforms (on which
computations can be parallelized) [7]. The PRELUDE
architecture design language offers a solution to implement
multi-periodic synchronous systems, by adding real-time
primitives to specify the durations of tasks [8]. Then, the
program can be automatically translated into a set of real-time
tasks, with periods of tasks computed using clock calculus [9].
Finally, those tasks can be scheduled on-line using policies
such as Deadline-Monotonic or Earliest-Deadline-First [10].

The Logical Execution Time (LET) paradigm,
implemented for example in the GIOTTO [11] and TDL [12]
languages, describes the logical duration taken by
computation. Each computation must fit in a logical interval,
called LET interval [13]. Furthermore, communications are
only made on the boundaries of LET intervals, to ensure
determinism. Thus, compared to the SR model, the LET
paradigm allows more time variability due to the specified
logical duration, which makes concurrent implementations
easier. But this comes at the price of a lesser temporal and
functional expressiveness, as (i) LET applications in GIOTTO
and TDL are limited to strictly periodic tasks and (ii) contrary
to SR, LET builds on a delayed communication model.

B. Multicore timing analysis

Multicore timing analysis usually aims to determine safe
WCET estimates for software hosted on multicore processors.
Different methods can be used: 1) measurement-based
analysis, 2) static analysis (deterministic or probabilistic), or
3) hybrid approaches combining both previous points [14]. In
every case, the primary challenge that must be overcome is
that of multicore interference channels.

1) Interference channels

An interference channel is defined in A(M)C 20-193 as

being ‘a platform property that may cause interference

between software applications or tasks’. Interference

channels can be discovered in many parts of a processor, and

are often (but not always) associated with shared hardware

resources. Interference channels may be one of the following:

• A bandwidth constraint: e.g., a shared interconnect

will typically have a finite bandwidth available which

must be shared between any bus masters.

• A space constraint: e.g., shared caches have finite

capacity, and tasks that are executing concurrently on

different cores may cause evictions of data and

instructions that belong to each other, leading to an

increase in cache misses and thus execution time.

• An indirect coupling: e.g., a coherency mechanism,

whose purpose is to ensure that all levels of cache

maintain a consistent view of the state of the memory.
A resource may contain (i) no interference channels, (ii)

just one or two, or (iii) a large number (e.g., some complex
interconnects, shared caches, and network accelerators can
contain more than 10 independent interference channels).

There exist formulations of multicore interference that
instead of treating ‘interference channels’, are built around the
concept of ‘interference paths’. The pre-eminent example of
the latter is the PHYLOG Model Language (PML) [15], which
considers all the possible ‘initiators’ of transactions, all the
possible ‘targets’ for transactions, and all the possible routings
between initiators and targets. The assertion follows that if all
intersections of these paths are exercised, then all multicore
interference will have been assessed. While this approach can
provide assurance that all bandwidth constraints are likely to
have been tested, additional analysis and test specification
may be necessary to ensure that the indirect interference
channels have also been adequately covered.

2) Static Analysis and Measurement-based Methods
In older single-core avionic systems, static analysis and

simulation can prove useful for timing analysis. However, for
complex multicore systems, this is no longer the case.
Modern, high-performance processors (particularly multicore
ones) have many complex features, such as multilevel caches
and DMA engines, which frequently (and, in the case of
features like random replacement caches, intentionally)
sacrifice temporal determinism in favor of average-case
performance. These mechanisms can be very hard to model
with sufficient accuracy. Moreover, most modern processors
incorporate IP cores from a wide range of sources. So, the
silicon vendor may either not be in a position to share (or even
build) a complete model of the processor. Furthermore, due to
this complexity, errors or inconsistencies in implementation
and integration of these IP cores are common, resulting in real-
world behavior that doesn’t perfectly match the
documentation.

Owing to these complexities, A(M)C 20-193 takes a
cautious approach to static analysis, and states that ‘simulation
of those [interference] mechanisms is, therefore, less likely to
be representative in terms of functionality or execution time
than testing conducted on the target MCP in the intended final
configuration, and thus is less likely to detect errors.’ If an
airworthiness authority deems that an analysis method is ‘less
likely to detect errors’, then it should generally be avoided.

3) Accounting for pre-emptions
In processors with caches, it is well-documented that pre-

emption can be delayed by cache state [16]. In a multicore
context, it’s also possible for pre-emption to be delayed by
operations from other cores, as typically cache coherency
transactions will have a higher priority than local accesses.

From a multicore timing perspective, the determination of
the maximal pre-emption latency isn’t significantly different
to the single-core case. However, there may be additional
scenarios that need testing (e.g., including cases where other
cores are generating many coherency transactions with the
intent of maximizing the additional impact).

III. SYNCHRONOUS LOGICAL EXECUTION TIME

Hereafter, we introduce the synchronous Logical

Execution Time (sLET) paradigm. This is a generalization of

the Psy model introduced during the 90’s [17].

A. sLET paradigm

The sLET paradigm combines the benefits (but also some
shortcomings) of both the Synchronous-Reactive (SR) and
Logical Execution Time (LET) models [18]. It bridges the gap
between both approaches by incorporating LET intervals into
SR. Thus, it combines SR’s properties with more time
variability, which makes concurrent implementations (in
particular multicore scheduling) easier.

As for the SR model, logical and physical times are
considered independent under the sLET paradigm and serve
different purposes. Logical time is used to specify the system
high-level temporal requirements through an abstraction of
time, whereas physical time corresponds to the execution time
of the system implementation on a specific hardware platform.
As for the SR model, time in sLET is purely logical in the
sense that physical time is fully replaced by partial or total
ordering between computations. In sLET, logical time is
expressed through logical clocks. A logical clock, in the sense
described by Lamport [19], abstracts time through a series of
events called clock ticks. sLET can be seen as a multiform
logical time [20] generalization of LET, hence using multiple
logical clocks. A set of clocks C can be constrained by a set of
precedence and simultaneity relations (e.g., periodicity).

B. Tasks and Elementary Actions

In sLET, all computations are specified by their activation
and termination events, expressed using logical clocks.
Computation time intervals can be abstracted by the concept
of the Elementary Action (EA): an EA is a computation that
fits in a sLET interval, bounded by the EA’s activation and
termination dates. Thus, as depicted in Figure 1, it is defined
as a sequence of instructions constrained by two logical dates,
referred to as Temporal Synchronization Points (TSPs):

• An activation date (its earliest start date) defined on
some event of a logical clock.

• A termination date (its deadline) defined on some
other event of a possibly different logical clock (with
both clocks related together with a total order).

So, unlike the LET paradigm, sLET does not rely on
logical durations: instead, as for SR, it uses logical clock
instants (of possibly different non-harmonic clocks) to specify
interval boundaries. For example, the EA depicted in Figure 1
has its activation date defined on the second tick of Logical
Clock c1 and its termination date defined on the fifth tick of
Logical Clock c2. Thus, the sLET interval is defined in terms
of clock events and not as a logical duration.

An sLET task is defined by an infinite sequence of EAs.
The termination date of an sLET interval corresponds to the
activation date of the next interval for the task. Note that it is
possible in sLET to have empty logical intervals (i.e., in which
no EA from the task can be executed). It allows, for example,
to define periodic tasks with constrained deadlines (i.e., with
a relative deadline strictly smaller than the period). Moreover,
as logical intervals are defined at the EA level (for a same
sLET task), this makes it possible to design more complex
temporal patterns than strictly periodic tasks.

C. Visibility principle

As part of a larger system, a task usually consumes and
produces data from and to other tasks during its execution. To
ensure determinism, sLET inter-task communication is
performed through dedicated channels implementing the
Visibility Principle [21]. Note that by determinism we mean
‘the ability to produce a predictable outcome […] based on
the preceding operations and data […] in a specific period of
time with repeatability’ [3]. Under the Visibility Principle:

• Data produced by an EA over an sLET
communication channel will only become visible
(i.e., available) to the rest of the system from the end
of the EA’s interval, i.e., for a logical date greater or
equal to the EA’s termination date.

• Data can be consumed by an EA from an sLET
communication channel only if it has become visible
prior to the start of the EA’s interval, i.e., for a logical
date lesser or equal to the EA’s activation date.

The logical date from which the data becomes available to
some other EA is referred to as the Visibility Date. Usually,
this corresponds to the termination date of the EA producing
the data, but some sLET communication channels may have
their own temporal behavior defined on a different logical
clock: in that case, the Visibility Date corresponds to the tick
of that logical clock which is greater or equal to the EA’s
termination date. Note that the producer and consumer’s
clocks, as well as the one used to define the Visibility Date,
must be related with a total order. For example, a data
produced by the EA depicted in Figure 1 can only become
visible after its termination date (defined on the fifth tick of
c2). If we assume that the Visibility Date corresponds exactly
to the EA’s termination date, this means that another EA can
consume this data only if its own activation date is defined on
either the same logical tick (fifth tick of c2) or a tick occurring
afterwards (e.g., sixth tick of c2, eighth tick of c1, etc.).

So, as for LET, sLET builds on a delayed communication
model, which can somehow limit functional expressiveness,
in particular compared to SR. Note that, some kind of
instantaneous communication can actually be achieved in
sLET (as briefly introduced in Section IV), but at the cost of
more complex concurrent implementations.

D. Implementation for safety-critical systems

To implement an sLET design on a specific hardware
platform, logical time is mapped to physical time. sLET tasks
must then be properly scheduled to ensure design timing
constraints (i.e., sLET interval bounds). For a single-core
platform, the logical ordering of EAs is sufficient to guarantee
the correctness of the execution, whereas for MCPs, inter-core
synchronization is required to preserve the logical ordering
across CPU cores. Moreover, for the resulting tasks’

Figure 1: Example of sLET interval (the activation date,

respectively termination date, is defined on Clock c1, resp. c2).

scheduling to be valid, all EAs must have enough CPU time
to complete before the end of their respective intervals. In the
remainder of this document, we focus more specifically on
static scheduling, based on Time-Division Multiplexing, as it
provides strong guarantees on predictability [22] and is
generally favored for safety-critical avionics systems. In this
case, for deploying an sLET design on a specific hardware
target, the user must provide a Time Budget (TB) for each EA,
corresponding to the maximum amount of physical time
allocated to the computation of that EA. Based on the relations
between logical clocks and the provided TBs, a compiler may
generate a time-triggered schedule. In that respect, a given
scheduling (and so the corresponding sLET implementation)
is valid if no EA actually exceeds its allocated TB at run time.

For safety-critical systems, a TB should be an upper-
bound on the worst-case execution time (WCET) of the
corresponding EA, to ensure that the resulting schedule will
always be valid at run time. Thus, safe TB values are
synonymous with safe WCET estimates. How such safe TBs
could be obtained is discussed in Section V.

IV. TAMING FUNCTIONAL AND TIME INTERFERENCES

Hereafter, we assume that every computation (i.e., EA) is

provided with enough physical time (i.e., safe TB) to

complete within its logical time constraints.

A. Functional and time interference

As defined in [23], interference corresponds to an
alteration of the processor’s behavior (e.g., longer delay
required for a load operation, etc.) experienced by some part
of the software executed on one CPU core, and related to the
activity of the remaining software running on the other cores.

As per A(M)C 20-193, time interference can be produced,
for example, when the MCP arbitrates simultaneous accesses
to shared hardware resources, causing contention for those
resources and therefore an increase in execution time [3].
Execution of concurrent software on a different CPU core, and
in particular the time interference that may be induced, can
result in new or different data or control coupling paths
leading to functional interference: a communication buffer
may be sometimes read before being written (depending on
the producer’s and consumer’s actual execution times), shared
data could be corrupted if accessed in parallel, etc.

B. Preventing functional interference

The sLET Visibility Principle applies the LET
communication model [13] to logical clocks. Provided tasks
exchange data exclusively through sLET communication
channels (H1), their execution is solely driven by their
associated logical clocks. It means that communications
between tasks become independent from the underlying real-
time scheduling (resulting from the implementation of the
system on a specific platform). Any schedule complying with
the logical constraints defined by the sLET design results in
the same functional behavior, as long as physical timing
constraints are fulfilled (H2). Thus, if this later hypothesis
holds, sLET allows for transparent distribution as functional
determinism is ensured whatever the allocation of tasks to
CPU cores. This allows dataflow determinism to be achieved.
For example, a longer execution of a third-party EA (not
involved in the same functional chain) may delay the
execution of a producer EA. This could result in the
corresponding consumer EA (allocated to another core) being

executed beforehand. But, thanks to the Visibility Principle,
this has no impact on the dataflow determinism: the consumed
data does not depend on the actual execution instants but
solely on the sLET intervals bounds. Therefore, functional
interference can be prevented by design using the sLET
model, as long as tasks exclusively communicate through
sLET-based communication mechanisms.

It is the responsibility of the user to ensure that their
application complies with both H1 and H2. If H1 is a design
constraint, H2 is closely related to the design’s
implementation on a specific hardware target.

C. Preventing time interference

Time interference between tasks can arise within a single
CPU core, e.g., due to cache effects. MCP time interference
adds to this ‘traditional’ time interference, making WCET
estimation harder. Here, we focus on MCP time interference,
as some extensive work has already been conducted regarding
mitigation methods for single-core time interference [14].

Multicore-related time interference can originate from
deep and intricate hardware implementation details [24].
Preventing contention (or at least, bounding or minimizing
contention) for MCPs reduces potential time interference. A
wide spectrum of methods and techniques are available to
address this objective, many of which can be used in
combination. This paper focuses specifically on temporal
exclusion, which can be enabled thanks to the sLET model.

With imperative and non-temporal programming models,
concurrent accesses to shared resources (hardware peripheral,
software buffer, etc.) are usually guarded, e.g., using mutexes
or semaphores. Using sLET, temporal exclusion can be
enforced by design, and automatically verified, to prevent
such concurrent accesses. Thus, sLET can be used to
guarantee that simultaneous accesses to a shared resource
never happen, while preventing some issues encountered with
mutexes, such as deadlocks. This temporal exclusion is
provided through exclusion groups [25]. An exclusion group
provides a safety property: the EAs it contains must not share
any physical date in common. More formally, for a set of
sLET tasks 𝑇, with 𝐸𝑡 = {𝑒𝑖|𝑖 ∈ ℕ} the infinite sequence of
EAs that constitute Task 𝑡 (𝑒𝑖 being the ith EA of 𝑡), an

exclusion group 𝐺 is defined as 𝐺 ⊂ 𝐸 = ⋃ 𝐸𝑡: ∀𝑒𝑖 , 𝑒𝑗 ∈
𝑇
𝑡

𝐺, 𝑒𝑖 ∩ 𝑒𝑖 = ∅. As a result, a common resource accessed only
by EAs from a single exclusion group can only be accessed by
at most one EA from that group at a time.

As previously stated, an sLET task consists in an infinite
succession of EAs, each bounded by an activation date and a
termination date defined on clock events. So, given that all
logical clocks can be reduced to a unique global clock, it is
possible to define sLET intervals for EAs of a same exclusion
group such that they never overlap in time. For example, let
us consider the two EAs depicted in Figure 2. Originally
(assumably to cope with some high-level timing
requirements), EA1’s sLET interval is delimited by the first
and fourth ticks of c1 and EA2’s interval by the first and third
ticks of c2. This means that both intervals overlap in time. If
EA1 and EA2 need to be part of a same exclusion group, a
solution is to modify the sLET design, as depicted in the left
sub-figure: EA1’s termination date is now defined on the
second tick of c1 and EA2’s activation date on the second tick
of c2. Thus, sLET intervals no longer intersects and temporal
exclusion is achieved.

Thus, by constructing exclusion groups, time interferences
caused by contention on shared resources may be strongly
constrained. However, defining such timing exclusion groups
comes at a cost: the user needs to re-design some part(s) of its
temporal architecture. This may be arduous work, depending
on the temporal patterns of the different tasks. Moreover, this
means introducing additional timing constraints (i.e., new or
different TSPs) to manage multicore interference (related to a
specific integration). This may result in different sLET
intervals, which means that overall latencies (derived from
high-level requirements) may also change. One solution,
described in Section VI, is to deal with timing exclusion only
at implementation level: instead of re-designing sLET
intervals, scheduling is used to enforce the specified exclusion
groups (e.g., by introducing precedence constraints between
EAs to avoid concurrent execution). Another solution, using
an additional sLET construct, is introduced hereafter.

D. Fractional Temporal Synchronization Points

The sLET paradigm extends ‘classic’ logical clocks with
the concept of fractional logical clocks. As any logical clock,
a fractional clock abstracts time through a series of clocks
ticks, referred to, in this case, as fractional logical ticks. The
difference is that a fractional clock is defined with regard to a
‘standard’ logical clock, such that there is exactly one
fractional tick occurring between any two consecutive ticks of
the ‘parent’ logical clock. Note that, as depicted in the right
part of Figure 2, this fractional tick can occur anywhere in-
between. This means in particular that two fractional clocks
defined with regard to the same ‘parent’ clock cannot be
compared as their fractional ticks may occur in any order
between two consecutive ticks from the ‘parent’ clock.

sLET intervals for Elementary Actions can only be defined
using ‘standard’ logical clocks, which means that any EA’s
activation and termination dates necessarily correspond to
logical clock ticks. But an EA execution in its sLET interval
can be over-constrained using fractional logical clocks:

• The activation of an EA can be further ‘delayed’ until

after some fractional logical tick, referred to as a

fractional Temporal Synchronization Point.

• The termination of an EA can be constrained before

some other fractional TSP.
For example, as depicted in the right part of Figure 2, EA1

can be constrained to be executed before the second fractional
tick of cf1 (derived from Logical Clock c1) and EA2 after it.

As can be seen in that example, when using fractional
TSPs there is no modification of the original sLET interval:
the EA’s activation and termination dates are left unchanged.
As the Visibility Principle is defined with regard to sLET
interval boundaries, Visibility Dates for data flows are left
unchanged and thus the corresponding latencies. Thus,
fractional logical clocks can be used to implement exclusion
groups without impeding the original temporal architecture:
one EA’s execution can be constrained before a fractional
TSP while the execution of another EA of the same exclusion
group is delayed after the same fractional TSP, thus ensuring
that they don’t overlap over time. For example, as depicted in
the right part of Figure 2, EA1 and EA2 can no longer be
executed concurrently thus enforcing the exclusion group
without modifying the original sLET intervals.

Note that, fractional clocks can be used to achieve
instantaneous communication in sLET. It is possible to define

sLET communication channels with regard to fractional
clocks, instead of ‘standard’ clocks. In that case, the Visibility
Date corresponds to a fractional TSP. On the example from
Figure 2, this means that a data produced by EA1 could
become visible from the fractional TSP onward, and thus be
consumed by EA2.

The additional constraints introduced through fractional
TSPs should be ensured by the implementation. Either the
corresponding fractional tick is mapped to an actual physical
date, as it is the case for ‘standard’ logical dates, or fractional
TSPs are used to derive precedence constraints between EAs’
executions that should be ensured by the tasks’ scheduling.

V. TOWARDS A TIME BUDGETS EVALUATION ENCOMPASSING

TIME INTERFERENCE

As stated in Section III, an sLET implementation relies on
compliance with respect to physical timing requirements. In
particular, unaccounted time interference defeats this
hypothesis. We discuss here how this issue can be addressed.

A. Basis of the approach

As stated before, we focus on static scheduling. A given
schedule is valid if no Elementary Action exceeds its allocated
Time Budget at run time. To evaluate safe TBs for all EAs, we
propose a measurement-based A(M)C 20-193 compliant
approach encompassing time interference. Note that other
methodologies, as discussed in Section II, are possible.

1) Time Budgets in isolation
 The goal of the approach presented hereafter is to compute
Time Budgets in isolation (from a scheduling point of view,
i.e., non-preemptive WCETs [26]). This means that additional
delays due to pre-emptions (e.g., additional cache misses
resulting from cache evictions caused by the pre-empting
tasks) should be accounted for separately when considering
the final integration (i.e., with all the application’s tasks). As
the approach targets multicore integration, this TB in isolation
should encompass the maximum possible overhead due to
MCP interference. Indeed, dealing at the scheduling level with
the interaction between tasks executing in parallel on different
CPU cores is much harder than accounting for pre-emptions,
and might not always be feasible. In the general case, it’s not
possible to reason about the test vectors necessary to drive one
task to suffer the maximum possible impact from interference
caused by another task. Moreover, synchronization is very
important for interference impact. Even a single clock cycle
of jitter between cores can make a large difference to the
interference inflicted on one core by another.

 Considering TBs in isolation allows tasks to be handled
separately for the timing evaluation, making measurement

Figure 2: Example of exclusion group between two EAs

enforced by: (left) sLET re-design, and (right) using a

fractional TSP defined on fractional Logical Clock cf1 derived

from c1 (‘classic’ clock ticks and TSPs are in plain lines

whereas fractional ones are denoted by dashed lines).

campaigns and analyses easier. It also allows for composable
approaches and re-usability, and thus possible incremental
certification [27], as a single TB could be considered for
different multicore integrations of the same task.

2) Incremental approach
 The TB evaluation approach presented hereafter is
incremental and consists of four main steps:

1. First, an evaluation is performed in single-core to

compute a TB upper-bound in isolation, referred to

as a single-core Time Budget.

2. Then, analyses are conducted to identify possible

multicore interference channels and quantify their

impact on the different tasks.

3. From those results, multicore interference can be

accounted for, either by implementing some

mitigation means, or by computing an upper-bound

on the maximal overhead to be added to the single-

core TB, to derive a multicore Time Budget.

4. Finally, multicore TBs for all tasks are verified.

The first three steps are conducted on tasks in isolation.

Only the final step is performed on the final configuration.

B. Single-core Time Budget evaluation

First, a TB evaluation is performed in single-core for each
task in isolation. As the approach targets TBs in isolation, it
means that each task is considered separately, without needing
other parts of the application to be present. This is possible as
the execution of sLET tasks is solely driven by logical time.
So, each task can be executed independently from the others.
Of course, inter-task communications, if any, might need to be
stubbed. Thanks to the sLET visibility principle, this is easier
to achieve as data availability is well-defined.

Measurements are performed using maximizing tests, i.e.,
exercising the worst-case execution paths for each task at run
time, which have to be defined by the applicant on a case-by-
case basis. Coverage analyses can be helpful to achieve
confidence when building these tests. Moreover, additional
metrics might also be collected at this step (e.g., number of
memory reads/writes, cache hits/misses, etc.), to (i) construct
a profile for the task, which could help understand some
software variabilities, and (ii) identify the resources actually
used by the task. The high-water mark (HWM), i.e., the
highest measured execution time, for each EA can be retrieved
from the measurements. Then, a safety margin might be added
to get a single-core Time Budget for each EA of the task.

C. Hardware characterization

Hardware characterization deals with the identification

and characterization of possible interference channels. To do

so, several steps are needed:

1. Hardware resource identification: (i) the resources of

the processor need to be identified, and (ii) those that

may contain interference channels are singled out.

2. Interference channel identification: any singled-out

resource is analyzed in detail, to identify the possible

interference channels it contains [23].

3. Interference channel characterization: any non-fully

mitigated interference channel is characterized on

target to determine its possible effect.
 Note that both the hardware resource and interference
channel identifications are paper activities and are performed
using any available technical documentation and datasheets.

1) Hardware resource identification
 Hardware resource identification is required by A(M)C
20-193’s MCP_Planning_2 objective. It is important to note
at this stage that not all multicore interference channels arise
from the explicit sharing of resources. For example, cache
coherency mechanisms can cause interference even when only
private cache memories are being accessed.

2) Interference channel identification and

characterization
 Interference channel identification and characterization
are partly to satisfy A(M)C 20-193’s MCP_Resouce_Usage_3
objective. Characterization can also be used to provide
evidence that some interference channels can have no
practical or measurable timing impact. This activity should be
conducted on target. Interference generators can be used for
this purpose [28]. For each channel, it is required to:

1. Determine what properties such a benchmark must
possess to be sensitive to that interference channel.

2. Execute and perform measurements on the ‘sensitive’
benchmark on one core, while other cores are idle, to
establish a baseline when there is no interference.

3. Identify the properties a benchmark must possess to
be aggressive on the interference channel.

4. Execute and perform measurements on the ‘sensitive’
benchmark on one core, while the ‘aggressive’
benchmarks are run on the other cores.

5. Compare the timing properties of the ‘sensitive’
benchmark with and without interference.

3) Mitigation mechanism identification

In parallel with the hardware resource identification,

mitigation mechanisms for these interference channels

should be identified. Different mitigation levels are possible:

• Hardware configuration. For example, it may be

possible to mitigate an interference channel related to

cache evictions by configuring cache partitioning on

hardware platforms that support it. Alternatively,

hardware devices and features may be disabled to

remove some interference channels.

• Integration-level configuration. For example, a

specific data/code placement in memory could be

configured to enforce spatial partitioning for some

resources. Time partitioning at scheduling level can

also be used to achieve exclusion between some

tasks’ executions and thus avoid concurrent access to

some resource.

• Software architecture. For example, timing exclusion

can be ensured by creating exclusion groups, either

through sLET intervals re-design or by adding

additional timing constraints using fractional clocks.

D. Multicore Time Budget evaluation

Once characterized, the identified interference channels
need to be accounted for to derive multicore TBs in isolation.
This can be done by mitigating the interference, or upper-
bounding its maximal impact to add it to the single-core TB.

1) Multicore interference impact evaluation
Results from the interference channel characterization can

be used to assess whether the impact is sufficiently small for
the interference channel to be neglected. For interference

channels that cannot be neglected, their actual impact on the
different tasks needs to be assessed. Indeed, interference may
not have an impact for all interference channels, depending on
the actual use of hardware resources by the different tasks.

As for the hardware characterization step, the interference
impact evaluation should be conducted on target:

1. First, each sLET task is executed in isolation on one

core, with some instrumentation for timing and

resource usage, while other cores remain idle.

2. Then, the list of interference channels against which

the task should be characterized is refined, removing

the ones related to resources the code won’t exercise.

3. Finally, the task is executed again on one core, while

exercising the remaining interference channels

(using the same combinations of ‘aggressive’

benchmarks as for the hardware characterization).
Comparing for each EA the distributions of execution

times measured with and without the ‘aggressive’ benchmarks
provides the applicant with qualitative and quantitative
information which allows the identification of: (i) interference
channels of concern, i.e., ones that can actually cause time
interference due to their use by the application, and (ii) EAs
making significant use of each identified interference channel.

Results from the hardware characterization and the
interference impact evaluation can be used to discriminate
among identified channels, between: (i) those for which the
impact is acceptable (in terms of safety but also performance
[23] for safety-critical systems), and (ii) those for which
mitigation is required. Indeed, full mitigation for all
interference channels is impossible in practice, except for very
simple applications [29]. Nevertheless, through A(M)C 20-
193, the goal is not to reach total freedom from interference,
but rather to demonstrate upper bounds on the possible impact
of time interference, and that safety is not impacted. A
quantitative criterion (e.g., statistical) or an empirical
observation may be used, as proposed in [30]. Note that the
exact meaning of ‘significant’ is to be defined by the applicant
regarding their needs, as it is an integral part of the
argumentation process and highly dependent on the use-case.

2) Multicore time interference mitigation
Mitigation strategies, such as spatial isolation or temporal

exclusion using exclusion groups, should be enforced for
those interference channels with the most ‘significant’ impact
on processing time, or for high-criticality tasks (e.g., DO-
178C/ED-12C DAL-A). For example, for all EAs impacted
by the same interference channels, an exclusion group could
be constructed by adding additional fractional TSPs so that
those EAs can no longer be executed simultaneously. Note
that dealing with EAs allows a finer granularity than working
at the task level: indeed, a task may not access a given shared
resource in all its EAs, and thus some of them could be
executed in parallel with other tasks’ EAs.

Once implemented, mitigation strategies should be
validated. For spatial isolation, a new interference impact
evaluation could be conducted; as for temporal exclusion, this
may be only tested on the final integrated system.

3) Multicore Time Budget
Finally, the impact of the non-mitigated interference can

be bounded for each EA, thanks to the interference impact
evaluation step. This upper-bound can then be added to the
single-core TB to account for MCP interference. As for the

single-core case, a safety margin might be added to get the
final multicore Time Budget for each EA.

E. Multicore Time Budget validation

Eventually, measurement campaigns on the final
configuration should be conducted to validate that the
computed multicore Time Budgets are actually upper-bounds
(all measurements for an EA in the integrated system should
be less than the multicore TB derived from the previous step).

For this step, all the application’s tasks must be considered
at the same time. In case of pre-emptions, (i) the maximum
number of times each task can be pre-empted should be
evaluated, and (ii) an upper-bound on the overhead the task
might experience due to a pre-emption should be computed.

VI. APPLICATION TO A CASE STUDY

To illustrate the approach, we consider an industrial use
case from Safran Electronics & Defense. This application
work has been conducted as part of the ARCHEOCS project.
For our case study, we focus on a single interference channel.

A. Presentation of the use-case

 The use-case consists of a simplified Landing Gear
System (LGS), in charge of the aircraft main undercarriage.
As depicted in Figure 3, it has 5 functional chains:

• One duplicated acquisition and command chain per

side of the undercarriage, to get the wheel speed and

apply the braking order on the hydraulic valves.

• The main chain to compute the braking command.
The different functions are all executed periodically, but at

different rates: from 1Hz (for the braking order calculation
function) up to 10Hz (for the acquisition part).

The LGS is deployed over an NXP T1042 multicore
hardware platform consisting of four e5500 PowerPC cores
running at 1.4GHz, with private L1 caches, split between
instructions and data, and a unified L2 cache per core. An
interconnect (CoreNet) is used to access a shared 4GB DDR4
memory, as well as several peripherals and accelerators.

B. Tools to support a full time-aware strategy

To support an application of the TB evaluation approach
on the LGS, we use ASTERIOS as our integration solution
and Rapita’s tools to help with the TB evaluation process.

1) ASTERIOS solution
The ASTERIOS solution is developed and

commercialized by ASTERIOS Technologies (formerly
Krono-Safe), based on a technology from the CEA (French

Figure 3: Functional architecture of the LGS application.

Atomic and Alternative Energies Research Organization). It
offers a time-aware methodology, supported by a set of
industrials tools, to develop safety-critical embedded systems.

ASTERIOS is centered around an implementation of the
sLET model as the PsyC language. It comes with a dedicated
toolchain to (i) help with the design and configuration of a
PsyC (i.e., sLET) application and (ii) support the compilation
for a given hardware target. EA timing constraints (i.e., sLET
intervals), extracted from the PsyC design, once mapped to
physical time, and Time Budgets, provided by the user for a
specific hardware target, can be used as inputs for
automatically computing a feasible static schedule (if any)
thanks to the ASTERIOS toolchain. To support and enforce
sLET execution at run time, ASTERIOS provides a certified
target-specific real-time microkernel which implements time
and space partitioning. In particular, it ensures that the
schedule generated by the toolchain is not violated at run time
(i.e., that no EA exceeds its TB): a run time mechanism is able
to detect any violation to prevent the offending task (or the
whole application) from continuing its execution, as neither
timing nor functional determinism can thereafter be ensured.
Finally, ASTERIOS offers a qualified tool to verify that the
toolchain’s outputs are compliant with the user’s input (and in
particular the specified sLET design) [31].

2) Rapita’s solution
Rapita Systems provides a tool suite, called Rapita

Verification Suite (RVS), to support verification of critical
aerospace and automotive systems. From a multicore timing
perspective, it allows users to: (i) analyze and verify
scheduling behavior on-target using RapiTask, (ii) analyze
and verify software timing behavior on-target down to the
basic block level using RapiTime, (iii) automate test harness
generation using RapiTest, and (iv) perform testing that
exercises specific multicore interference channels using
RapiDaemons. Where applicable, these tools are available
with DO-330/ED-215 qualification kits.

RVS can be used as a key part of Rapita’s MACH178
solution for certifying multicore aerospace projects in
accordance with DO-178C/ED-12C and A(M)C 20-193.
MACH178 comprises several components, including software
tools with associated qualification kits; procedures, templates,
and checklists for generation of multicore certification
evidence; an IP library covering interference channels in
popular avionic multicore processors; and specialist
engineering and consultancy services. The MACH178

procedures both directly address A(M)C 20-193 objectives
related to multicore timing, but also intend to provide the
required supporting evidence. For example, if debug
performance counters are used to provide evidence that: (i) a
tool is performing correctly; or (ii) some software is not
accessing a particular hardware resource, then these counters
also need validation. Therefore, an event monitor validation
procedure is incorporated.

3) Tools integration
The LGS software is integrated on the T1042 platform

using ASTERIOS. Each function is mapped to a PsyC task.
Two additional tasks are added for logging. All inter-task
communications are performed through sLET communication
channels. At this point, the logical and functional behavior of
the PsyC application, in particular the data/control coupling,
can be verified offline (i.e., without a compilation and
execution on the T1042) thanks to the dedicated ASTERIOS
simulator. Specifically, it allows verification that worst-case

dataflow latencies resulting from the application’s timing
architecture (according to the visibility principle) are
compatible with the high-level end-to-end requirements.

For the LGS application integration on the T1042, a static
allocation of the tasks to the CPU cores is used. The main
chain tasks, as well as the two logging tasks (one per core), are
allocated to Cores 0 and 1. The duplicated chains are allocated
to Cores 2 and 3 (2 chains per core). All tasks have access to
the shared DDR4 memory. Moreover, all caches are enabled
and a write through policy is set for the data cache.

As each task is strictly periodic, we consider one single
Time Budget for all EAs of a same task. For TB evaluation,
Rapita’s tools have to be used with ASTERIOS. A connection
has been prototyped as part of the ARCHEOCS project: (i) an
interfacing layer allows RVS to derive ASTERIOS-relevant
timing results, which means in particular computing timing
estimates for each EA, and (ii) RapiDaemons can be run
against an ASTERIOS application on dedicated CPU core(s)
without altering scheduling on other core(s).

C. Single-core Time Budget evaluation

As presented in Section V, TB evaluation is conducted on
each task in isolation. To stub the communications from and
to that task, an additional task is added to act as a ‘mock’
producer and receiver. It is allocated to the same CPU core as
the task under analysis, to avoid creating multicore
interference, and its timing behavior is designed to match
exactly the one of the task under analysis (i.e., same period, as
all LGS tasks are strictly periodic), to avoid any pre-emption.

Moreover, to conduct measurements, a valid schedule is
required for the task in isolation. So, an initial TB has to be
provided. This presents a cyclic dependency, as the goal of
this initial schedule is to perform measurements that will allow
an actual TB to be derived. To overcome this issue, and as
each task is run in isolation, oversized TBs can be used for the
sole purpose of generating a valid schedule. Another solution
is to use the concept of ambivalent logical clock, which is
implemented in ASTERIOS. An ambivalent clock can map
logical time to physical time but can also switch to purely
logical execution (i.e., regardless of physical time). Since
ambivalent clocks are logical clocks, the execution of the
scheduled tasks remains correct: logical ordering is preserved,
only their physical timing constraints are altered. Thus,
ambivalent clocks are definitely not suitable for production
systems, but can be used to logically execute a whole system
on a hardware target by relaxing the TBs constraints at run
time: if a TB is exceeded, then the ambivalent clock allows for
the corresponding EA to complete its execution by
temporarily delaying any activation of other EAs.

The task’s code is instrumented to capture timing and
resource usage information on each activation and termination
of an EA of the task. The maximal observed Time Budget
estimates (i.e., HWMs) for a few tasks are summarized in
Table I. There is quite a large variability in execution times
among the different tasks, from a few µs to more than 1ms.

D. Hardware characterization

1) Hardware resource identification
The output of the hardware resource identification step

should be a complete list of the hardware components in the
platform. This can then be used to check that all relevant
hardware resources have been adequately analyzed and

characterized. Additionally, this activity can provide an early
indication of whether there is adequate documentation
available for the platform to support further analysis.

For our case study, we focus on a single resource, the
T1042’s shared DDR memory. As it is used by all tasks for
instructions and data (including stacks), this is likely to be a
major interference source for the application. In a typical DDR
controller, there are several interference channels. We focus
only on the one concerned with competition for rowbuffers. A
DDR memory device stores data in ‘rows’, which in the
T1042 are 8KiB long. When data is requested from a
particular row, the DDR controller performs a destructive read
on the entire row and buffers it in a rowbuffer. While the row
is in the buffer, many reads and writes may be performed on
that row. When the row has been finished with, the buffer is
needed for another transaction, or a timeout has been reached,
it is written back into the DDR device. On many multicore
platforms, this interference can cause a significant increase in
execution time.

2) Interference channel characterization
To evaluate the maximal possible impact of rowbuffer

interference, we use a specifically tailored RapiDaemon,
targeting the DDR controller rowbuffers, as our interference
benchmark. The T1042’s DDR controller contains 64
rowbuffers: up to 64 rows may be buffered at a time, but
accesses to unbuffered rows require that a currently-buffered
row is written back to the DDR memory device before the new
row can be accessed. So, the RapiDaemon used in this case
study is designed to cause a row eviction with every
instruction executed; this should be able to demonstrate the
worst-case effect of contention for rowbuffer availability.

For the interference channel characterization, we create a

specific task, referred to as the unit under test (UUT), to act

as a benchmark for the analysis. It executes the RapiDaemon

code on Core 0 at a 10Hz frequency. RapiDaemons on other

cores (to create interference), are executed continuously in

bare metal. For the measurements, we consider 4 scenarios:

1. No RapiDaemon is run in parallel with the UUT.

2. 1 RapiDaemon is run in parallel on Core 1.

3. 2 RapiDaemons are run on Cores 1 and 2.

4. 3 RapiDaemons are run on Cores 1, 2 and 3.
Timing measurements are retrieved for each execution of

the UUT under each scenario. From those measurements, TB
estimates accounting for rowbuffer interference are computed
for each execution of the UUT, using the RVS tools with the
dedicated ASTERIOS interfacing layer. As depicted in
Figure 4, the impact of interference can be quite high: up to a
43% increase for the HWM when suffering from interference
due to RapiDaemons running on all three remaining cores.

3) Mitigation mechanisms identification
Different mechanisms provided by ASTERIOS can be

used for mitigation. At design level, we can use fractional

TSPs to construct exclusion groups between some EAs. At
integration level, we can rely on the ASTERIOS toolchain’s
frames exclusion mechanism, which allows the automatic
computation (if possible) of a static schedule enforcing a
temporal exclusion between some EAs specified by the user.
Note that spatial partitioning is not considered as it would be
more cumbersome to implement for a shared-memory
architecture like the T1042. For other architectures using
memory hierarchies (with some shared memory and other
local to the CPU cores), this could be a sustainable solution.

E. Multicore Time Budget evaluation

1) Multicore interference impact evaluation
As competition for rowbuffers can be a potentially

significant interference channel, its actual maximal impact on
the LGS tasks needs to be quantified. This time, we deal with
each task as the UUT and we consider the same 4
RapiDaemons configuration scenarios as previously.

HWMs for the worst-case scenario (3 RapiDaemons) are
synthesized in Table I. As all tasks access the DDR, there is
always some interference when running contender code. But
its impact differs a lot: some tasks of the main chain suffer
from overhead of several dozen µs (compared to a few µs for
the other tasks). As this impact is larger than the HWMs of
most tasks, we chose to consider them as part of an exclusion
group for which some mitigation should be implemented.

2) Multicore interference mitigation
For the LGS case study, we consider 2 different mitigation

means serving different purposes. First, we deal with the 2
logging tasks which both share a common resource (the
logging mechanism). As they can be executed in parallel, this
could lead to a functional interference. So, a temporal
exclusion between their EAs is enforced, using fractional
TSPs. Then, we consider the set of tasks that can suffer
significantly from interference over the DDR4 memory,
identified in the previous step. As those tasks have very
different rates, implementing temporal exclusion through
fractional TSPs might be quite hard and over constraining
when generating the static schedule. Thus, we rely on the
ASTERIOS toolchain’s frames exclusion mechanism to
generate a static schedule ensuring the temporal exclusion.

Table I: Timing results for LGS tasks.
Task Single-core

evaluation

Multicore interference

evaluation (3 RapiDaemons)

Overhead Multicore final integration

(with mitigation)

ADIRS consolidation 1397.0µs 1455.2µs +58.2µs 1492.0µs

Aircraft phase & braking mode management 1255.3µs 1306.2µs +50.9µs 1316.3µs

Braking order calculation 1264.6µs 1310.4µs +45.8µs 1279.6µs

Global wheel speed calculation 1279.0µs 1325.2µs +46.2µs 1294.6µs

Other tasks 12.5µs-115.9µs 13.5µs-120.7µs +0.9µs-5.3µs 21.6µs-260.0µs

Figure 4: Histograms of execution times (in µs) computed by

RVS for the hardware characterization under the different

scenarios (green: isolation; red: 1 RapiDaemon; blue: 2

RapiDaemons; purple: 3 RapiDaemons).

3) Towards multicore Time Budgets
To derive safe multicore TBs (in the context of a

certification project), all possible interference channels should
be dealt with. This can be seen from the measurements
conducted on the final configuration (i.e., integration of all the
LGS tasks on the T1042). As depicted in Table I, HWMs for
all tasks are larger than the ones observed for the interference
evaluation step. Thus, there are clearly other interference
channels that should be characterized and accounted for. Note
that, for the mitigated tasks, the increase in execution times
remains quite small (less than 10%). So, the impact of those
other interference channels could be accounted for as an
additional safety margin on the multicore TB.

VII. SUMMARY AND PERSPECTIVES

In this paper, we described a time-aware strategy suitable
for safety-critical real-time systems, based on the sLET
paradigm. We showed that sLET properties can help a DO-
178C/ED-12C applicant build an argumentative strategy for
answering A(M)C 20-193 objectives related to functional and
time interferences. Thanks to sLET, functional interference is
fully prevented by design, and time interference can be
restrained through temporal exclusion.

The application of a sLET-based strategy to an industrial
use case has been illustrated using the ASTERIOS solution,
which is already being deployed by Safran Electronics &
Defense for single- and multicore commercial systems. To
meet the required A(M)C 20-193 objectives, we showed that
Rapita’s approach and tools can support interference and
timing analyses for ASTERIOS-based systems.

In future steps, we plan to further develop our multicore
Time Budget evaluation methodology to provide a
comprehensive solution for implementing and integrating
safety-critical real-time systems on MCPs.

References

[1] S. Gerhold, M. Dunham and B. Sletteland, “Alternative

multi-core processor considerations for aviation,”

2018.

[2] C. Maiza et al., “A Survey of Timing Verification

Techniques for Multi-Core Real-Time Systems,”

ACM Computing Surveys, 2020.

[3] European Union Aviation Safety Agency, “AMC 20-193

Use of multi-core processors,” 2022.

[4] Federal Aviation Administration, “AC 20-193 - Use of

Multi-Core Processors,” 2024.

[5] S. Baruah and G. Fohler, “Certification-Cognizant Time-

Triggered Scheduling of Mixed-Criticality Systems,”

RTSS, 2011.

[6] A. Benveniste et al., “The synchronous languages 12 years

later,” Proceedings of the IEEE, 2003.

[7] A. Yip et al., “The ForeC Synchronous Deterministic

Parallel Programming Language for Multicores,”

MCSOC, 2016.

[8] J. Forget et al., “A Multi-Periodic Synchronous Data-Flow

Language,” HASE, 2008.

[9] J. Forget, Un Langage Synchrone pour les Systèmes

Embarqués Critiques Soumis à des Contraintes

Temps Réel Multiples, 2009.

[10] C. Pagetti et al., “Multi-task Implementation of Multi-

periodic Synchronous Programs,” Discrete event

dynamic systems, 2011.

[11] T. A. Henzinger, B. Horowitz and C. M. Kirsch, “Giotto: a

time-triggered language for embedded

programming,” LNCS, 2003.

[12] E. Farcas et al., “Transparent distribution of real-time

components based on logical execution time,”

LCTES, 2005.

[13] C. M. Kirsch and A. Sokolova, “The Logical Execution

Time Paradigm,” Advances in Real-Time Systems,

2012.

[14] R. Wilhelm et al., “The worst-case execution-time

problem—overview of methods and survey of tools,”

ACM Transactions on Embedded Computing

Systems, 2008.

[15] F. Boniol et al., “Modelling and analyzing multi-core COTS

processors,” ERTS, 2022.

[16] C.-G. Lee et al., “Analysis of Cache-Related Preemption

Delay in Fixed-Priority Preemptive Scheduling,”

IEEE Transactions On Computers, vol. 47, no. 6, pp.

1-14, 1998.

[17] V. David et al., “Safety properties ensured by the oasis

model for safety critical real-time systems,”

SAFECOMP, 1998.

[18] F. Siron et al., “The synchronous Logical Execution Time

paradigm,” ERTS, 2022.

[19] L. Lamport, “Time, clocks, and the ordering of events in a

distributed system,” Communications of the ACM,

1978.

[20] C. André, F. Mallet and M.-A. Peraldi-Frati, “A multiform

time approach to real-time system modeling;

Application to an automotive system,” SIES, 2007.

[21] M. Lemerre and E. Ohayon, “A Model of Parallel

Deterministic Real-Time Computation,” RTSS, 2012.

[22] P. Axer et al., “Building timing predictable embedded

systems,” ACM Transactions on Embedded

Computing Systems, 2014.

[23] X. Jean, L. H. Mutuel and R. Soulat, “Assurance of

Multicore Processors: Limits on Interference

Analysis,” FAA Final report, 2020.

[24] J. Bin et al., “Studying co-running avionic real-time

applications on multi-core COTS architectures,”

ERTS, 2014.

[25] J. Guyomarc'h et al., “Non-Simultaneity as a Design

Constraint,” TIME, 2020.

[26] J. Cavicchio and N. Fisher, “Integrating Preemption

Thresholds with Limited Preemption Scheduling,”

RTCSA, 2020.

[27] S. H. VanderLeest and D. C. Matthews, “Incremental

Assurance of Multicore Integrated Modular Avionics

(IMA),” DASC, 2021.

[28] P. Radojković et al., “On the evaluation of the impact of

shared resources in multithreaded COTS processors

in time-critical environments,” ACM Transactions on

Architecture and Code Optimization, 2012.

[29] F. J. Cazorla, J. Abella and E. Mezzetti, “Dissecting Robust

Resource Partitioning, Robust Time Partitioning, and

Robust Partitioning in CAST-32A,” SAE, 2021.

[30] A. Ferlin, E. Jenn and M. Kaufmann, “Accounting for

interferences in the design of Time-Triggered

Applications,” ERTS, 2020.

[31] A. Methni, E. Ohayon and F. Thurieau, “ASTERIOS

Checker: A Verification Tool for Certifying Airborne

Software,” ERTS, 2020.

