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The tire/road noise is one of the major problems facing the tire industry due to the nuisance felt 
by the vehicle’s driver and passengers. Moreover, it is expected in the coming years that this sound 
nuisance will be one of the main sources of vehicle noise due to the transition from combustion 
engine driven vehicles to electric vehicles. Tire manufacturers have therefore refined the design of 
their tire structures to find technological solutions to reduce traffic noise. Tire/road noise is also 
generated by various mechanisms which depend on different parameters such as the properties of 
the tire, road texture and driving conditions. This noise is partly caused by the acoustic radiation 
induced by the tire vibrations due to contacts with the road. The simulation and analysis of the 
tire’s vibrations remains a challenge for the tire industry. Indeed, the simulation of the full dynamic 
response of a rolling patterned tire requires not only taking onto account various nonlinearities 
but also the multi-scale nature of the generated dynamic response. Contrary to a straightforward 
strategy that consists in using a time integrator to predict the multi-scale dynamic response, the 
strategy proposed in this study is based on a two-step approach to separate the dynamics occurring 
at different scales. The mathematical formulation of the proposed method is detailed as are the 
different modeling choices to simulate tire rolling under imposed load. The sensitivity of the tire’s 
vibrations response is analyzed under different rolling conditions and with respect to certain key 
tire tread pattern parameters.

1. Introduction

Urban noise is a factor of stress whose effects on public health demand attention. Road traffic is one of the main sources of this 
nuisance. Progress made by automobile constructors has led to a considerable reduction of engine noise and the advent of the electric 
vehicle is bringing about a genuine breakthrough. In parallel, the improved aerodynamics of vehicles and the trend towards lower 
speed limits in outer urban areas contribute towards reducing aerodynamic noise. Increasing attention is being given to the rolling 
noise produced by tires whose relative contribution has increased to the point of becoming predominant [1]. Therefore, the standards 
imposed by public authorities and the specifications of automobile constructors focused on the noise emitted by tires are more and 
more severe [2].
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Mechanical impact is the main structural mechanism involved in the generation of rolling noise. Indeed, the vibrations generated 
by the impact between the tire tread and the road are propagated in the tire whose surface radiates acoustic waves [3]. On the 
other hand, air pumping is considered to be the main aerodynamic mechanism generating rolling noise. This mechanism results from 
fluctuations of air entering and exiting the contact patch. Indeed, the air captured at the entry of the contact patch is compressed in 
the cavities of the tire tread pattern and the texture of the road. These small volumes of air are then suddenly released at the exit 
of the contact patch [4,5]. The vibrations generated by these two mechanisms are magnified by resonance phenomena due to the 
geometric effects of rolling (pipe resonance, horn effect) [6–10]. The rolling conditions, the tires’ properties and the road’s texture 
have a significant impact on rolling noise [6,11].

From the industrial standpoint, tire design is complex since its performances (grip, wear, rolling resistance, noise, etc.) are often 
antagonistic and require making choices upstream to achieve the best compromise possible with respect to the targeted performances. 
This phase of predicting tire’s performance relies mainly on numerical modeling and simulation. Indeed, simulating the dynamics of 
tire rolling permits, for example, predicting the grip of the tire tread and obtaining the distribution of stresses in the tire, information 
that cannot be obtained through experimental measurements. In addition, numerical simulation permits reducing the number of 
certification tests intended to validate the reliability and performances of tire structures and thus testing a considerable number of 
designs to finally choose a tire that satisfies the performances desired as well as possible.

However, modeling a tire system and the associated simulation of the dynamic response present numerous challenges. For example, 
taking onto account large deformations requires processing the geometric nonlinearity. The simulation of the dynamic response can 
no longer be done with the modal superposition method as in the framework of linear elastodynamics. Moreover, the mixture of 
rubbers present in the tire is modelized in practice by a nonlinear visco-hyperelastic constitutive law [12,13]. Moreover, the stiffness 
of the metal and textile reinforcements embedded in the layers of the tire architecture is far higher than that of rubber. This can lead 
to additional complexity when modeling such systems. Furthermore, the excitation force imposed on the tire results from its contact 
with the road surface. Contact and friction phenomena are characterized by nonlinear laws and therefore require specific numerical 
treatment [14,15]. Moreover, the two-scale nature of the tire’s geometry is an additional source of difficulty during the numerical 
treatment of this type of problem. Indeed, the characteristic dimension of the tire corresponds to its diameter (generally about 50 
centimeters) and controls the macroscopic rolling whose frequency coincides with the rotation frequency. Furthermore, the vibratory 
response of tires is excited partially by the shape of the tread pattern whose size is in the region of several millimeters. This vibratory 
response occurs at medium and high frequencies with lower amplitudes.

Therefore, these different complexities involved in modeling and resolving the mechanical problem to be treated require a con-
trolled and efficient numerical strategy in order to simulate and predict the vibratory behavior of a tire, and of the rolling noise 
radiated by the structural vibrations of the tire. A classical approach for dealing with this type of problem consists in solving the 
dynamic problem with a time integration strategy using a conservative and stable numerical scheme, capable of providing the entire 
dynamic response of the tire system for a predefined excitation [16,17]. However, the considerable cost of computation inherent 
to this type of numerical strategy means that it is ill-adapted at present for industrial applications. The second approach consists in 
developing better adapted numerical techniques based on understanding the physics of the problem and defining a configuration of 
the state of the tire through modeling adapted to the excitation representing the physical phenomena of noise generation. This is the 
case for example of the arbitrarily Lagrangian-Eulerian formulation (ALE) [18,19] used to simulate the internal noise representative 
of passenger comfort and generated mainly by the roughness of the road [20–22]. However, this approach is only adapted for ax-
isymmetric tire systems. Thus, it cannot be used in the simulation of external noise given the importance of the tire tread pattern 
geometry. Also, one of the originalities of the proposed study is to make a scientific contribution to developing an adapted numerical 
strategy to model the tire’s vibratory response induced by the impact of the pattern of the tire tread. One of the benefits of the 
proposed numerical approach is to allow an efficient and robust estimation of the multi-scale dynamic response by decoupling the 
dynamics occurring at different scales. This step is an essential component for estimating and predicting at a later stage rolling noise 
which can be calculated by solving the problem of the associated acoustic radiation whose boundary conditions correspond to the 
vibrations velocity [22,23]. It should be noted that the calculation and analysis of the acoustic problem will not be dealt with in this 
study, which focuses in particular on the problem of the vibratory behavior of a tire system. More specifically, the main challenges 
and objectives of the study are to demonstrate the feasibility of an efficient numerical strategy that not only provides a reliable 
estimation of the evolution of the vibratory behavior of the tire but also allows determining the impact of the different characteristic 
parameters of a tire structure, given that from the industrial standpoint rolling noise is often studied at a more advanced stage when 
many parameters of the full mechanical system are already determined and the optimization of this performance is generally carried 
out by modifying only the geometry of the tire tread pattern.

This paper is structured as follows. Section 2 is dedicated to the mathematical development of the modeling strategy employed to 
simulate the vibratory response of tires. Then, the influence of the rolling conditions and design parameters of the tread pattern of a 
tire on the vibratory response are analyzed using the numerical method developed previously in Section 3. The last part focuses on 
the extension of the model of a tire system by considering the case of rolling under an imposed load. The mathematical formulation 
and the numerical problem are discussed and the tire’s vibratory response is analyzed and compared to the previous results in order 
to determine the potential contributions linked to this type of model of a tire rolling under an imposed load.

2. Modeling

The objective of this section is to define the mechanical problem under consideration and to outline the proposed methodology 
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for solving the associated vibrations problem. Initially, the mechanical quantities required to use the theory of large deformations 
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Fig. 1. Deformation of solid Ω in unilateral contact with the rigid foundation Γ𝑜 .

are introduced. Then, the mathematical formulation of the unilateral frictionless contact is presented after which the equations of 
motion are given with the corresponding weak formulation. Lastly, the numerical strategy used to simulate the vibratory response of 
the tire system is detailed.

2.1. Notations

This section is dedicated to the mathematical description of the deformation of a solid in a time interval [0, 𝑇 ] in which its 
reference configuration is denoted Ω (see Fig. 1). The adherence Ω coincides with the domain occupied by the structure at time 𝑡 = 0. 
A Lagrangian description is used to treat the geometrical nonlinearity. The kinematic quantities are described with respect to the 
material points of the reference configuration. The position of a material point 𝐗 ∈ Ω is an independent variable and the resolution 
of the equations of motion consists in finding the position 𝝋(𝐗, 𝑡) = 𝐱 of the material point in the deformed configuration or the 
displacement field 𝐮(𝐗, 𝑡) = 𝐱 −𝐗.

The gradient of a quantity in the reference configuration is denoted 𝛁. To describe the deformation of Ω, several mechanical 
quantities are introduced. The second order identity tensor is denoted 𝐈 and the deformation gradient tensor is represented by 
𝐅 = 𝐈 + 𝛁𝐮. The Jacobian of 𝝋 is denoted 𝐽 = det(𝐅). 𝐂 = 𝐅⊺𝐅 represents the Cauchy-Green tensor and 𝐄 = 1

2 (𝐂− 𝐈) is the Green-

Lagrange strain tensor. 𝝈 is the Cauchy stress tensor, 𝐏 = 𝐽𝝈𝐅⊺ is the first Piola-Kirchhoff stress tensor and 𝐒 = 𝐽𝐅−1
𝝈𝐅−⊺ is the 

second Piola-Kirchhoff stress tensor. To treat rubber-like materials, a general hyperelastic constitutive law is considered. This law is 
derived from the strain energy function 𝑊 that depends on the deformation 𝐄 [24]. The second Piola–Kirchhoff stress tensor is given 
by:

𝐒 = 𝜕𝑊

𝜕𝐄
(𝐄)

with the corresponding fourth-order elasticity tensor:

 = 𝜕𝐒
𝜕𝐄

= 𝜕2𝑊

𝜕𝐄𝜕𝐄
This tensor is necessary in the resolution of the nonlinear variational problem resulting from the local equilibrium equations with 

Newton’s method and will also be used in setting up the strategy to resolve the dynamic problem.

2.2. Contact mechanics

A unilateral frictionless contact with a rigid foundation Γ𝑜 , whose unit outward normal is 𝐧𝐜, is considered as shown in Fig. 1. 
The significant quantitative difference between the stiffness of the road and the tire’s rubber justifies the consideration of a rigid 
foundation. Γ𝑐 is a restricted part of the boundary 𝜕Ω and represents the surface where contact phenomena may occur.

To define the condition of non-interpenetration between the deformable solid and the surface Γ𝑜 , the Euclidian projection of point 
𝐱 =𝝋(𝐗, 𝑡) on the surface Γ𝑜 is defined as follows:

𝐘̄(𝐗, 𝑡) = arg min
𝐘∈Γ𝑜

‖𝝋(𝐗, 𝑡) −𝐘‖ (1)

The surface Γ𝑜 is assumed to be sufficiently regular to ensure the unicity of the projection 𝐘̄. It is worthwhile recalling that 
other methods exist for measuring the distance between the points of the potential contact zone and the rigid foundation such as the 
ray-tracing method. The latter is more suitable than the projection method in the case of non-regular surfaces [25]. The gap normal 
function measuring the normal distance between the position 𝐱 and its projection 𝐘̄ is defined by:
479

𝑔𝑛(𝐗, 𝑡) = 𝐧𝐜 ⋅ (𝝋(𝐗, 𝑡) − 𝐘̄(𝐗, 𝑡)) (2)
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The condition of non-interpenetration is formulated mathematically as follows:

𝑔𝑛(𝐗, 𝑡) ≥ 0 (3)

The contact mechanics phenomena impose a relation between the kinematic quantities and the stresses on the contact zone. 
Therefore, the stress vector 𝐓 is expressed using the first Piola-Kirchhoff tensor since the equations of motion are written in the 
reference configuration in the framework of large deformations:

𝐓(𝐗, 𝑡) = 𝐏(𝐗, 𝑡)𝐍(𝐗) (4)

The full formulation of the contact conditions requires the decomposition of the stress vector in the basis defined by the unit 
outward normal 𝐧 in the contact zone:

𝐓(𝐗, 𝑡) = Π𝑛𝐧+𝚷𝐭 (5)

It should be noted that the tangential pressure 𝚷𝐭 is null since the contact considered is frictionless. To prevent the penetration 
of the deformable solid in the rigid foundation Γ𝑜, a non-positive contact pressure arises in the contact zone so that

Π𝑛 ≤ 0 (6)

If a point is in contact with the rigid foundation, then 𝑔𝑛 = 0. Otherwise, if the point is not in contact, then Π𝑛 = 0. This allows 
defining the following non-penetration and non-adhesion condition:

𝑔𝑛Π𝑛 = 0 (7)

The set of conditions defined by Equations (3), (6) and (7) correspond to the normal contact constraints. These conditions corre-
spond to Hertz-Signorini-Morea (HSM) conditions or those of Karush-Kuhn-Tucker (KKT) [26].

𝑔𝑛 ≥ 0, Π𝑛 ≤ 0, 𝑔𝑛Π𝑛 = 0 in Γ𝑐 (8)

The Signorini conditions not only define a nonlinear contact law but also a multivalued equation for 𝑔𝑛 = 0. The form of the 
conditions is identical to the KKT first-order optimality conditions present in the constrained optimization problems [27].

2.3. Equations of motion

The equations of motion of a deformable solid Ω in unilateral contact with a rigid foundation Γ𝑜 are obtained by adding the 
Signorini conditions described previously to the conservation equations of the linear and the angular momentums. The boundary of 
the material domain 𝜕Ω is composed of Γ𝑢 where the displacement is imposed, Γ𝜎 where the external forces are imposed, and Γ𝑝

where a follower pressure (𝝈 ⋅ 𝐧 = 𝑝𝐧) is imposed. The latter follows the direction of the normal of the actual configuration (contrary 
to a classical Neumann condition) and will be used in what follows to model the tire inflation pressure. The associated mathematical 
problem can be written in the following form:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛁 ⋅ 𝐏+ 𝐠0 = 𝜌𝐮̈ in Ω × [0, 𝑇 ]

𝐮 = 𝐮𝑑 on Γ𝑢 × [0, 𝑇 ]

𝐏𝐍 = 𝐟0 on Γ𝜎 × [0, 𝑇 ]

𝐏𝐍 = 𝑝𝐽 (𝐅−⊺𝐍) on Γ𝑝 × [0, 𝑇 ]

𝑔𝑛 ≥ 0, Π𝑛 ≤ 0, 𝑔𝑛Π𝑛 = 0 on Γ𝑐 × [0, 𝑇 ]

(9)

where 𝜌 is the density and 𝐠0 represents the external volume forces vector. The weak formulation of the problem is obtained by 
multiplying the equation of the local equilibrium by a test function 𝐰 and by performing an integration by parts as follows:

∫
Ω

𝛁 ⋅ 𝐏 ⋅𝐰dΩ= ∫
𝜕Ω

𝐏𝐍 ⋅𝐰dΓ − ∫
Ω

𝐏 ∶𝛁𝐰dΩ= ∫
Γ𝜎

𝐟0 ⋅𝐰dΓ + ∫
Γ𝑝

𝑝𝐽 (𝐅−⊺𝐍) ⋅𝐰dΓ + ∫
Γ𝑐

𝐏𝐍 ⋅𝐰dΓ − ∫
Ω

𝐏 ∶ 𝛁𝐰dΩ (10)

The virtual work of the contact forces (on the potential contact zone Γ𝑐 ) can be written in the following form:

∫
Γ𝑐

𝐏𝐍 ⋅𝐰dΓ = ∫
Γ𝑐

(Π𝑛𝑤𝑛 +𝚷𝐭 ⋅𝐰𝐭 )dΓ = ∫
Γ𝑐

Π𝑛𝑤𝑛dΓ (11)

The gradient of the test function appears after the development of the integration by parts. The functional spaces, to which the 
solution 𝐮 and the test functions 𝐰 belong, are introduced so that the integrals are well-defined.

 =
{
𝐮 ∈ 𝐻1(Ω)| 𝐮 = 𝐮𝑑 on Γ𝑢

}
(12)
480

 =
{
𝐮 ∈ 𝐻1(Ω)| 𝐮 = 𝟎 on Γ𝑢

}
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where 𝐻1(Ω) is the first-order Sobolev space of the functions whose first weak derivative belongs to the space of the finite energy 
functions (𝐿2(Ω)).  designates the space of the kinematically admissible displacements and depends on time since the imposed 
displacement 𝐮𝑑 can evolve in time. The vector space  is the tangent space of  . The weak formulation of the mechanical problem 
is given by:

⎧⎪⎪⎨⎪⎪⎩

Find 𝐮 ∈

∫
Ω

𝜌𝐮̈ ⋅𝐰dΩ+ ∫
Ω

𝐏 ∶𝛁𝐰dΩ= ∫
Ω

𝐠𝟎 ⋅𝐰dΩ+ ∫
Γ𝜎

𝐟0 ⋅𝐰dΓ + ∫
Γ𝑝

𝑝𝐽 (𝐅−⊺𝐍) ⋅𝐰dΓ + ∫
Γ𝑐

Π𝑛𝑤𝑛dΓ ∀𝐰 ∈ 

𝑔𝑛 ≥ 0, Π𝑛 ≤ 0, 𝑔𝑛Π𝑛 = 0 on Γ𝑐 × [0, 𝑇 ]

(13)

The penalization method is chosen to treat the normal contact conditions. Accordingly, the virtual work of the contact forces is 
approximated as follows [28]:

∫
Γ𝑐

Π𝑛𝑤𝑛 dΓ = ∫
Γ𝑐

𝜀𝑛𝑔−
𝑛
(𝐮)𝑤𝑛 dΓ (14)

with 𝜀𝑛 being the penalization parameter and 𝑔−
𝑛
= min(𝑔𝑛, 0) the penetration function. The definition of the penetration function 

permits penalizing only the points belonging to the active zone of the contact and therefore avoid using the active set strategy [15]. 
Furthermore, the solution obtained with a penalization 𝜀𝑛 = ∞ is equal to the exact solution obtained with Lagrange multipliers 
[29]. However, large values of 𝜀𝑛 will lead to an ill-conditioned tangent matrix. The analytical contribution of each term of the weak 
formulation to the tangent matrix and to the nonlinear residual can be found in [13].

2.4. Vibratory response

The main idea of the methodology proposed is to linearize the dynamic problem around the quasi-static configuration. The 
mathematical formulation of the method is described in this section. The hypotheses applied are explained and justified. All the 
mathematical quantities presented are indexed by 1 (and 2, respectively) for the quasi-static (and dynamic one respectively) problem. 
A unilateral frictionless contact is considered between a deformable solid, whose reference configuration is noted Ω, and a rigid 
foundation whose outward unit normal is 𝐧𝐜. The notations introduced in the previous parts are used in the developments that 
follow.

The weak formulation of the quasi-static problem is given by:

⎧⎪⎨⎪⎩

Find 𝐮1 ∈

∫
Ω

𝐏𝟏 ∶ 𝛁𝐰 dΩ=𝐑𝑒 +𝐑𝑐
1 ∀𝐰 ∈  (15)

𝐑𝑒 represents the variational term of the external forces and 𝐑𝑐
1 is the variational term of the contact forces.

The weak formulation of the dynamic problem is given by:

⎧⎪⎨⎪⎩

Find 𝐮2 ∈

∫
Ω

𝜌𝐮̈𝟐 ⋅𝐰 dΩ+ ∫
Ω

𝐏𝟐 ∶ 𝛁𝐰 dΩ=𝐑𝑒 +𝐑𝑐
2 ∀𝐰 ∈  (16)

𝐑𝑒 represents the variational term of the external forces which is the same as that of the quasi-static problem. 𝐑𝑐
2 is the variational 

term of the contact forces. The mathematical expression of 𝐑𝑐
1 and 𝐑𝑐

2 depends on the type of contact and the numerical method used 
to treat the contact constraints (penalization, augmented Lagrangian...) [14].

The main hypothesis of the methodology proposed in this study is that the dynamic response 𝐮2 results from the quasi static 
response 𝐮1 and from the vibratory response 𝐮𝐯. The terms of the higher order of 𝐮𝐯 are neglected (‖‖𝐮𝐯‖‖ << 1):

𝐮𝟐(𝐗, 𝑡) = 𝐮𝟏(𝐗, 𝑡) + 𝐮𝐯(𝐗, 𝑡) + 𝑜(𝐮𝐯) (17)

The inertia effect is taken into account only in the calculation of the vibrations and a quasi-static process is assumed to be sufficient 
to describe the macroscopic rolling of the structure. Indeed, the characteristic time of the inertia effects is assumed to be lower than 
that of the excitation of the vibratory response and higher than that of the macroscopic rolling (i.e. 𝑡𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑡𝑖𝑛𝑒𝑟𝑡𝑖𝑎 =

√
𝑚𝑒

𝑘𝑒
< 𝑡𝑟𝑜𝑙𝑙𝑖𝑛𝑔

with 𝑚𝑒, and 𝑘𝑒 respectively, a quantity characterizing the global mass and the global stiffness of the structure as the norm of the 
mass matrix and stiffness matrix, respectively, for example).

The Dirichlet boundary conditions are the same for both problems. Thus, a null vibratory displacement is imposed on Γ𝑢 :

𝐮𝐯 = 𝟎 on Γ𝑢 (18)

The active contact zone and the variational terms of the contact forces are assumed to be invariant between the two problems 
481

(i.e. Γ𝑡
𝑐,1 ≈ Γ𝑡

𝑐,2 ≈ Γ𝑡
𝑐

and 𝐑𝑐
2 ≈ 𝐑𝑐

1). It is noteworthy that the active contact zone is not exactly the same between the two problems 
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since the inertia changes the stiffness of the contact and thus modifies its shape [30]. However, the change induced by the variation 
of the stiffness is assumed to be negligible.

The normal component of displacement in the active contact zone is determined by the coordinates of the rigid foundation for 
the two problems. Thus, the normal component of the vibrations response, on the active contact zone Γ𝑡

𝑐
given by the solution of the 

quasi-static problem, is null:

𝐮𝐯 ⋅ 𝐧𝐜 = 0 on Γ𝑡
𝑐

(19)

𝐧𝐜 is the outward unit normal of the rigid foundation. It should be noted that this boundary condition is an interpretation of the 
contact conditions as a Dirichlet boundary condition. This is problematic from a mathematical point of view given that the active 
contact zone Γ𝑡

𝑐
is not attached to a fixed material domain. Indeed, the contact zone is spatially included in the potential contact 

zone’s deformed configuration 𝝋(Γ𝑐 , 𝑡). However, its numerical implementation does not present a particular problem following a 
finite element discretization.

The mechanical quantities of the dynamic problem can be expressed as a function of the quasi-static mechanical quantities while 
neglecting the higher order terms. The linearization of the deformation tensors is done as follows:

𝐅𝟐 = 𝐅𝟏 +𝛁𝐮𝐯 (20)

𝐄𝟐 = 𝐄𝟏 +
1
2
(𝐅𝟏

⊺𝛁𝐮𝐯 +𝛁⊺𝐮𝐯𝐅𝟏 +𝛁⊺𝐮𝐯𝛁𝐮𝐯
⏟⏞⏟⏞⏟

≈𝟎

) = 𝐄𝟏 +
1
2
(𝛁𝐮𝐯 +𝛁⊺𝐮𝐯 +𝛁⊺𝐮𝟏𝛁𝐮𝐯 +𝛁⊺𝐮𝐯𝛁𝐮𝟏) = 𝐄𝟏 +𝐄𝐮𝐯 ,𝐮𝟏 (21)

The constitutive law is linearized as follows:

𝐒𝟐 =
𝜕𝑊

𝜕𝐄
(𝐄2) =

𝜕𝑊

𝜕𝐄
(𝐄1 +𝐄𝐮𝐯 ,𝐮𝟏 ) =

𝜕𝑊

𝜕𝐄
(𝐄1) +

𝜕2𝑊

𝜕𝐄𝜕𝐄
(𝐄𝟏) ∶ 𝐄𝐮𝐯 ,𝐮𝟏 = 𝐒1 + 1 ∶ 𝐄𝐮𝐯 ,𝐮𝟏 (22)

With the expressions obtained in Equations (20), (21) and (22), the linearization of the variational deformation term is performed 
as follows:

𝐏𝟐 ∶𝛁𝐰 = 𝐒𝟐 ∶(𝐅
⊺
𝟐𝛁𝐰) (23)

which can be expressed as

𝐏𝟐 ∶𝛁𝐰 = 𝐏𝟏 ∶𝛁𝐰+ 𝐒𝟏 ∶ 𝛁⊺𝐮𝐯𝛁𝐰+ ( ∶ 𝐄𝐮𝐯 ,𝐮𝟏 ) ∶ (𝐅
⊺
𝟏𝛁𝐰) (24)

By replacing Equation (17) in the dynamic variational problem (16) and using the expression obtained with the linearization of 
the variational deformation term, the vibrations response is obtained by solving the following variational problem:

⎧⎪⎨⎪⎩

Find 𝐮𝐯 ∈ 

∫
Ω

𝜌𝐮̈𝐯 ⋅𝐰 dΩ+ ∫
Ω

𝐒𝟏 ∶𝛁⊺𝐮𝐯𝛁𝐰+ (1 ∶ 𝐄𝐮𝐯 ,𝐮𝟏 ) ∶ (𝐅
⊺
𝟏𝛁𝐰)dΩ=−∫

Ω

𝜌𝐮̈𝟏 ⋅𝐰 dΩ ∀𝐰 ∈  (25)

with

𝐄𝐮𝐯 ,𝐮𝟏 =
1
2
(𝛁𝐮𝐯 +𝛁⊺𝐮𝐯 +𝛁⊺𝐮𝟏𝛁𝐮𝐯 +𝛁⊺𝐮𝐯𝛁𝐮𝟏)

This problem is therefore linear with respect to 𝐮𝐯 . The deformation variational term naturally represents the tangent stiffness 
matrix of the quasi-static problem [13]. The excitation force of the vibratory problem depends on the quasi-static acceleration 𝐮̈𝟏 . A 
finite differences scheme is used to approximate this acceleration. The error of approximation induced by the numerical derivation is 
the result of a rounding error determined by the number of significant digits and a truncation error determined by the discretization 
step. In addition, the numerical derivation amplifies the numerical noise at high frequencies. Several solutions can be used to treat 
these different problems. A low-pass filter can be used to filter this noise. Its cutoff frequency is chosen according to the limit of the 
studied frequency domain. Another strategy consists in interpolating the displacement with derivable functions (polynomials, cubic 
splines) before carrying out the numerical derivation [31].

The initial conditions of the vibratory problem are extracted from the quasi-static response and the initial conditions of the dynamic 
problem:

𝐮𝐯(𝐗,0) = 𝐮𝟐(𝐗,0) − 𝐮𝟏(𝐗,0)

𝐮̇𝐯(𝐗,0) = 𝐮̇𝟐(𝐗,0) − 𝐮̇𝟏(𝐗,0)
(26)

The initial quasi-static velocity is also approximated with a finite difference scheme. The linear vibratory problem can be solved, 
after finite element discretization, with a time integration scheme. It depends on the results of the quasi-static problem. The time 
482

discretization of the vibratory problem is therefore the same as that used in the quasi-static problem.



Applied Mathematical Modelling 135 (2024) 477–503Z. Knar, J.-J. Sinou, S. Besset et al.

Fig. 2. Finite elements model of the tire (a) Three-dimensional finite element model with reference frame (b) Meridian section with measurement points on the inner 
liner (IL) - Center (∙) and Shoulder (∙).

Table 1

Mechanical properties of the tire.

Geometric radius 𝑅𝑒 = 268 mm

Rim radius 𝑅𝑖 = 180 mm

Width 𝑤 = 77 mm

Young’s modulus 𝐸 = 2.108 Pa

Poisson’s ratio 𝜈 = 0.3
Density 𝜌 = 900 kg/m3

3. Numerical results

The method developed in Section 2.4 is applied to simulate the vibratory response of a patterned tire rolling on a rigid plane. 
The validity of this numerical technique has already been discussed in a previous study of the case of a grooved cylinder rolling 
on a rigid plane [32]. In the following, the mechanical and geometrical properties of the tire structure are given as well as the 
simulation’s numerical parameters. Several types of sensitivity studies will be carried out. Firstly, the rolling conditions influence 
(i.e. the rolling speed and the deflection) on the tire vibrations response will be studied. This first analysis will give indications on 
the importance of the operating conditions on the tire’s non-linear vibrations. Afterwards, the vibrations’ sensitivity with respect to 
the design parameters of the tire tread pattern will be examined. The influence of the grooves thickness, the inclination angle of the 
lateral grooves with respect to the lateral direction of the tire structure, and the rib shifting will be more specifically discussed. This 
second analysis will make it possible to highlight the impact of design modifications on sculpted tires and thus to provide indications 
on the different possibilities to allow tire manufacturers to better control and attenuate the levels of non-linear vibration responses 
of tire structures and thus the generation of rolling noise.

The validity and applicability of the strategy proposed will be highlighted by illustrating the possibility of solving the problem 
by decoupling the amplitudes contributions of the macroscopic rolling and the vibratory response. In the following, the numerical 
results will be supported by not only sensitivity analysis under different rolling conditions and with respect to certain key tire tread 
pattern parameters, but also by comparison with experimental results available in the literature.

3.1. Tire structure

Figs. 2(a) and (b) illustrate the three-dimensional finite element model studied and a meridian section of the tire, respectively. 
The geometric and mechanical properties of the tire are given in Table 1. The tire tread (shown in red) is composed of 36 lateral 
grooves with a thickness of 10 mm. This zone represents the potential contact zone Γ𝑐 . The tire tread is composed of a central rib 
and two shoulder ribs. For the interested reader, the model proposed and the associated physical parameters correspond to data for 
one conventional tire used on passenger cars.

The finite element model is composed of 15660 nodes, 10944 linear hexahedral elements and 216 linear prismatic elements. The 
nodes, used for the vibrations response’s evaluation, are located on the inner liner (IL), as shown on the tire’s meridian section. The 
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first point (shown in red) is located below the middle of the central rib and the second point (shown in blue) is located below the 
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Table 2

Numerical parameters of the simulation.

Inflation pressure 𝑝 = 1.5 bar
Normal penalization 𝜀𝑛 = 106
Time step Δ𝑡 = 3.10−5 s

shoulder rib. These two points are taken at the level of the inner liner since the mesh of the latter remains identical for tires having 
different tread patterns. The vibrations’ evaluation at these two points also allows the study of its evolution with respect to the lateral 
position. The yellow area represents the inflation zone where a static follower pressure 𝑝 is applied to take into account the tire’s 
inflation. The structure is loaded kinematically by applying a deflection 𝑑 in the vertical direction on the rim zone (shown in blue). 
The load, carried by the tire, can be calculated by summing the contact pressure over the contact patch (CP). The rim zone, denoted 
Γ𝑢, is also used to drive kinematically the tire rolling with the following boundary condition:

𝐮(𝐗, 𝑡) =
[

𝑉 𝑡 0 −𝑑
]𝑇 +𝐑(𝜔𝑡)𝐗−𝐗 on Γ𝑢 (27)

𝑉 is the translation velocity and 𝐑 is the rotation matrix associated with the angular velocity 𝜔.

𝐑(𝜔𝑡) =
⎡⎢⎢⎣
cos𝜔𝑡 0 sin𝜔𝑡

0 1 0
−sin𝜔𝑡 0 cos𝜔𝑡

⎤⎥⎥⎦ (28)

The translation velocity depends on the angular velocity via the rolling radius (also known as the effective radius) 𝑟𝜔 = 𝑉 ∕𝜔. 
The rolling radius is defined as the radius of the rigid structure having the same rolling speed as the deformable structure. A 
first order approximation of the rolling radius is given as a function of the geometric radius 𝑅𝑒 and the deflection 𝑑 as follows 
[33]:

𝑟𝜔 ≈ 𝑅𝑒 −
𝑑

3
(29)

The tire’s material is homogeneous, isotropic and its constitutive law is determined by the Saint Venant-Kirchhoff model.

𝐒 = 𝜆 tr(𝐄)𝐈+ 2𝜇𝐄 (30)

𝜆 and 𝜇 denote the Lamé coefficients defined by:

𝜆 = 𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
𝜇 = 𝐸

2(1 + 𝜈)
(31)

𝐸 is the Young’s modulus and 𝜈 represents Poisson’s ratio. A frictionless contact with a rigid plane is considered and treated using 
the penalty method. Thus, the impact of the tread pattern is the only mechanism generating vibrations that is taken into account. The 
air-pumping mechanism and the visco-hyperelastic proprieties of the tire’s architecture are not integrated in the model. Therefore, 
the objective of the following studies is to examine the tread pattern geometry influence on the vibratory response generated by the 
impact mechanism using the methodology described in Section 2.4.

Regarding the resolution of the problem, the simulation of the quasi-static rolling is performed with the finite elements solver
MEF++ [13]. This generic solver was developed jointly by the Groupe Interdisciplinaire de Recherche en Éléments Finis (GIREF) of 
Université Laval and Michelin. The quasi-static simulation is performed in three successive steps. The first step consists in simulating 
the inflation by applying a static follower pressure on the inflation zone. The inflated tire configuration is then used to initialize the 
loading simulation which consists in imposing a vertical displacement on the rim zone. The third step consists in simulating quasi-
static rolling by imposing the kinematic condition (27) on the rim zone. The latter step is initialized with the loaded tire configuration. 
A time integration method with an implicit Euler scheme is then used to solve the vibrations problem (25) given its unconditional 
stability. A classical convergence study, not presented in this study for the sake of brevity, was first performed in order to calibrate the 
numerical parameters, such as the mesh size, the normal penalization and the time step, used in the previously described solvers for 
the resolution of the problem. The selected values of the normal penalization and time step are given in Table 2 (i.e. the simulation 
results will be invariant with respect to finer mesh, higher values 𝜀𝑛 and lower values of Δ𝑡).

In order to assess the relevance and credibility of both the mathematical modeling proposed for the sculpted tire system and the 
numerical strategy, the trends obtained with the numerical results will be qualitatively compared with experimental results obtained 
by Michelin [34] or from the literature. The experimental set-up of the Michelin tire prototype is schematically shown in Fig. 3 with 
the position of the three measurement microphones at the front and rear of the tire (i.e. microphones located at the inlet and outlet 
of contact zone defined by points 1 and 2, respectively) and on the lateral side of the tire (point 3). Fig. 4 illustrates the associated 
acoustic pressure measurements. These experimental results make it possible to observe the evolution of rolling noise as a function 
of different parameters such as the rolling speed (see all Fig. 4), the grooves thickness (see Fig. 4(a)), the inclination angle of the 
lateral grooves with respect to the lateral direction of the tire structure (see Fig. 4(b)), and the rib shifting (see Fig. 4(c)). In the 
following sections, a combined discussion based on numerical findings and comparison with experiments will be proposed to offer 
a more cohesive understanding of the study’s implications and findings. Moreover It should be noted that we are only interested in 
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comparing the evolution of trends as a function of the various parameters, given that the experimental tests were not initially carried 
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Fig. 3. Experimental set-up of the Michelin tire prototype (a) tire used in the measurements and (b) experimental setup.

out in connection with the proposed simulations, and that the tires studied are not necessarily exactly the same in terms of geometry 
and tread pattern.

3.2. Influence of rolling speed

The influence of rolling speed on the vibratory response is performed by considering three cases of quasi-static rolling simulations 
with three angular velocities 𝜔 = {50,100,150} rad/s for a deflection of 𝑑 = 10 mm. These three angular velocities correspond to the 
translation velocities 𝑉 = {48,96,144} km/h calculated using the approximation of the rolling radius (29). Figs. 5 and 6 illustrate 
the frequency spectrum of the vibrations velocity components calculated with the three angular velocities. The spectra are plotted as 
a function of the order which is equal to the frequency divided by the rotation frequency. It is noteworthy that using the order in the 
spectral analysis permits normalizing the results with respect to the rotation speed. For the three tested configurations, the frequency 
spectra are mainly composed of harmonics located around the number of lateral grooves multiplied by the rotation frequency (which 
corresponds to Order = 36 in Figs. 5 and 6). It can be observed that the amplitudes of speed according to the three directions 
differ according to the spatial directions and the measurement point on the inner liner of the tire. Indeed, the major contributions 
correspond to vibratory responses according to directions 𝑥 and 𝑧 whereas the amplitudes of speed according to direction 𝑦 are very 
clearly lower. It also notable that the lateral vibration velocities 𝑣y calculated at the center of the Inner Liner (IL) are almost null 
whatever the rolling velocity, which is a result that was expected due to the lateral symmetry of the tire structure. However, the 
levels of the lateral vibrations 𝑣y calculated on the shoulder of the IL are present, non-null but of low amplitudes in comparison to the 
other directions 𝑥 and 𝑧 (to be compared with the levels of lateral vibrations 𝑣x and 𝑣z). They increase with the augmentation of the 
rotation speed. Thus it appears that the proposed numerical methodology efficiently separates the two scales of the dynamic response 
of the tire and highlights the specificity of the tire’s vibratory behavior resulting from the impact between the pattern of the tire tread 
and the rigid plane. On examining more specifically the influence of the rolling speed, it seems that the levels of vibrations are very 
low for 𝜔 = 50 rad/s compared to the results for the rolling simulations at 𝜔 = {100,150} rad/s. The levels of the contributions of 
the different harmonics for the two configurations at 𝜔 = {100,150} rad/s are generally similar for the two directions 𝑥 and 𝑧. It can 
also be seen that the harmonics appearing around the grooves impact frequency are more numerous for 𝜔 = 150 rad/s in comparison 
to 𝜔 = {50,100} rad/s.

For interested readers, it has been shown experimentally that rolling speed is one of the most important parameters having an 
influence on the external rolling noise. As the vehicle speed and the number of tire revolutions increase, the speed with which the tire 
comes in contact with the road surface increases resulting in higher tire/road impact and also an increased pumping in and out of air 
from the contact patch edge [35]. Fig. 4 illustrates the evolution of rolling noise as a function of the rolling speed. The rolling noise 
level increases noticeably with increasing rolling speed between 20 km/h and 80 km/h, whatever the tire tread pattern parameters. 
A saturation of the rolling noise is then observed for speeds around 90 km/h. These experimental results are in agreement with 
the numerical results. Thus increasing rotation speed shifts vibration levels towards higher frequencies, as the frequency of impact 
between the tire tread and the ground depends on rotation speed. Simulation results and experimental measurements show that 
rolling speed has a significant impact on vibration levels.

3.3. Influence of deflection

A second parameter of interest during tire rolling is the load carried by the tire. Indeed, the load carried mainly determines the 
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shape of the contact patch and the mechanisms generating external noise are located around the contact patch.
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Fig. 4. Evolution of the acoustic pressure measured experimentally [34] as a function of velocity for different (a) groove thickness values (b) inclination angles 𝜓2 of 
the lateral grooves with respect to the lateral direction of the tire and (c) rib shiftings.

The simulation of the vibratory response of the tire is performed for three different deflections 𝑑 = {5,10,15} mm by considering 
a rolling speed 𝑉 = 96 km/h. It should be recalled that the tire’s loading is simulated kinematically by imposing a vertical deflection 
on the rim zone (the issue of modeling quasi-static rolling with an imposed load will be dealt with in Section 4).

The frequency spectra of the vibration velocities of the node located on the shoulder of the IL are shown in Fig. 7. In the vicinity of 
the harmonic contributions corresponding to a number of lateral grooves multiplied by the rotation frequency (i.e. order 36), it appears 
that the contributions are lower for the case corresponding to the largest deflection (i.e. 𝑑 = 15 mm) whereas the contributions for 
the two other cases considered (deflection of 𝑑 = 10 mm and 𝑑 = 5 mm) are quite similar. In addition, the amplitude of the harmonics 
around twice the impact frequency (i.e. order = 72 in Fig. 7) becomes comparable to that of the harmonics appearing around order 
36 for the case of a deflection 𝑑 = 5 mm, a phenomenon not seen for the two other configurations. To better understand this tendency 
and the physical phenomena at the level of the contact patch, the shape of the CP obtained for each deflection is examined. Fig. 8
shows the distribution of the normal contact pressure calculated for each of the three configurations. In the case of 𝑑 = 5 mm, the 
grooved central rib is the only element of the tire in contact with the rigid plane. On the contrary, the contact zone estimated with 
a deflection 𝑑 = 10 mm shows that the three ribs (centered rib and the shoulder ribs on each end) carry the load, naturally with a 
contact symmetry in relation to the center of the tire tread. Regarding the configuration with a deflection 𝑑 = 15 mm, it can be noted 
that the vertical load is mainly carried by the shoulder ribs. For those readers interested, the frequency spectra also show that the 
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lateral grooves of the center rib generate most of the vibrations (results not shown for the sake of concision). Thus, the tendencies 
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Fig. 5. Frequency spectrum of the vibration velocity of the central node of the IL for 𝑉 = 48 km/h ( ), 𝑉 = 96 km/h ( ) and 𝑉 = 144 km/h ( ).

Fig. 6. Frequency spectrum of the vibration velocity of the shoulder node of the IL for 𝑉 = 48 km/h ( ), 𝑉 = 96 km/h ( ) and 𝑉 = 144 km/h ( ).

given by the model can be explained by the fact that the support added by the non-grooved shoulder ribs at each end damps the
vibration levels generated by the lateral grooves.

Experimental tests have shown that, generally speaking, a larger contact area increases noise levels [11]. Similarly, the work of 
Iwao and Yamazaki [36] illustrated that acoustic sound pressure generated from tire rolling reaches a peak for a given load value 
when the speed of rotation increases. It may also be noted that in some studies, it is analysed that this increase remains marginal in 
comparison with other factors [37]. On this issue, although the numerical studies clearly show that the evolution of normal contact 
pressure in regard to different load carried by the tire can be complex (see Fig. 8), the trends in nonlinear response levels are not in 
complete agreement with the above experimental observations. While the contributions for the two configurations tested numerically 
(i.e. d = 10 mm and d = 5 mm) are fairly similar (in line with Tong’s experimental observations [37]), the contributions of nonlinear 
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vibrations are lower for the case corresponding to the greatest deflection (i.e. d = 15 mm with the smallest contact surface), which is 
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Fig. 7. Frequency spectrum of the vibration velocity of the shoulder node of the IL for 𝑑 = 5 mm ( ), 𝑑 = 10 mm ( ) and 𝑑 = 15 mm ( ).

Fig. 8. Normal contact pressure calculated with a deflection 𝑑 = {5,10,15} mm.

not in agreement with the experimental observations of Li et al. [11]. It should be noted that the issue of appropriate mathematical 
modeling of quasi-static rolling with an imposed load will be addressed in Section 4.

3.4. Sensitivity with respect to the grooves thickness

This part is devoted to studying the influence of the grooves thickness on the tires vibrations response. The studied tread patterns 
are shown in Fig. 9. A deflection 𝑑 = 10 mm and a rolling speed of 𝑉 = 96 km/h are taken as rolling conditions. The vibrations 
response of the nodes located on Inner liner (IL) will be compared and analyzed since this part of the tire structure remains invariable 
in the tires meshes used for this sensitivity study (contrary to the nodes located on the tire tread, indicated previously in red in Fig. 2).

Figs. 10 and 11 show the vibrations velocities frequency spectra of the center and shoulder nodes, respectively. The spectra of 
the longitudinal and vertical vibration velocities 𝑣x and 𝑣𝑧 are almost the same and composed of harmonics around the number of 
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grooves of the wheel with a modulation effect. In addition, a reduction of the harmonic contributions can be seen (in the vicinity of 
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Fig. 9. Tread patterns used in the study of the sensitivity of the vibratory response in relation to lateral groove thickness.

Fig. 10. Frequency spectrum of the vibration velocity of the center node of the IL for 𝑒 = 5 mm ( ), 𝑒 = 10 mm ( ), 𝑒 = 15 mm ( ) and 𝑒 = 20 mm ( ).

the harmonics corresponding to a number of lateral grooves multiplied by the rotation frequency, i.e. order = 36) with an increase of 
groove thickness. This reduction of the levels of amplitude of each harmonic contribution can be explained physically by the reduction 
of the impact surface on the rigid plane due to the increase in the thickness of the grooves. It is also notable that the contributions 
linked to the lateral vibrations 𝑣y at the center (i.e. Fig. 10) are null, which is physically consistent given the lateral symmetry of 
tire structures. On the contrary, the harmonic contributions of the lateral vibrations 𝑣y calculated at the end of the tire (i.e. shoulder 
rib associated with Fig. 11) are non-null, which can be explained physically by the fact that the lateral vibrations follow the same 
tendencies as the longitudinal 𝑣x and vertical 𝑣z vibrations calculated at the center due to the Poisson effect.

The experimental results, illustrated in Fig. 4(a), show trends that are not necessarily consistent with those obtained with the 
numerical model. This can be explained by the air pumping mechanism, which tends to increase with larger grooves, since the 
quantity of air captured in the contact area increases with the size of the grooves. It should be noted on this point that the experimental 
measurements found in the literature do not give a clear trend on the evolution of external noise in relation to the thickness of the 
lateral grooves [6,11] because the impact and air pumping mechanisms are in competition. Similarly, it seems difficult to understand 
these trends since the variation in the load carried by the tyre induced by the variation in thickness is not negligible. Moreover, the 
mathematical modeling of quasi-static rolling with an imposed load will (as proposed in the following in Section 4) would be more 
appropriate.

3.5. Sensitivity with respect to the angle 𝜓2

A parameter used classically in tire tread design is the inclination angle of the lateral grooves with respect to the lateral direction 
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of the tire structure. This angle is illustrated in Fig. 12 by angle 𝜓2. In what follows, the influence of this parameter on the tire 
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Fig. 11. Frequency spectrum of the vibration velocity of the shoulder node of the IL for 𝑒 = 5 mm ( ), 𝑒 = 10 mm ( ), 𝑒 = 15 mm ( ) and 𝑒 = 20 mm ( ).

Fig. 12. Tire treads used to study the sensitivity of the vibratory response in relation to the inclination angle of the lateral grooves.

vibratory response will be examined by considering the four tire treads configurations shown in Fig. 12. The rolling conditions 
remain unchanged compared to the previous part (i.e. 𝑉 = 96 km/h and 𝑑 = 10 mm). The vibrations responses are compared at the 
level of the points of the inner liner.

Figs. 13 and 14 display the evolution of harmonic contributions in the frequency domain of vibration velocities at the center node 
and shoulder node, respectively, for the four configurations of the lateral groove inclination angle.

A global attenuation of harmonic amplitudes is observed by increasing the inclination angle values 𝜓2 whatever the direction (with 
however amplitudes for 𝑣y weaker than those for the longitudinal 𝑣x and vertical 𝑣z) velocities. This attenuation of the harmonics 
amplitudes with respect to the inclination angle 𝜓2 can be physically explained by the progressive entries and exits of the grooves 
in the contact patch contrary to the lateral grooves (𝜓2 = 0) where the entry and exit occur instantaneously. When focusing more 
specifically on the configuration where 𝜓2 = 0 and the lateral velocity 𝑣y, it appears that the harmonic contributions are very weak: 
more precisely we find a null contribution for the evaluation point located at the center of the IL and a weak contribution for evaluation 
point located at the shoulder of the IL. These results are in perfect agreement with the previous observations and analysis proposed in 
the studies of the previous sections. In addition, the presence of the contribution of non-negligible harmonics of the lateral velocity 
𝑣y for configurations where 𝜓2 > 0 can be explained physically by the breakup of the tire lateral symmetry.

The experimental measurements shown in Fig. 4(b) and those found in the literature [6,11] show that the acoustic noise follows 
the same trend as the numerical results with respect to the inclination angle 𝜓2 of the lateral grooves with respect to the lateral 
direction of the tire. In addition, these results can be explained physically by the fact that the air pumping mechanism at the tire has 
the same sensitivity to angle 𝜓2 as the impact mechanism, since the compression (respectively the relaxation) of the air at the inlet 
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(the outlet, respectively) of contact zone occurs more gradually as the value of angle 𝜓2 increases.
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Fig. 13. Frequency spectrum of the velocity f the vibrations of the center node of the IL for 𝜓2 = 0 deg ( ), 𝜓2 = 22 deg ( ), 𝜓2 = 35 deg ( ) and 𝜓2 = 45 deg 
( ).

Fig. 14. Frequency spectrum of the velocity of vibrations of the shoulder node of the IL for 𝜓2 = 0 deg ( ), 𝜓2 = 22 deg ( ), 𝜓2 = 35 deg ( ) and 𝜓2 = 45 deg 
( ).

3.6. Sensitivity with respect to rib shifting

The last parametric analysis proposed concerns the notion of “rib shifting” which considers the case where the shoulder ribs are 
also grooved. The problem therefore consists in determining the impact of the alignment of the grooves of the shoulder ribs with 
respect to the grooves of the center rib. In what follows, the shoulder ribs are composed of 36 lateral grooves and three configurations 
are studied, as shown in Fig. 15: the grooves of the three ribs (center and two ends) are aligned in the first configuration; a shift of 
25% is applied to one of the shoulder ribs in the second configuration (as shown in the image at the center of Fig. 15 for the rib of 
the upper end); the third configuration consists in keeping the shift of 25% for the rib of the upper end while applying a shift of 50% 
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on the other shoulder rib (as shown in the right hand image of Fig. 15 for the rib of the lower end). The simulation of the vibratory 
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Fig. 15. Treads used in the study of the sensitivity of the vibratory response with respect to rib shifting.

Fig. 16. Frequency spectrum of the vibration velocity of the center node of the IL of config. 1 ( ), of config. 2 ( ) and of config. 3 ( ).

response is done using the same rolling conditions as for the previous studies (i.e. 𝑉 = 96 km/h, 𝑑 = 10 mm). The vibratory behavior 
is analyzed by observing the vibration velocity at the measurement points located on the inner liner.

Figs. 16 and 17 illustrate the evolution of harmonic contributions in the frequency domain of vibration velocities at the center 
node and shoulder node, respectively, across the three ‘rib shifting’ configurations. It can be seen that the frequency spectra are very 
similar for the three configurations, even though a slight attenuation of the levels of harmonic contributions for configurations 2 and 
3 can be detected for the longitudinal 𝑣x and vertical 𝑣z vibrations. This attenuation can be explained by the shift created by the rib 
shifting at the entry and exit of the grooves in the contact zone. Indeed, the aim of the rib shifting is to break the synchrony of the 
grooves impact of the three ribs on the road. Furthermore, it seems that the introduction of “rib shifting” generates lateral velocities 
𝑣y at the center of the wheel (contrary to all the studies performed in the previous sections for which the harmonic contributions 
of the lateral velocities 𝑣y are null). This can be easily explained physically by the fact that the presence of “rib shifting” breaks the 
lateral symmetry of the tire. It can be noted that the contributions of the lateral velocity 𝑣y estimated on the shoulder rib for the two 
shifted rib configurations (i.e. configurations 2 and 3) are higher than those calculated with the tread with aligned lateral grooves 
(i.e. configuration 1).

The experimental measurements shown in Fig. 4(c) indicate that the rib shifting attenuates rolling noise levels in the case of 50% 
shift while it has a negligible impact in the case of 25% shift. The numerical results show that the rib shifting induce a slight decrease 
of the vibrations. As noted in some studies [6,11], the degree of attenuation depends also on driving and operating conditions and 
other tire tread parameters. As already explained, this can be physically interpreted by the fact that the attenuation of rolling noise 
may be due to the fact that the offset of the ribs results in a desynchronization of the impact of the ribs at the entry and exit of the 
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grooves in the contact zone.
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Fig. 17. Frequency spectrum of the vibration velocity of the shoulder node of the IL of configuration 1 ( ), of configuration 2 ( ) and of configuration 3 ( ).

4. Rolling under imposed load

The tire loading simulation was performed in what preceded by imposing a vertical displacement on the rim zone. This control of 
the quasi-static rolling via the deflection can be considered as being an approximation of the real operating conditions of a tire given 
that tire systems roll while bearing the load of the vehicle. However, it should be remembered that the fact of imposing a vertical 
force on the rim zone makes the mechanical problem presented previously ill-posed.

Therefore, if one wants to get closer to more realistic operating conditions that takes into account the load of a vehicle and integrate 
its impact on the tire’s vibratory behavior, it is necessary to introduce an additional equation in the mathematical formulation proposed 
previously to model the system, so as to calculate the deflection, ensuring that the load carried by the tire is equal to the target load at 
each moment. In what follows, we first propose discussing the ill-posed nature of the mechanical problem due to taking into account 
a vertical force applied on the tire rim zone. Secondly, the additional equation permitting the integration of the load in the problem is 
explained by emphasizing in particular the modifications made in the formulation of the problem to control rolling with an imposed 
load. Then, the method is applied to simulate quasi-static rolling of the tire while taking account an imposed load. To this end, the 
vibratory response is calculated by considering this new mathematical formulation using the strategy developed previously in 2.4.

4.1. Ill-posed problem

The notion of a well-posed problem in the meaning of its mathematical formulation was introduced by Hadamard [38] as early 
as 1923. It is a problem for which the solution exists (existence of the solution of the problem), the solution is unique (uniqueness of 
the solution of the problem) and it depends continually on data (stability of the solution of the problem). In what follows, we analyze 
the formulation associated with taking into account an imposed load and determining the associated mathematical formulation to 
be applied to treat this type of problem. We consider a vertical force 𝐹𝑧 applied on the tire rim zone. It is noteworthy that the 
introduction of this new operating condition under an imposed load naturally substitutes taking into account an imposed deflection 
chosen initially (as proposed in the previous sections of this work. The longitudinal 𝑢x and lateral 𝑢y displacements are assumed to 
be null on the rim zone Γ𝑢 as shown in Fig. 18 (rim zone identified by the red circle of the tire). The solution of the problem 𝐮 is 
therefore sought in the functional space 1 defined by:

1 =
{
𝐮 ∈ 𝐻1(Ω) | 𝑢x = 𝑢y = 0 sur Γ𝑢

}
(32)

The contact condition can be interpreted as a Neumann condition where the contact forces are applied on the contact zone [39]. 
Thus, the variational formulation of the equations of motion modeling the static loading of the tire on a rigid plane under the effect 
of force 𝐹𝑧 is given by:

⎧⎪⎨
Find 𝐮 ∈ 1

𝐏 ∶𝛁𝐰 dΩ= 𝑝𝐽 (𝐅−⊺𝐍) ⋅𝐰dΓ + 𝐹z𝑤z dΓ + Π𝑛𝑤𝑛 dΓ ∀𝐰 ∈ 1
(33)
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Fig. 18. Mapping of crushing with load 𝐹z .

Fig. 19. Parameterization of the ground position.

If 𝐮 is a solution of the variational problem, then the function 𝐮𝑒 = 𝐮 + 𝑐𝐞𝑧 is also a solution of the problem (with 𝑐 being a non-null 
constant and 𝐞𝑧 is the vertical direction unit vector):

• The kinematic boundary conditions imposed on Γ𝑢 are verified by 𝐮𝑒 since its longitudinal and lateral components are the same 
as those of 𝐮.

• The boundary conditions on the follower pressure 𝑝 and on the contact forces are verified by 𝐮𝑒 since its gradient is the same as 
that of 𝐮.

Thus, the solution of the problem (33) is not unique and therefore it is ill posed. Remember that this type of analysis of non-
uniqueness of a solution is a classical conclusion in solid mechanics. Indeed, it corresponds to the fact that the solution of a mechanical 
problem is characterized by a rigid body motion when a boundary condition in displacement is not imposed on all the directions 
of the considered space. This difficulty can be bypassed by keeping control of the tire loading with the imposed deflection and by 
adding an additional equation to the mechanical problem. This technique will be detailed in the following section.

4.2. Load equation

The vertical load borne by the structure is calculated by integrating the normal pressure in the contact patch. To express the gap 
function gap 𝑔𝑛 analytically as a function of the deflection 𝑑, the nodal displacement on the rim zone is null and the position of the 
ground 𝑧𝑝 is variable and equal to the value of the deflection, as shown in Fig. 19. By considering the penalization method chosen to 
manage the non-interpenetration condition, load 𝐹𝑧 can be calculated as follows:

𝐹𝑧(𝐮, 𝑑) = ∫ 𝑝𝑛𝑑Γ = ∫ 𝜀𝑛𝑔𝑛𝑑Γ = ∫ 𝜀𝑛(𝑔0 + 𝑢𝑛 − 𝑑)𝑑Γ (34)
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Table 3

Algorithm simulating quasi-static rolling with an imposed load.

1 - Initialization

Initialization of displacement and deflection using the loading calculation (𝐮, 𝑑)
Choice of convergence thresholds (𝜀1, 𝜀2) and the maximum number of iterations 𝑁

2 – Time loop at time 𝑡𝑘

Iterative loop 𝑖

Calculate 𝐮𝑘 solution of the quasi-static problem at time 𝑡𝑘 with deflection 𝑑𝑖

Calculate load 𝐹𝑧(𝑑𝑖)
Convergence test

If (|𝐹𝑧(𝑑𝑖) − 𝐶𝑧| < 𝜖1) or (|Δ𝑑𝑖| < 𝜖2) or (𝑖 = 𝑁)
Exit loop
Otherwise
𝑑𝑖+1 = 𝑑𝑖 +Δ𝑑𝑖

Repeat (𝑖 = 𝑖 + 1).
Continue to time 𝑡𝑘+1

with 𝑔0 being the initial normal gap and 𝑢𝑛 the normal displacement component. Rolling is controlled with the boundary conditions 
defined previously in equation (27) but by considering in addition a variable deflection dependent on time. This corresponds to the 
zero of the following additional equation 𝐸𝑞(𝑑):

𝐸𝑞(𝑑) = (𝐹𝑧(𝑑) − 𝐶𝑧)2 (35)

where 𝐶𝑧 represents the imposed load. Newton’s method is used to find the zero of equation (35). Thus, after having chosen an initial 
value of the deflection 𝑑0, it is updated with the following iterative scheme:

𝑑𝑖+1 = 𝑑𝑖 +Δ𝑑𝑖 = 𝑑𝑖 −
𝐸𝑞′(𝑑𝑖)
𝐸𝑞(𝑑𝑖)

(36)

The calculation of the derivative of the additional equation (i.e. 𝐸𝑞′(𝑑)) introduced in the previous equation is therefore necessary 
when implementing the iterative scheme given by the Newton method. An approximation of this derivative can be obtained using 
the analytical expression of the gap function 𝑔𝑛. It becomes:

𝐸𝑞′(𝑑) = 2(𝐹𝑧(𝑑) − 𝐶𝑧)
𝜕𝐹𝑧

𝜕𝑑
≈ −2𝜀𝑛|Γ𝑡

𝑐
(𝑑)|(𝐹𝑧(𝑑) − 𝐶𝑧) (37)

where |Γ𝑡
𝑐
(𝑑)| represents the surface of the contact patch. Note that the calculation of the derivative of the expression of the gap in 

relation to the deflection is straightforward. However, the derivation of the integration domain Γ𝑐 (𝑑) in relation to the deflection is 
more complicated to perform (this part of the derivative is not taken into account by assuming that it is negligible in the vicinity 
of the solution of the problem being dealt with). The solution of the load equation is performed with a quasi-Newton method. Its 
convergence, with a lower rate than that of the Newton method, remains influenced by the initialization of the deflection. The 
algorithm simulating the quasi-static rolling with an imposed load is given in Table 3.

By analyzing the structure of the algorithm proposed in Table 3, it can be seen clearly that the computation time of the quasi-static 
rolling simulation with an imposed load is longer than that with an imposed deflection since several resolutions of the quasi-static 
problem are performed at each time step because the Newton loop is embedded in the quasi-Newton loop of the deflection. A weak 
coupling between displacement 𝐮 and deflection 𝑑 is therefore considered. It can be seen that the convergence of the iterative loop 
can be accelerated by multiplying the correction Δ𝑑𝑖 by a coefficient 𝛼 > 1.

4.3. Numerical application

The calculation method and strategy presented in the previous section are applied to simulate the quasi-static rolling under 
imposed load of the tire shown in Fig. 2. The mechanical properties and the numerical parameters of the simulation are the same as 
those used for the numerical simulations performed previously. A load of 500 daN and a rolling speed of 𝑉 = 96 km/h are imposed 
as operating conditions on the tire system.

Fig. 20 shows the temporal evolution of the load borne by the tire, the temporal evolution of the deflection and the frequency 
spectrum of the variation of the deflection (see the blue curves for the present case, referred to as “initial rolling condition”). It 
appears that the load borne by the tire is equal to the imposed load (as illustrated in Fig. 20(a)). It can also be mentioned that 
variable 𝑑 evolved in time (see Fig. 20(b)) which characterizes the fact that deflection 𝑑 varies through time to conserve a vertical 
load equal to the target load during the resolution of the problem. In addition, this variation can be explained physically by the 
variation of the shape of the contact patch due to the lateral grooves composing the tread pattern. The frequency spectrum of the 
variation of deflection 𝛿𝑑 defined as being the difference between deflection 𝑑 and its average value 𝑑 is composed of harmonics 
around the multiples of the impact frequency of the grooves on the contact patch (order = 36𝑘, 𝑘 ∈ ℕ) with a strong predominance 
of the principal order (𝑘 = 1), as shown in Fig. 20(c)).

Figs. 21 and 22 show the evolution of the vibratory response of the tire (at the center and shoulder nodes, respectively) whose quasi-
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static rolling is performed with an imposed load (see the blue curves for the present case, referred to as “initial rolling condition”). 
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Fig. 20. Time evolution (a) of the load borne by the tire (b) of the deflection. (c) Frequency spectrum of the deflection variation - ( ) with the initial rolling condition 
( ) with the new rolling condition (to be noted that the blue and red curves are identical).

Fig. 21. Time evolution of the vibratory displacement of the center node of the IL with the initial rolling condition ( ) and with the new rolling condition ( ).

Fig. 22. Time evolution of the vibratory displacement of the shoulder node of the IL with the initial rolling condition ( ) and with the new rolling condition ( ).

A numerical amplification (nonphysical) in time is observed at the level of the longitudinal vibrations 𝑢x and the lateral vibrations 
𝑢y, directly linked to the model of the quasi-static rolling. To investigate the source of this amplification, the quasi-static acceleration 
representing the excitation signal of the vibratory problem is examined at the level of the two evaluation points chosen previously 
(i.e. center node and shoulder node of IL), as shown in Figs. 23 and 24. An amplification of the longitudinal quasi-static acceleration 
𝑎x can be seen clearly at the two evaluation points. This amplification effect was not however observed on the lateral accelerations 𝑎y . 
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Thus, it can be concluded that the amplification of the lateral vibrations 𝑢𝑦 (blue curves given in Figs. 21 and 22) are the consequence 
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Fig. 23. Time evolution of the quasi-static acceleration of the center node of the IL with an imposed load of 𝐶𝑧 = 500 daN.

Fig. 24. Time evolution of the quasi-static acceleration of the shoulder node of the IL with an imposed load of 𝐶𝑧 = 500 daN.

of the Poisson effect. This amplification can be explained moreover by the condition used to control the advance of the tire in time 
with an imposed load. To demonstrate this, we propose in what follows to explain and discuss the expressions of the longitudinal 
displacement 𝑢𝑥(𝑥, 𝑦, 𝑧, 𝑡) (imposed on the rim zone) and its derivatives 𝑢̇𝑥(𝑥, 𝑦, 𝑧, 𝑡) and 𝑢̈𝑥(𝑥, 𝑦, 𝑧, 𝑡). The expressions 𝑢𝑥, 𝑢̇𝑥 and 𝑢̈𝑥

are given by:

𝑢𝑥(𝑥, 𝑦, 𝑧, 𝑡) = (𝑅𝑒 −
𝑑(𝑡)
3

)𝜔𝑡 + 𝑥 cos(𝜔𝑡) + 𝑧 sin(𝜔𝑡) − 𝑥

𝑢̇𝑥(𝑥, 𝑦, 𝑧, 𝑡) = (𝑅𝑒 −
𝑑(𝑡)
3

)𝜔 − 𝑑̇(𝑡)
3

𝜔𝑡 − 𝜔𝑥 sin(𝜔𝑡) + 𝑧𝜔 cos(𝜔𝑡)

𝑢̈𝑥(𝑥, 𝑦, 𝑧, 𝑡) = −2𝑑̇(𝑡)
3

𝜔 − 𝑑(𝑡)
3

𝜔𝑡 − 𝜔2𝑥 cos(𝜔𝑡) − 𝑧𝜔2 sin(𝜔𝑡)

(38)

where 𝑥, 𝑦 and 𝑧 represent the coordinates of the position vector 𝐗 of a point of the reference configuration. Equation (38) clearly 
shows that the variation of the deflection amplifies the quasi-static longitudinal acceleration imposed in the control of the quasi-

static rolling. Indeed, this amplification is characterized by the terms 𝑑̇(𝑡)
3 𝜔𝑡 and 𝑑(𝑡)

3 𝜔𝑡 for the contribution in velocity 𝑢̇𝑥(𝑥, 𝑦, 𝑧, 𝑡)
and acceleration 𝑢̈𝑥(𝑥, 𝑦, 𝑧, 𝑡), respectively. This amplification on the longitudinal component of the velocity and acceleration therefore 
impacts the quasi-static acceleration of the entire structure. Also, to correct this non-physical amplification, a simple strategy to be 
implemented consists in replacing the deflection 𝑑(𝑡) by its average value 𝑑, which permits getting rid of the time dependency of 
the deflection variable in relation to time 𝑡 (and thus canceling the two terms 𝑑̇(𝑡) and 𝑑(𝑡) and avoiding the numerical increase in 
time of the velocity and the longitudinal acceleration). The new longitudinal displacement 𝑢𝑥(𝑥, 𝑦, 𝑧, 𝑡) imposed on the rim zone is 
therefore given by:

𝑢𝑥(𝑥, 𝑦, 𝑧, 𝑡) = (𝑅𝑒 −
𝑑

3
)𝜔𝑡 + 𝑥 cos(𝜔𝑡) + 𝑧 sin(𝜔𝑡) − 𝑥 (39)

The results of the correction made to the kinematic condition imposed to control the quasi-static rolling are given in Fig. 20 (see 
the red curves for this new kinematic condition, referred to as “new rolling condition”). The load carried out by the tire is equal to 
the imposed load. The evolution of deflection 𝑑 and the frequency spectrum of the variation of deflection 𝛿𝑑 are the same as those 
obtained with the initial rolling condition. Consequently, the correction permits keeping the same contact patch while eliminating 
the numerical amplification of the quasi-static acceleration induced by the variation of the deflection. This therefore validates the 
mathematical formulation and the proposed numerical strategy.

The vibratory response of the tire under imposed load is now calculated with the resolution strategy proposed and using the 
quasi-static response obtained with the new control condition of rolling. Results are provided in Figs. 21 and 22 for displacements 
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according to three directions for the node located at the center and at one end of the tire of the IL, respectively. These figures illustrate 
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Fig. 25. Frequency spectrum of the vibration velocity of the center node of the IL with an imposed load 𝐶𝑧 = 500 daN.

Fig. 26. Frequency spectrum of the vibration velocity of the shoulder node of the IL with an imposed load 𝐶𝑧 = 500 daN.

the comparison between the vibratory responses by considering the initial formulation of the rolling condition (blue curves) and the 
modified proposal (red curves), for displacements according to three directions for the node located at the center and at one end of 
the tire of the IL, respectively.

First, it can be clearly observed that the new rolling condition proposed via the modified longitudinal displacement permits 
eliminating the numerical amplification observed at the level of the longitudinal vibrations and at the level of the lateral vibrations 
calculated at the center and at the shoulder of the IL. Moreover, it can be noted that it leads to an attenuation of the amplitude of the 
lateral 𝑢𝑦 and longitudinal 𝑢𝑥 vibrations while the vertical vibrations 𝑢𝑧 are slightly affected. It can also be seen that the vibration 
frequency does not vary due to the correction made to the rolling condition. Thus, the correction of the rolling condition makes it 
possible to obtain a periodic vibratory behavior consistent with the physical phenomena integrated in the model of the tire system 
(i.e. loaded structure rolling on a rigid plane).

The frequency spectra of the vibration velocities calculated with an imposed load (and by considering the new rolling control 
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condition) are given in Figs. 25 and 26 for the center and shoulder nodes of the IL, respectively. These results should be compared 



Applied Mathematical Modelling 135 (2024) 477–503Z. Knar, J.-J. Sinou, S. Besset et al.

with those proposed in the previous sections (results with the imposed deflection condition). The main difference in comparison to the 
simulations with the imposed deflection condition is observed for the vertical vibration frequencies 𝑣𝑧 . Indeed, the main contribution 
can be observed around the grooves impact frequency (order = 36) with less marked secondary contributions identified as harmonics 
located around the multiples of the grooves impact frequency (order = 36𝑘, 𝑘 ∈ℕ∗). It can also be seen that the maximum contribution 
is identified for the vertical velocity with amplitudes of maximum contributions approximately 3 times higher than those detected 
for the transversal velocity 𝑣𝑥 , whereas for the imposed deflection configuration the intensities of harmonic contributions were quite 
similar for vertical 𝑣𝑧 and longitudinal 𝑣𝑥 velocities. This change of tire behavior compared with the imposed deflection configuration 
can be explained by the variation of the vertical quasi-static displacement brought about by the variation of the deflection. In addition, 
the amplitudes ratio between the vertical velocity 𝑣𝑧 and the longitudinal 𝑣𝑥 velocity corresponds to the impact of the deflection on 
the rolling radius defined in Equation (29).

Regarding the longitudinal velocities of 𝑣𝑥 it can also be noted that they do not vary greatly, for the two measurement points 
considered, in comparison to the calculations with an imposed deflection, and that the global composition of the associated spectra is 
mainly composed of harmonics located around frequency of groove passages in the contact patch. To conclude, it can be observed that 
the lateral velocity 𝑣𝑦 is canceled at the center of the IL which can be explained as stated previously by the tire’s lateral symmetry. 
However, it is interesting to note the presence of harmonics around the multiples of contact efforts in the case of this new configuration 
under imposed load with an effect of modulation in the spectrum of lateral vibration velocities 𝑣𝑦 .

In conclusion, these numerical results, which allow considering the case of a tire through controlled quasi-static rolling with an 
imposed load, show the non-negligible effect of the choice of model of the problem of a tire rolling on a rigid plane. It appears without 
any possible doubt that a considerable change of tire vibratory behavior occurs regarding in particular vertical vibrations 𝑣𝑧 both in 
terms of frequency content and the intensity of different preponderant harmonic contributions. This evolution of vibratory behavior 
in comparison to the imposed deflection configuration is consistent with the variation of the shape of the contact patch between 
the two configurations tested (i.e. in deflection and imposed load, respectively). We recall that the latter configuration tested under 
imposed load normally corresponds to a more realistic case of tire loading and, due to the differences of behavior in comparison to 
the first configuration tested, it should be privileged for the tire’s rolling simulation.

4.4. CPU time

The aim of this last part is to analyze the computation time of the different simulations presented in this paper. This point is 
fundamental for industrial applications given that the size of the finite element models treated is considerable (degrees of freedom 
≈ 106). The aspects of the computation sequence used to calculate the rolling noise developed in this paper are shown in Fig. 27. The 
results examined in this article concern the part framed in red in Fig. 27.

The architecture of the MEF++ solver makes it possible to perform high performance calculations (HPC). Indeed, the assembly of 
matrices and the resolution of the linear systems (PETSc library) required in the computation of quasi-static rolling are parallelized. 
This permits the efficient use of computer resources and therefore reducing computation time. The assembly of the stiffness matrix 
of the vibratory problem, performed at each time step because it depends on quasi-static displacement, is also paralleled in the script 
developed on Matlab to solve the vibratory problem. The computation time, examined in what follows, concerns the times of the 
simulations performed with the mesh shown in Fig. 2. The final simulation time corresponds to 6000 time steps and permits the 
structure to make three wheel rotations at a rolling speed of V = 96 km/h. A line search algorithm [40] is added to the quasi-static 
Newton calculation loop to increase the robustness of convergence.

Table 4 shows the different CPU times obtained for the two steps corresponding to the quasi-static rolling (MEF++) and to 
the evaluation of the vibrations (Matlab) in the case of the imposed deflection configuration. It can be noted that the scientific 
developments proposed in terms of mathematical modeling and computer methods, as well as the calculation times announced to 
solve complex engineering problems are compatible with use in the design phase for manufacturers working on sculpted tire design 
problems. Thus the proposed methodology can serve as an aid to a better understanding of complex and realistic problems in the 
multi-scale nature of the dynamic response of an industrial rolling sculpted tire.

It can be seen very clearly that increasing the number of computation cores used leads to a considerable reduction in the calculation 
time of the quasi-static rolling and vibratory response simulations. It is almost proportional to the number of cores used in the case of 
quasi-static rolling. This proves the scalability of the MEF++ solver. The decrease in the computation time of the vibratory response 
is less substantial than that of the quasi-static rolling but nonetheless remains non-negligible. This all demonstrates without ambiguity 
the potential of the strategy proposed in this study for utilization in an industrial context and on large-scale finite element models.

Also, Table 5 shows the evolution of the computation time of quasi-static rolling under imposed load as a function of the number of 
computation cores. Increasing the number of cores also leads to considerable reduction of the computation time. Computation times 
with rolling under an imposed load are far larger than those of rolling under an imposed deflection. This can be expected since the 
Newton loop of the quasi-static calculation is embedded with the quasi-Newton loop that updates the deflection. The latter ensures 
that the load borne by the tire is equal to the target load 𝐶𝑧 at each time step.

In conclusion, the computation times announced previously for the two rolling configurations in imposed deflection and imposed 
load show without the least ambiguity the potential of the strategy proposed in this study for utilization in an industrial context 
and on large scale finite element models. The evolution of the calculation time as a function of the computer resources used in the 
simulation shows the importance of parallelization. For interested readers, it is clear that the computation times could be optimized 
still further by integrating the calculation of the vibratory behavior in the MEF++ solver since the stiffness matrix of the vibratory 
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problem is the tangent stiffness matrix of the quasi static problem. All the conclusions regarding the CPU times are encouraging in 
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Fig. 27. Rolling noise computing sequence.

Table 4

Evolution of computation time as a function of the number of cores - Rolling 
under imposed deflection.

1 core 6 cores 12 cores

Quasi-static rolling (MEF++) 72 h 14 h 7 h 30 min
Vibrations (Matlab) 27 h 7 h 30 min 5 h 18 min

Table 5

Evolution of computation time as a function of the number of cores – 
Rolling under imposed load.

6 cores 12 cores 20 cores

Quasi-static rolling (MEF++) 83 h 45 h 33 h

view to the industrialization of the numerical strategy developed to overcome the problem of tire design and determining the optimal 
design by proposing intensive computations regarding the possible evolution of certain physical parameters of the tire structure and 
different operational conditions.

5. Conclusions and perspectives

As a reminder, one of the difficulties in simulating the complete dynamic response of a rolling sculpted tire is the multi-scale 
nature of the dynamic response, which decomposes into a macroscopic rolling dynamic behavior around the rotational frequency, 
and the vibratory response in a wider frequency window. A key point is that the amplitudes of the macroscopic dynamic behavior 
are relatively low, while the amplitudes of the vibratory response are relatively high. From this standpoint the first contribution of 
the proposed study is to describe a strategy to solve the vibratory problem of a patterned tire rolling on a rigid plane. The latter 
was based on the decomposition of the problem in two main steps with the definition of the configuration of the state of the tire 
to be perturbed by an excitation representing the physical phenomena of noise generation, linked to successive making and losing 
contact at the tire/rigid plane contact patch. The major advantage of the proposed strategy is therefore that it enables us to solve the 
problem in two stages to separate the dynamics operating at different scales, unlike a simple strategy which would involve using a 
stable energy-conserving time integrator to predict the dynamic response at several scales, and would therefore be less efficient in 
terms of computation speed, data storage and potentially robust numerical results.

One second major contribution is to promote increased insights into real-world problems and more particularly in the field of 
engineering systems and tire structures through mathematical and numerical modeling of an industrial rolling sculpted tire and the 
prediction of the dynamic response at several scales versus different geometric parameters of the sculpted tire. To illustrate this, the 
formulation and the modeling of a structure with a geometry representing an industrial tire rolling on a rigid plane were described. 
The numerical simulations highlighted the influence of the rolling conditions on the vibration levels, and the sensitivity of vibrations 
in relation to several design parameters of the tire tread pattern. All of these results demonstrate not only the relevance of the 
proposed approach to efficiently and quickly predict the response dynamic at several scales on a real industrial sculpted tire but can 
also constitute a first step with the aim of optimizing the characteristics of the tire according to different operating conditions and 
so advanced mathematical modeling and computational tools for engineering leading to future innovations and novel technologies 
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if it is sometimes difficult to make a direct comparison due to the complexity of the physical mechanisms involved in rolling noise 
generation. This illustrates that the proposed mathematical modeling and the strategy based on a two-step approach to separate the 
dynamics occurring at different scales are effective for use as design aid tools when specifying tire tread pattern dimensions and the 
problems of attenuating non-linear vibrations generated by pavement-road contact and the associated rolling noise.

The second part of this study developed in Section 4 was devoted to the quasi-static rolling simulation with an imposed load. 
The need to propose an extension of the first mathematical formulation proposed was discussed and validated. Then, the vibratory 
response was simulated and the differences of behavior compared to the imposed deflection configuration were analyzed. The main 
contribution of this last part of the study is to propose new scientific developments for mathematical and computational modeling 
adapted to a complex realistic problem. The new two-step approach proposed in this study then proves to be entirely relevant in the 
solution of practical engineering problems (i.e. the nonlinear vibrations of patterned tires rolling dynamics subjected to an imposed 
load).

A large number of perspectives can be considered following this study. Several paths for future developments and research works 
linked to modeling, computation strategy and numerical resolution are provided in the following:

• First, regarding the modeling of the contact phenomena, we emphasize that a frictionless contact was considered between the 
tire and the rigid foundation in the framework of this study as the methodology had already been validated for this type of 
contact [32]. The integration of the frictional contact would not only allow studying the sensitivity of the vibratory response 
with respect to the grip conditions but also integrating the stick-slip and stick-snap phenomena in the model and thus covering a 
wider range of structural mechanisms generating rolling noise. Although the efficiency and pertinence of the strategy proposed 
in this study had already been validated on an academic structure (rolling and frictional contact), a major issue in the framework 
of an industrial tire system is to efficiently model the vibratory response in the contact patch as a function of the friction regime.

• More specifically, the quasi-static rolling configuration under imposed load charge was employed by assuming a weak coupling 
between the deflection and the displacement. This formulation is easy to implement but penalizes the rate of convergence. 
Therefore, a formulation with strong coupling, where the derivative of the additional equation with respect to the displacement 
is integrated in the tangent matrix, would allow simultaneously calculating the displacement and the deflection in a single Newton 
loop. Strong coupling would make it possible to obtain the same magnitude of computation time as for the configuration with 
an imposed deflection. The sensitivity of the vibratory response with respect to the rolling conditions and the design parameters 
of the tire tread could then be studied with an optimized computation time.

• Most tire vibrations are located close to the entry and exit of the contact patch given the viscous damping properties of tire 
rubber. The integration of a damping model in the model is crucial to obtain a realistic circumferential distribution of the 
vibratory response. Thus, one of the priority paths in terms of additional modeling in comparison to the existing model would 
be the inclusion of a viscous dissipation equation from rheological models (e.g., Kelvin-Voigt or Zener type) [41].

• Tire rolling was controlled by simultaneously imposing the rotation and the translation velocities. They were linked by a first 
order approximation of the rolling radius. This purely kinematic control is stable and easy to implement. The rolling could also 
be controlled with imposed torque with an additional equation linking the imposed rotation speed on the rim zone and the 
torque applied to the wheel. Furthermore, realistic reproduction of the rolling control would consist in imposing only rotation 
(translation, respectively) by allowing the contact tangential forces to control the advance (rotation, respectively) of the tire. 
This control could be implemented by imposing the kinematic on a fictional point defined geometrically as the center of the 
wheel and linked rigidly with the rim zone.

• The impact of the road roughness mechanism could be taken into account in the model by including the profile of the texture in 
the calculation of the normal gap function. This would make it possible to obtain a more realistic response from the tire structure 
due to the introduction of an excitation more consistent with the reality of a rolling system in operation. Regarding the problem 
of the strategy of solving such a problem, the question raised is that of knowing whether the texture should be integrated in the 
quasi-static rolling or in the vibration problem. The first option would require a fine mesh capable of reproducing the micro-
textures of the road so as to capture the entire excitation frequency signature of the vibration problem. The second option would 
require refining the mesh only for the linear vibration problem whose solution is less costly than that of the nonlinear quasi-static 
problem. In this case, the problem of the road would be imposed kinematically on the contact patch given by the quasi-static 
rolling which would be performed on a smooth ground.

Nomenclature

Ω Reference configuration
Ω𝑡 Current configuration
𝐗 Coordinates of reference configuration
𝐱 Coordinates of current configuration
Γ𝑢 Dirichlet boundary condition zone in the reference configuration
Γ𝑡

𝑢
Dirichlet boundary condition zone in the current configuration

Γ𝜎 Neumann boundary condition zone in the reference configuration
Γ𝑡

𝜎
Neumann boundary condition zone in the current configuration

Γ𝑝 Follower pressure boundary condition zone in the reference configuration
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Γ𝑡
𝑝

Follower pressure boundary condition zone in the current configuration
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Γ𝑐 Potential contact zone
Γ𝑡

𝑐
Contact active zone

𝝋 Mapping of reference to current configuration
𝐮 Displacement field
𝛁 Gradient with respect to 𝐗
𝐈 Identity second order tensor
𝐅 Deformation gradient
𝐂 Cauchy-Green tensor
𝐄 Green-Lagrange strain tensor
𝝈 Cauchy stress tensor
𝐏 First Piola-Kirchhoff stress tensor
𝐒 Second Piola-Kirchhoff stress tensor
𝑊 Strain energy function
 Fourth order elasticity tensor
𝐍 Outward unit normal in the reference configuration
𝐧 Outward unit normal in the current configuration
Π𝑛 Normal contact pressure
𝚷𝑡 Tangential stress vector
𝑢𝑛 Normal displacement
𝑔𝑛 Normal gap function
𝑉 Traveling speed
𝜔 Rotation speed
𝑟𝜔 Rolling radius
𝑑 Deflection
𝜀𝑛 Normal penalization
𝑝 Inflation pressure
Δ𝑡 Time step
𝑅𝑒 Tire geometrical radius
𝑅𝑗 Rim radius
𝑤 Tire width
(𝜆, 𝜇) Lamé constants
𝐸 Young Modulus
𝜈 Poisson coefficient
𝜌 Density
𝐻1(Ω) First order Sobolev space
𝑢𝑥 Longitudinal displacement
𝑢𝑦 Lateral displacement
𝑢𝑧 Vertical displacement
𝑣𝑥 Longitudinal velocity
𝑣𝑦 Lateral velocity
𝑣𝑧 Vertical velocity
𝑎𝑥 Longitudinal acceleration
𝑎𝑦 Lateral acceleration
𝑎𝑧 Vertical acceleration
𝑒 Groove width
𝜓2 Groove inclination angle
𝐶𝑧 Imposed load
𝑑 Deflection mean value
𝛿𝑑 Deflection variation
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