A New, Non-invasive Fish Backpack Biologger to Measure the Physical Conditions Experienced by Swimming Fish during Downstream Passage

Falko Wagner¹, André Busch¹, David Buysse², Stefan Hoerner³, Moritz Kenndoff⁸, Ine Pauwels², Tom Rößger⁵, Márcio Salqueiro Roth⁵, Martin Schletterer^{4, 6}, Jürgen Stamm⁵, Gert Toming⁷, Jeffrey A. Tuhtan⁷

Institute of Aquatic Ecology and Fish Biology (IGF) JENA

Introduction


- Increasing Efforts to Develop "Fish Friendly" Technologies in HPP Main Strategies
 - Turbine Management
 - Improved and New Turbine Types
 - Fish Protection Devices in Combination with Bypasses
- Increasing Number of Studies on HPP Sites to Proof "Fish Friendliness"
- Life Fish (Injection) Experiments with Potentially High Risk of Severe
 Injuries and Stress
- Increasing Number of Fish for Field Studies in the European Union

2017: 720,000 Fish for Experiments

2018: 1.7 Mio. Fish for Experiments

VLH Turbine HPP Baierbrunn
Source: Landeskraftwerke Bayern

Fishprotection Screen Mulde River

In Accordance with the "3-Rs Principle" (Russell & Burch 1960)

Goal: Methods to Reduce the Number of Fish Necessary for Fish Mortality Studies at HPP

Tool 1

ACTIVE

Refinement/Reduction

BACKPACK SENSORS

Tool 3

ACTIVE

Fish

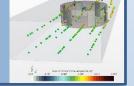
Driven

Section of the Contract of the

Sensor Optimization

Ethohydraulic Studies (Turbine Inlet Model)

Physical Data


Behavior Data

Health Data

NUMERICAL MODELS

Replacement

CFD —Active Particles

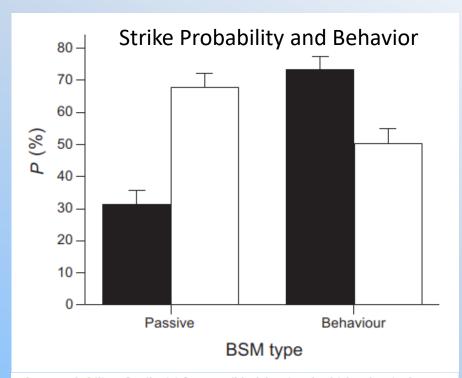
Tool 2

ACTIVE

ROBOFISH

Fish Model: Rheotaxis, Swimming

Application in Real HPP


Application in Real HPP

Physical Data/Behavior Data

RETERO Project

Why Active Fish?

- Fish Behavior Influences Blade Strike Probability and Thus Mortality Rates (COUTANT & WHITNEY 2000; VOWLES et al. 2014; GEIGER et al. 2020)
- Fish React on Hydraulic Stimuli, e.g. Accelerating Flow (PAVLOV & TJURJUKOV 1995; Haro et al. 1998; ENDERS et al. 2009, 2012; VOWLES & KEMP 2012; VOWLES et al. 2014)

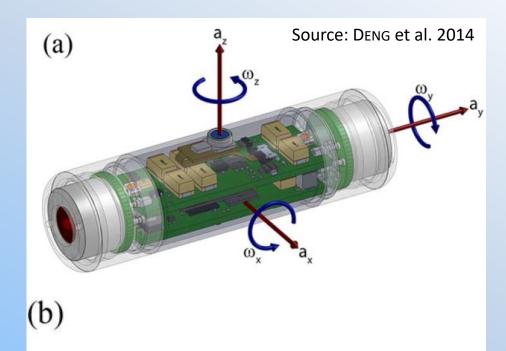
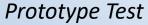
Fig. 5. Probability of strike (P) for trout (black bars) and eel (clear bars) when passively drifting through a HPW while perpendicular to the flow (Passive BSM), and when OL_{fish} and OV_{fish} values were incorporated into the model (Behaviour BSM). Errors bars are +1 SD. Source: Vowles et al. 2014

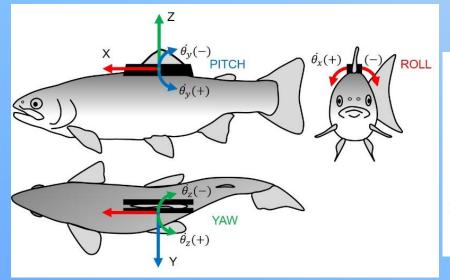
Why Active Fish?

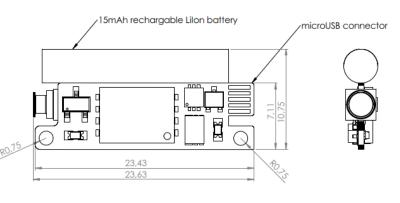
- Fish Behavior Influences Blade Strike Probability and Thus Mortality Rates (COUTANT & WHITNEY 2000; VOWLES et al. 2014; GEIGER et al. 2020)
- Fish React on Hydraulic Stimuli, e.g. Accelerating Flow (PAVLOV & TJURJUKOV 1995; Haro et al. 1998; ENDERS et al. 2009, 2012; VOWLES & KEMP 2012; VOWLES et al. 2014)
- Passive Sensors Provide Valuable Data from Inside
 Turbine Conditions and Alternative Passageways
 (CARLSON et al. 2003; Deng et al. 2007; DENG et al. 2014;
 Boys et al. 2013; Boys et al. 2018; PAUWELS et al. 2020)

BUT

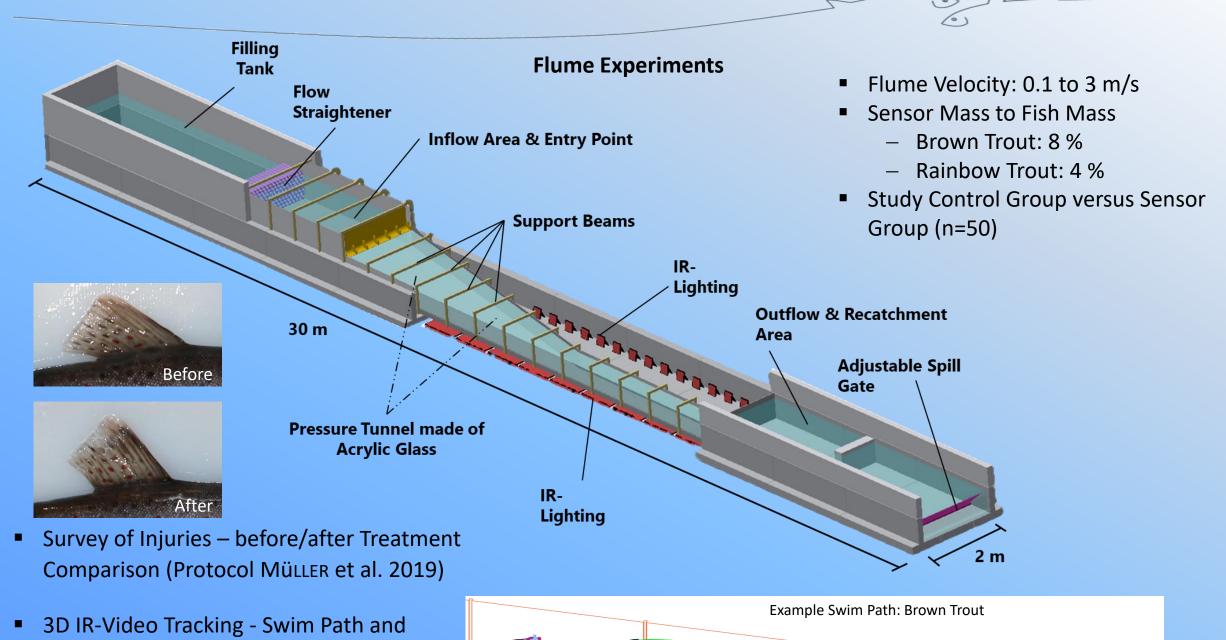
Passive Sensors Pass Turbine Randomly - Fish Probably
 Prefer or Avoid Paths and Accelerate or Decelerate



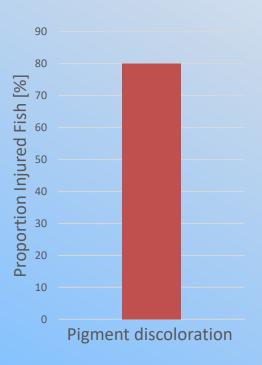

FIG. 1. The Gen 2 Sensor Fish device: (a) CAD model and (b) photo.

- Attachment: Non-invasive Dorsal Fin Clip
- Total Mass: 3-5 g, Depending on Clip Used (Species Specific)
- Rechargable LiPo Battery
- Size: 23 x 10 x 4 mm (2. Generation)
- Multisensor Measuring (100, 200 or 2048 Hz):
 - Acceleration +/-16 g or +/- 400 g
 - Rotational Velocity
 - Absolute Orientation
 - Magnetic Field
 - Pressure
 - Temperature



Laboratory Tests - Method

Behavior



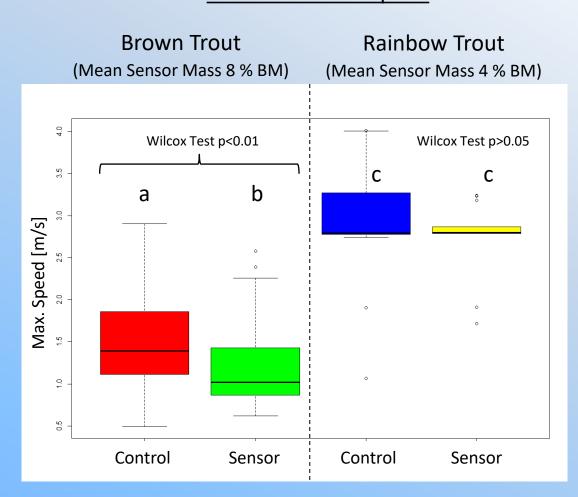
Sensor Effects on Health Condition

- No Serious Injuries Based on Injurie Categories by Müller et al. (2019)
- Minor Pigment Discoloration at Fin Basis Only

Injuries Brown Trout

Laboratory Tests - Results

Sensor Effects on Behavior

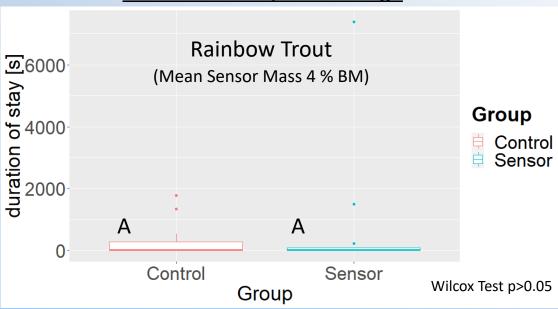

 No Obvious Change in Behavior (Change in Activity, Flight Reactions, Apathy, Scrubbing...)

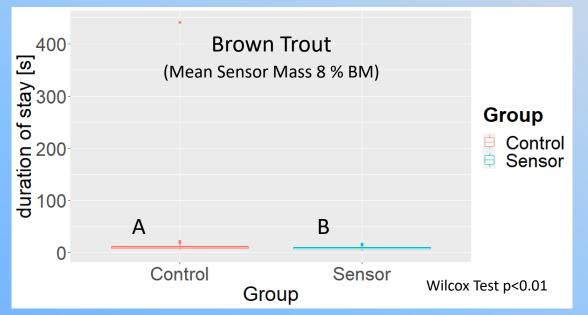
Laboratory Tests - Results

Sensor Effects on Behavior

- No Obvious Change in Behavior (Change in Activity, Flight Reactions, Apathy, Scrubbing...)
- Maximum Swim Speed: No Effect on Rainbow Trout;
 Minor Reduction in Sensor Group of Brown Trout

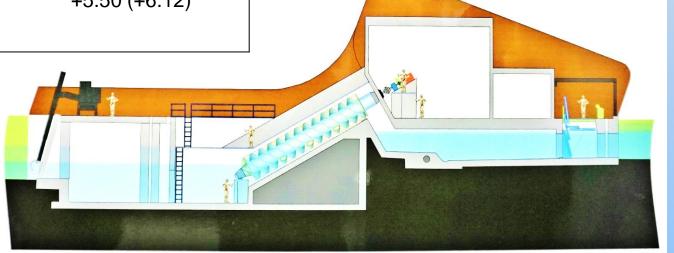
Maximum Swim Speed




Laboratory Tests - Results

Sensor Effects on Behavior

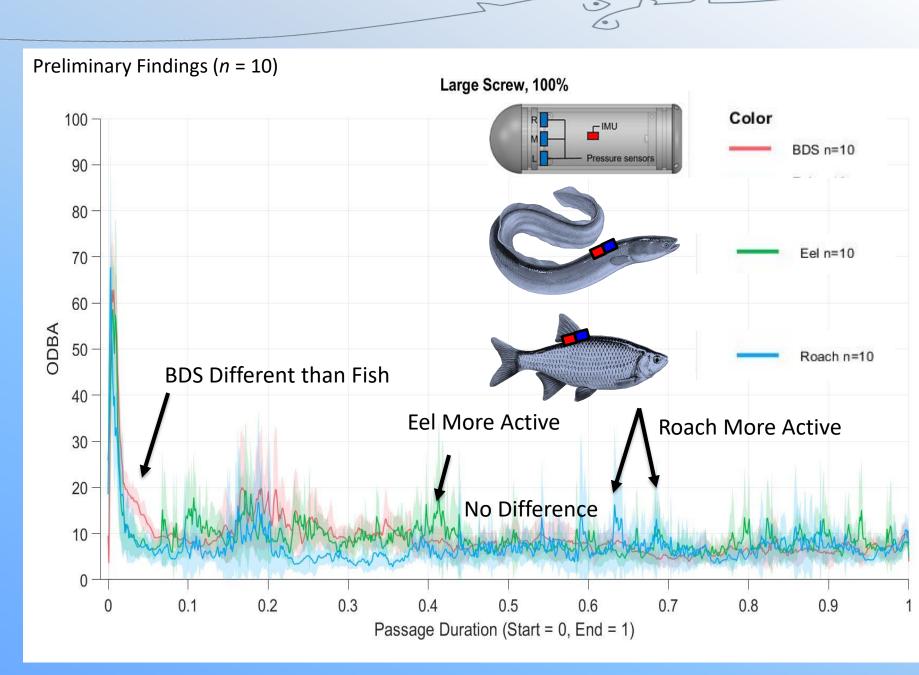
- No Obvious Change in Behavior (Change in Activity, Flight Reactions, Apathy, Scrubbing...)
- Maximum Swim Speed: No Effect on Rainbow Trout;
 Minor Reduction in Sensor Group of Brown Trout
- Timespan until Downstream Passage: No Effect in Rainbow Trout but Faster Passage in Brown Trout


Time until Complete Passage

Large Open Screw	Smaller Closed Screw
3.5 / 2.28	1 / 0.65
Inner 1.820 Outer 3.200	Inner 1.025 Outer 2.050
4.76	4.22
11.94	9.87
30	30
250	75
+1.60 (+0.57)	+1.90 (+0.57)
Headwater Level (mASL) (Screw Centre Elevation)	
	3.5 / 2.28 Inner 1.820 Outer 3.200 4.76 11.94 30 250 +1.60 (+0.57)

- Archimedean Screws
- Site Channel Antwerp (Belgium)
- Two Screw Types

A) Injection

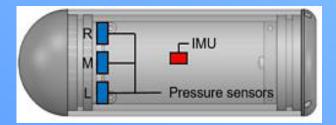


B) Catch

Norwegian Nets

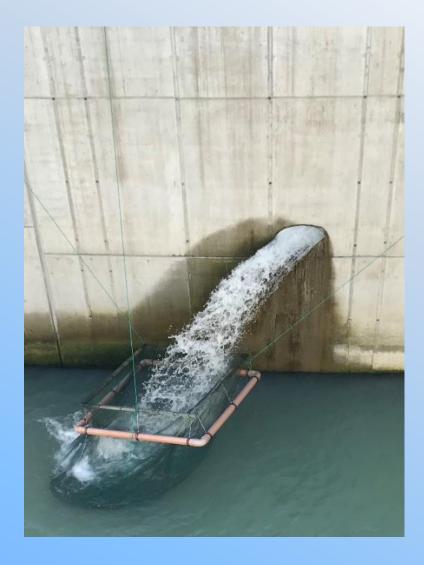
- Group Specific ODBA-Pattern (Overall Dynamic Body Acceleration)
- Behavior Indicator
- Flume Video Data Analysis for ODBA Interpretation Necessary

Case Studies Field – Bypass: Site Characteristics Bypass HPP Kirchbichel, Inn (Austria) **Two Entrances** Total Length app. 45 m 13.30m


62.00m

A) Injection

Backpack Sensors



BDS

B) Catch

		travel time [s]	impact maximum acceleration [m/s²]	impact duration [s]
50 l/s Backpack	mean	28.410	63.475	0.088
	std. deviation	13.652	3.612	0.066
50 l/s BDS	mean	26.682	212.904	0.052
	std. deviation	16.635	31.830	0.025

Summary and Outlook

- Backpack Sensors Provide Data of the Fish Environment and Fisch Activity
- No Effects on the Fish Behavior in Salmonids when Sensor Mass ≤ 4% of Fish Mass
- No Severe Injuries of Fins during Short Terme Use (1-3 h)
- The Backpack Sensors Passed Field Use Tests and Data Are Different from BDS
- Tests with Cyprinids and Percids Are Planned during the Next 12 Months
- Further Size Reduction of Sensors Is Planned for the Next Project Phase
- Analysis of Impact on Test Fish Using Blood Stress Markers
- Analysis of Video Tracking and Sensor Data to Enable Behavior Categorization Based on Sensor Data

The RETERO Project is funded by the German Ministry of Education and Research (BMBF) - Grant No. 031L0152

MAIL: falko.wagner@igf-jena.de

WEB: www.igf-jena.de