
HAL Id: hal-04649104
https://hal.science/hal-04649104

Submitted on 16 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Already Moderate Population Sizes Provably Yield
Strong Robustness to Noise

Denis Antipov, Benjamin Doerr, Alexandra Ivanova

To cite this version:
Denis Antipov, Benjamin Doerr, Alexandra Ivanova. Already Moderate Population Sizes Provably
Yield Strong Robustness to Noise. GECCO ’24: Genetic and Evolutionary Computation Conference,
2024, Melbourne VIC, Australia. pp.1524-1532, �10.1145/3638529.3654196�. �hal-04649104�

https://hal.science/hal-04649104
https://hal.archives-ouvertes.fr

Already Moderate Population Sizes Provably Yield Strong
Robustness to Noise

Denis Antipov

Optimisation and Logistics,

School of Computer and

Mathematical Sciences,

The University of Adelaide

Adelaide, Australia

Benjamin Doerr

Laboratoire d’Informatique (LIX)

CNRS, École Polytechnique

Institut Polytechnique de Paris

Palaiseau, France

Alexandra Ivanova

HSE Unversity, Skoltech

Moscow, Russia

ABSTRACT

Experience shows that typical evolutionary algorithms can cope

well with stochastic disturbances such as noisy function evaluations.

In this first mathematical runtime analysis of the (1 + _) and (1, _)
evolutionary algorithms in the presence of prior bit-wise noise, we

show that both algorithms can tolerate constant noise probabil-

ities without increasing the asymptotic runtime on the OneMax

benchmark. For this, a population size _ suffices that is at least

logarithmic in the problem size 𝑛. The only previous result in this

direction regarded the less realistic one-bit noise model, required

a population size super-linear in the problem size, and proved a

runtime guarantee roughly cubic in the noiseless runtime for the

OneMax benchmark. Our significantly stronger results are based on

the novel proof argument that the noiseless offspring can be seen

as a biased uniform crossover between the parent and the noisy

offspring. We are optimistic that the technical lemmas resulting

from this insight will find applications also in future mathematical

runtime analyses of evolutionary algorithms.

CCS CONCEPTS

• Theory of computation→ Theory of randomized search

heuristics; Evolutionary algorithms; Random search heuristics.

KEYWORDS

Noisy optimization, Runtime analysis, Theory, Population-based

algorithms

ACM Reference Format:

Denis Antipov, Benjamin Doerr, and Alexandra Ivanova. 2024. Already

Moderate Population Sizes Provably Yield Strong Robustness to Noise. In

Genetic and Evolutionary Computation Conference (GECCO ’24), July 14–

18, 2024, Melbourne, VIC, Australia. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3638529.3654196

1 INTRODUCTION

Themathematical runtime analysis has accompanied and supported

the design and analysis of evolutionary algorithms (EAs) for more

than 30 years. It has led to a deeper understanding of many impor-

tant aspects of evolutionary computation [3, 13, 25, 37, 49].

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0494-9/24/07.

https://doi.org/10.1145/3638529.3654196

While this area has also studied how EAs cope with noise, that is,

a stochastically disturbed access to the true problem instance, the

rigorous understanding of this aspect of evolutionary computation

is rather limited. Most previous works regard simple algorithms like

the (1 + 1) EA and show that these, without particular adjustments,

can stand a moderate level of noise, but usually not more than

one noisy fitness evaluation every roughly 𝑛/log(𝑛) iterations for
problems with bit-string representation of length 𝑛.

Some works have shown that larger population sizes improve

the robustness to noise, but these still do not show a very satisfying

picture. For example, in the work closest to ours, Gießen and Kötz-

ing [23] showed that the (1 + _) EA can stand random one-bit prior

noise with arbitrary rate 𝑞 ∈ [0, 1] when optimizing the OneMax

benchmark. However, their result requires a relatively large pop-

ulation size of at least _ = Ω(1𝑞𝑛 log𝑛) and then gives a runtime

guarantee of 𝑂 (1𝑞𝑛
2_) fitness evaluations, significantly above the

guarantee𝑂 (max{𝑛_ log log_
log_

, 𝑛 log𝑛}) for the noiseless setting [12].
We also note that both the required population size and the runtime

guarantee contain a factor of
1

𝑞 , that is, they become worse for

lower noise rates. This counter-intuitive dependence on the noise

intensity together with the weak runtime guarantee of order at

least 𝑛3 log𝑛 suggest that this problem is not yet fully understood,

and this is why we undertake a new attempt to analyze how the

(1 + _) EA solves the OneMax problem in the presence of noise.

As a main result, we prove that the (1 + _) EA with any pop-

ulation size _ ≥ 𝐶 ln(𝑛), 𝐶 a suitable constant, can optimize the

OneMax problem in the presence of bit-wise prior noise with up to

constant noise probability per iteration, in asymptotically the same

time as when no noise is present. We note that we regard a different

noise model than in [23], namely independent bit-wise prior noise.

This model is generally regarded as more realistic because the true

and the noisy fitness can deviate by arbitrary amounts. There is no

reason to believe that the (1 + _) EA should suffer less from noise

in this noise model. In fact, we are convinced that results analo-

gous to ours hold in the one-bit noise model regarded in [23], and

that such results can be proven with a variant of our general proof

method. We do not conduct these proofs since, as often in runtime

analyses, the precise proofs rely on the details of the particular

algorithm, objective function, and noise model. For that reason,

even though our general approach seems to apply also to one-bit

noise, the proofs would differ in many small details. We therefore

leave this task for future work.

This result is the first tight analysis of a standard population-

based EA in the presence of noise in a standard model (in fact, it

is the first analysis of the (1 + _) EA in the presence of bit-wise

1524

This work is licensed under a Creative Commons Attribution‐NonCommercial‐NoDerivs International 4.0
License.

https://orcid.org/0000-0001-7906-096X
https://orcid.org/0000-0002-9786-220X
https://orcid.org/0000-0002-2721-3618
https://doi.org/10.1145/3638529.3654196
https://doi.org/10.1145/3638529.3654196
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3638529.3654196&domain=pdf&date_stamp=2024-07-14

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Denis Antipov, Benjamin Doerr, and Alexandra Ivanova

noise). Our result shows that already moderate population sizes can

yield an enormous robustness. We note that for _ = Θ(log𝑛), our
runtime guarantee is 𝑂 (𝑛 log𝑛), that is, the same as for the simple

(1 + 1) EA in the noiseless setting. Hence the larger population

size used here to obtain robustness does not lead to an increase in

the runtime. We also recall the general lower bound of Ω(𝑛 log𝑛)
valid for all unary unbiased black-box algorithm [33], which shows

that our 𝑂 (𝑛 log𝑛) bound is asymptotically tight and that a better

performance is not possible in the realm ofmutation-based unbiased

evolutionary algorithms.

We extend our analysis to the non-elitist (1, _) EA and show

the same results for this algorithm. In the noisefree setting, the

(1 + _) EA and the (1, _) EA are known to have a similar perfor-

mance when the population size is at least logarithmic, basically

because the (1, _) EA becomes near-elitist since with high probabil-

ity at least one offspring is equal to the parent. That this similarity

of the two algorithms extends to noisy settings was, a priori, not ob-

vious. We note that this is the first runtime analysis of the (1, _) EA
in the presence of prior noise.

Our results are based on a novel proof argument, namely that the

noiseless offspring can be seen as a biased crossover between the

parent and the noisy offspring. This allows to obtain probabilistic in-

formation on the offspring given the parent and the noisy offspring.

Note that the noisy offspring is visible to the algorithm (and thus

in a sense also to our proofs) via its fitness, whereas the non-noisy

offspring is not visible, but is of course what really counts for the

further run of the algorithm. We refer to Sections 4 and 5 for more

details.

Overall, our work gives two main insights, namely (1) that using

EAs with at least a moderate population size can lead to a strong

robustness against noise, and this without performance losses even

when compared with using the optimal population size in the noise-

less setting, and (2) that such processes can be analyzed with math-

ematical means, in particular, with the tools we developed to gain

from the noisy offspring probabilistic information on the noiseless

offspring.

We complement our theoretical analysis with a small experimen-

tal study, aiming at answering two questions which our asymptotic

runtime analysis naturally could not answer. We observe that, as

predicted by theoretical considerations in the noisefree case, also

in the noisy setting there is no significant performance difference

between the (1 + _) EA and the (1, _) EA. Also, we show that the

asymptotic runtime advantage of the (1 + _) EA over the (1 + 1) EA
at constant noise rates is clearly visible already for moderate popu-

lation sizes.

This work is organized as follows. In Section 2, we review the

most relevant previous works. We describe the benchmark, noise

model, and algorithms in Section 3. Our main technical tool, the

analysis of the relation between parent, true offspring, and noisy

offspring, is developed in Section 4. We use this tool in Section 5

to conduct the runtime analyses leading to the main results of this

work. Our experimental study can be found in Section 6. The paper

ends with a short conclusion and outlook.

2 RELATEDWORKS

One of the most recent and detailed overviews of mathematical

analyses of evolutionary algorithms in noisy environments can be

found in the recent paper [32]. We refer the reader to this work and

discuss now only the results most relevant to ours.

For the (1 + 1) EA, several results show that it can tolerate a

small amount of noise, but becomes highly inefficient for larger

noise rates. In [23], it was shown that on OneMax with either prior

bit-wise noise flipping each bit with probability
𝑞
𝑛 or one-bit noise

flipping exactly one random bit with probability 𝑞, the (1 + 1) EA
keeps its 𝑂 (𝑛 log(𝑛)) runtime from the noiseless setting when 𝑞 =

𝑂 (1𝑛). For 𝑞 = 𝑂 (log(𝑛)𝑛), the runtime is still polynomial, but for 𝑞 =

𝜔 (log(𝑛)𝑛) the runtime is super-polynomial. That is, the (1 + 1) EA
can cope with noise only if it happens at most, on average, every

Θ(𝑛
log(𝑛)) iterations. A similar effect was observed on Leading-

Ones and made very precise in [44], where for the same noise

models for all 𝑞 ≤ 1

2
a runtime of order 𝑛2 exp(Θ(min{𝑞𝑛2, 𝑛}))

was shown. Hence here already from 𝑞 = 1/𝑛2 on the performance

drops rapidly with increasing noise rate.

Posterior additive Gaussian noise was studied in [23, 40]. In [23]

the authors showed that the (1 + 1) EA can solve OneMax and

LeadingOnes in its noiseless time when the variance 𝜎2 of the

Gaussian distribution is at most
1

4 log(𝑛) and
1

12𝑒𝑛2
, respectively.

In [40] it was shown that for large variance, namely 1 and 𝑛2,

respectively, the runtime on these problems is exponential.

A more general approach based on estimating the probability

that the noise inverts the comparison of two individuals was used

in [6]. This led to a polynomial runtime guarantee on OneMax for

every noise model for which the probability to invert a comparison

via noise is at most
𝑐 ln(𝑛)

𝑛 for some constant 𝑐 . Also, this approach

allowed to make the results of [23] more precise, among others,

giving that the 𝑂 (𝑛 log(𝑛)) runtime bound remains valid up to

𝑞 = 𝑐′ log(log(𝑛))/𝑛 with 𝑐′ a constant specified in [6].

It is also worth mentioning the papers [38–40], which showed

that resampling an individual sufficiently often can help to deter-

mine its true fitness. This can make the (1 + 1) EA robust to noise,

but often requires large (more than 𝑛3) numbers of samples. This

strategy, however, does not work on LeadingOnes with high-rate

prior noise. Additionally, in [14] it was shown that using a median

instead of the mean of the samples can significantly reduce the num-

ber of resamplings necessary to yield a reasonable performance,

e.g., to Θ(log(𝑛)) if the noise is not too strong.

For population-based EAs there are considerably fewer results.

In [23] it was shown that for the (1 + _) EA and the (` + 1) EA, the
population sizes ` = Ω(log(𝑛)𝑞) and _ = Ω(1𝑞𝑛 log(𝑛)) can lead

to polynomial runtimes on OneMax with one-bit noise occurring

with probability 𝑞. The runtimes in this case are 𝑂 (`𝑛 log(𝑛)) for
the (` + 1) EA, mildly above its 𝑂 (`𝑛) noisefree runtime guaran-

tee [47], and 𝑂 (1𝑞𝑛
2_) for the (1 + _) EA, significantly above its

noisefree runtime guarantee of 𝑂 (𝑛_ log log log_
log log_

) [12]. This result
definitely suggests that the larger populations, in particular, larger

parent populations, can be beneficial to cope with noise. However,

these results counter-intuitively require larger population sizes to

cope with smaller noise rates.

1525

Already Moderate Population Sizes Provably Yield Strong Robustness to Noise GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

Another result for population-based EAs was obtained in [39],

where the authors considered a symmetric noise model. The authors

showed that with logarithmic population sizes both the (1 + _) EA
and the (` + 1) EA have an �̃� (𝑛) runtime on OneMax, and also

that smaller population sizes for the (1 + _) EA lead to exponential

runtimes. The downside of this result is that the symmetric noise

model is quite artificial. In particular, for the (` + 1) EA it implies

that if we have a single individual with best fitness, it is removed

from the population only if the noise affects all individuals in the

population (which is very unlikely when ` is at least logarithmic).

For the (1 + _) EA it implies that we lose fitness only when allΘ(_)
copies of the current individual are affected by the noise, which

is also unlikely for logarithmic or larger values of _. With these

particular properties, these results appear hard to extend to the

more common noise models.

In [6] the authors write that the (1 + _) EA can optimize

OneMax under a one-bit noise in 𝑂 (𝑛 log(𝑛)) runtime, if _ =

Θ(log(𝑛𝑝)), where 𝑝 is the probability that the noise flips a bit.

However, this result is only described informally, there is no theo-

rem stating it, nor a proof or a proof sketch.

The study of non-elitist algorithms in the presence of noise is

confined to the three works [4, 31, 32]. In [4], it is shown that a non-

elitist EA constructing the next population by _ times independently

selecting two parents and taking the mutant of the better one into

the next population, is very robust to prior noise with up to constant

noise rates, keeping its noisefree runtime apart from a log log𝑛

factor. Besides many other results, this result was sharpened and

extended to more general noise models in [32], however, to the

best of our understanding only for mutation rate below 1/𝑛. That
paper, as well as the subsequent work [31], also give results for

the symmetric noise model, but as discussed above, we are not

optimistic that such results can be extended to more realistic noise

models.

Other slightly less relevant results include studies of ant

colony optimizers (ACO) [20], estimation of distribution algo-

rithms such as the cGA [21] and the UMDA [30], and voting algo-

rithms [41] in the presence of noise. For an ACO with a fitness-

proportional update it was shown in [20] that with a small evapo-

ration factor 𝜌 = 𝑂 (1

𝑛3
log(𝑛)) this algorithm can solve OneMax in

𝑂 (𝑛2 log(𝑛)/𝜌) time for both Gaussian or 1-bit noise with any noise

rate (note that this runtime is of order larger than 𝑛5). For the cGA

on OneMax with Gaussian noise with variance 𝜎2 it was shown

that with population size 𝐾 = 𝜔 (𝜎
√
𝑛 log(𝑛)) the optimum is found

in 𝑂 (𝐾𝜎2
√
𝑛 log(𝐾𝑛)) time [21]. With an automated choice of the

algorithm parameter 𝐾 , the runtime stemming from the optimal

choice of 𝐾 can be obtained [48], and this without knowing in

advance the noise variance 𝜎2. In [30], the UMDA was studied on

LeadingOnes with a one-bit noise with rate less than one. It was

shown that with parameters ` and _ which are at least logarithmic

in 𝑛, the runtime is 𝑂 (𝑛_ log(_) + 𝑛2). The voting algorithm was

studied on OneMax with Gaussian noise, and it was shown that if

the noise rate 𝜎2 is at least 3𝑛
8
, then the optimum is correctly found

after 𝑂 (𝜎2 log(𝑛)) samples.

Frozen noise models, where noise is applied to the objective

function once before the algorithm is run, were studied in [22, 28].

The main result is that RLS, the (1 + 1) EA, and the (1 + _) EA are

not efficient on those rugged landscapes, but the compact genetic

algorithm and the (1, _) EA are.

Noisy optimization has also been studied for multi-objective

EAs [5, 7], but the very different population dynamics render it

difficult to compare these results with the single-objective setting.

3 PRELIMINARIES

3.1 OneMax with Bit-wise Noise

OneMax is one of the most common benchmark functions used in

theoretical studies of EAs. It returns the number of one-bits in its

argument, which is formally defined by

OneMax(𝑥) =
𝑛∑︁
𝑖=1

𝑥𝑖

for all 𝑥 ∈ {0, 1}𝑛 . Despite its simplicity, this benchmark has had

an enormous impact on the field. It was the basis of the first math-

ematical runtime analyses at all [19, 35, 43], the first analyses of

EAs in the presence of noise and dynamic changes [16, 17], the

first analyses of population-based algorithms [1, 26, 47], or the first

analyses of estimation-of-distribution algorithms and ant-colony

optimizers [18, 24, 36]. These works triggered the development

of many analysis methods that are used regularly since then. The

study of how EAs optimize OneMax also led to the discovery of

many new algorithmic ideas, e.g., various ways to dynamically

adjust the parameters of an EA [8, 15, 29].

In this paper we study the optimization of OneMax under bit-

wise prior noise. In this noise model, we do not learn the correct

fitness of 𝑥 , but the fitness of some bit string obtained from 𝑥 by

flipping each bit independently with probability
𝑞
𝑛 . We call

𝑞
𝑛 the

noise rate. In this paper we consider 𝑞 = 𝑂 (1), so that the noise

rate is at most 𝑂 (1𝑛), which means that we might have a constant

probability that the noise occurs and we learn a possibly wrong

fitness value.

3.2 The (1 + _) EA and the (1, _) EA
The twomost simple EAswith a non-trivial offspring population are

the (1 + _) EA and (1, _) EA. Both algorithms work according to

the following scheme. They keep a bit-string 𝑥 , which is called the

current individual and which is initialized with a random bit string.

Then in each iteration they create _ individuals, independently, by

applying standard bit mutation with rate
𝜒
𝑛 to the current individual

𝑥 (that is, each bit in a copy of 𝑥 is flipped with probability
𝜒
𝑛

independently from other bits). A best of these offspring is selected

as the mutation winner𝑦. Then the only difference in two algorithm

occurs. The (1 + _) EA compares 𝑦 with 𝑥 and if 𝑦 is not worse,

then it replaces 𝑥 in the next iteration. Otherwise 𝑥 stays the same.

In the (1, _) EAwe use a non-elitist selection, and𝑦 always replaces

𝑥 , even if it is worse. In this paper we use the standard assumption

that 𝜒 = Θ(1), since smaller mutation rates usually reduce the

optimization speed and larger rates can lead to an exponential

runtime even on monotone functions [11]. The pseudocodes of the

(1, _) EA and the (1 + _) EA are shown in Algorithm 1, where the

only difference between them is in lines 9 and 10.

In the context of noisy optimization, it is important to note

that for the (1 + _) EA we re-compute the fitness of the current

individual in each iteration and do not reuse the value computed

1526

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Denis Antipov, Benjamin Doerr, and Alexandra Ivanova

Algorithm 1: The (1, _) EA and the (1 + _) EAmaximizing

a function 𝑓 : {0, 1}𝑛 → R.
1 Initialization: Sample 𝑥 ∈ {0, 1}𝑛 uniformly at random and

evaluate 𝑓 (𝑥);
2 Optimization: for 𝑡 = 1, 2, 3, . . . do

3 for 𝑖 = 1, . . . , _ do

4 𝑥 (𝑖) ← copy of 𝑥 ;

5 Flip each bit in 𝑥 (𝑖) with probability
𝜒
𝑛 ;

6 evaluate 𝑓 (𝑥 (𝑖));
7 end

8 𝑦 ← argmax{𝑓 (𝑥 (𝑖)) | 𝑖 ∈ [_]};
9 if running (1, _) EA then 𝑥 ← 𝑦;

10 if running (1 + _) EA and 𝑓 (𝑦) ≥ 𝑓 (𝑥) then 𝑥 ← 𝑦;

11 end

previously. This allows to correct the situation that we have a

current individual for which we believe its fitness to be significantly

higher (due to a noisy fitness evaluation in the past). In such a

situation the EA may get stuck for a long time, simply because all

offspring appear to be worse than this parent. That this problem is

real and can be seen, e.g., by comparing the results of [45] (without

reevaluations) and [10] (with reevaluations).

To take into account the specifics of noisy optimization, we use

the following point of view and notation when we consider an

iteration of the (1 + _) EA or the (1, _) EA. We denote the _ off-

spring of 𝑥 created via standard bit mutation by 𝑥 (𝑖) (for 𝑖 ∈ [1.._]).
Then when we apply noise to each of _ individuals independently,

we obtain _ noisy individuals 𝑥 (𝑖) , where for each 𝑖 ∈ [1.._] in-
dividual 𝑥 (𝑖) is obtained from 𝑥 (𝑖) . When we talk about an arbi-

trary offspring and its noisy version, we denote them by 𝑥 ′ and 𝑥 ′

correspondingly. After creating noisy offspring we evaluate their

OneMax values and we choose an individual 𝑦 from the _ noisy

ones with the best fitness value (the ties are broken uniformly at

random) as the mutation winner and we denote its non-noisy par-

ent by 𝑦. Then for the (1 + _) EA we also apply noise to 𝑥 before

we compare it with 𝑦, and thus we get a noisy individual 𝑥 which

competes with 𝑦.

3.3 Drift Analysis

Drift analysis is a rapidly developing set of tools which are widely

used in the analysis of random search heuristics. They help to

transform easy-to-obtain information about the expected progress

into bounds on the expected runtime. In this paper we use the

following variable drift theorem, which was first introduced in [27,

34]. We use its simplified version for processes over integer values

from [9].

Theorem 1 (Theorem 6 in [9]). Let (𝑋𝑡)𝑡 ∈N be a sequence of

random variables in [0..𝑛] and let T be the random variable that

denotes the earliest point in time 𝑡 ≥ 0 such that 𝑋𝑡 = 0. Suppose

that there exists a monotonically increasing function ℎ : [1..𝑛] ↦→ R+
0

such that

𝐸 [𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡] ≥ ℎ(𝑋𝑡)

Table 1: Distribution of a bit value in the offspring 𝑥 ′ given
the observed value in the noisy offspring 𝑥 ′.

Event 𝐴 Event 𝐵 Pr[𝐴 | 𝐵] Approximate Value

𝑥 ′
𝑖
= 𝑥𝑖 𝑥 ′

𝑖
= 𝑥𝑖

(1− 𝜒

𝑛) (1− 𝑞

𝑛)
(1− 𝜒

𝑛) (1− 𝑞

𝑛)+𝑞𝜒𝑛2
1 − 𝑞𝜒

𝑛2
−𝑂

(
1

𝑛3

)
𝑥 ′
𝑖
= 𝑥𝑖 𝑥 ′

𝑖
≠ 𝑥𝑖

(1− 𝜒

𝑛) 𝑞𝑛
(1− 𝜒

𝑛) 𝑞𝑛 + 𝜒

𝑛 (1− 𝑞

𝑛)
𝑞

𝑞+𝜒 (1 ± 𝑜 (1))

𝑥 ′
𝑖
≠ 𝑥𝑖 𝑥 ′

𝑖
= 𝑥𝑖

𝜒𝑞

𝑛2

(1− 𝜒

𝑛) (1− 𝑞

𝑛)+𝑞𝜒𝑛2
𝑞𝜒

𝑛2
+𝑂

(
1

𝑛3

)
𝑥 ′
𝑖
≠ 𝑥𝑖 𝑥 ′

𝑖
≠ 𝑥𝑖

(1− 𝑞

𝑛) 𝜒𝑛
(1− 𝜒

𝑛) 𝑞𝑛 + 𝜒

𝑛 (1− 𝑞

𝑛)
𝜒

𝑞+𝜒 (1 ± 𝑜 (1))

holds for all 𝑡 < 𝑇 (as an inequality of random variables). Then

𝐸 [𝑇 | 𝑋0] ≤
𝑋0∑︁
𝑖=1

1

ℎ(𝑖) .

4 OFFSPRING DISTRIBUTION

In this section we discuss the relationship between the parent in-

dividual 𝑥 , its offspring 𝑥 ′ obtained via standard bit mutation, and

the individual 𝑥 ′ obtained from the offspring via bit-wise noise.

We start with the distribution of 𝑥 ′, when we have no informa-

tion about the true offspring 𝑥 ′. Each bit of the noisy offspring 𝑥 ′

is different from the bit in the same position in 𝑥 , if and only if

either it was flipped by the mutation, but not by the noise, or it was

flipped by the noise, but not by the mutation. The probability of

this event is

𝜒

𝑛

(
1 − 𝑞

𝑛

)
+ 𝑞
𝑛

(
1 − 𝜒

𝑛

)
=
𝜒

𝑛
+ 𝑞
𝑛
− 2 · 𝜒𝑞

𝑛2
=

1

𝑛

(
𝜒 + 𝑞 − 2𝑞𝜒

𝑛

)
.

Since this event is independent for all bits, 𝑥 ′ is distributed in the

same way as if it was created from 𝑥 via standard bit mutation

with rate
𝑟
𝑛 , where 𝑟 = 𝜒 + 𝑞 − 2𝑞𝜒

𝑛 . Since in this paper we assume

𝜒 = Θ(1) and 𝑞 = 𝑂 (1), we have 𝑟 = Θ(1) as well.
When we know the parent 𝑥 and also the noisy offspring 𝑥 ′, we

can estimate the distribution of the noiseless offspring 𝑥 ′, which is

an intermediate step when we get 𝑥 ′ from 𝑥 . The following lemma

shows how the bit values in 𝑥 ′ are distributed when we know those

bit values in𝑥 and𝑥 ′. Since, naturally, these estimates depend not on

the particular bit value in 𝑥 , but only on whether the corresponding

bits agree or differ with this value, we also formulate our result in

this symmetric fashion.

Lemma 2. Consider an arbitrary bit position 𝑖 . The distribution of

this bit value 𝑥 ′
𝑖
in 𝑥 ′, conditional on the values of this bit in 𝑥 and

𝑥 ′, are as shown in Table 1.

Proof. We start with the first row of Table 1, that is, we compute

Pr[𝑥 ′
𝑖
= 𝑥𝑖 | 𝑥 ′𝑖 = 𝑥𝑖]. By the definition of conditional probabilities

we have

Pr[𝑥 ′𝑖 = 𝑥𝑖 | 𝑥
′
𝑖 = 𝑥𝑖] =

Pr[𝑥 ′
𝑖
= 𝑥𝑖 = 𝑥

′
𝑖
]

Pr[𝑥𝑖 = 𝑥 ′𝑖]
.

The bit in position 𝑖 has the same values in all three individuals

only if it has not been flipped, neither by mutation, nor by noise.

The probability of this event is (1 − 𝜒
𝑛) (1 −

𝑞
𝑛). This bit is equal in

1527

Already Moderate Population Sizes Provably Yield Strong Robustness to Noise GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

the parent 𝑥 and in the noisy offspring 𝑥 ′ when we either have not

flipped it at all, or we flipped it twice. The probability of this event

is (1 − 𝜒
𝑛) (1 −

𝑞
𝑛) +

𝑞𝜒

𝑛2
. Thus, we have

Pr[𝑥 ′𝑖 = 𝑥𝑖 | 𝑥
′
𝑖 = 𝑥𝑖] =

(
1 − 𝜒

𝑛

) (
1 − 𝑞

𝑛

)(
1 − 𝜒

𝑛

) (
1 − 𝑞

𝑛

)
+ 𝑞𝜒

𝑛2

= 1 −
𝑞𝜒

𝑛2(
1 − 𝜒

𝑛

) (
1 − 𝑞

𝑛

)
+ 𝑞𝜒

𝑛2

= 1 − 𝑞𝜒
𝑛2
· 1(

1 −𝑂
(
1

𝑛

))
= 1 − 𝑞𝜒

𝑛2
−𝑂

(
1

𝑛3

)
.

To prove the second row of Table 1, we use similar arguments

to show that the event 𝑥𝑖 = 𝑥
′
𝑖
≠ 𝑥 ′

𝑖
happens only if we flip this bit

by noise, but do not flip it by mutation. The probability of this is

(1 − 𝜒
𝑛)

𝑞
𝑛 . We have 𝑥𝑖 ≠ 𝑥

′
𝑖
,when we flip the 𝑖-th bit only once, the

probability of which is (1 − 𝜒
𝑛)

𝑞
𝑛 + (1 −

𝑞
𝑛)

𝜒
𝑛 . Hence, we have

Pr[𝑥 ′𝑖 = 𝑥𝑖 | 𝑥
′
𝑖 ≠ 𝑥𝑖] =

Pr[𝑥 ′
𝑖
= 𝑥𝑖 ≠ 𝑥

′
𝑖
]

Pr[𝑥𝑖 ≠ 𝑥 ′𝑖]
=

(
1 − 𝜒

𝑛

)
𝑞
𝑛(

1 − 𝜒
𝑛

)
𝑞
𝑛 +

𝜒
𝑛

(
1 − 𝑞

𝑛

)
=

𝑞

𝑞 + 𝜒
(
1− 𝑞

𝑛

1− 𝜒

𝑛

) =
𝑞

𝑞 + 𝜒 ·
𝑞 + 𝜒

𝑞 + 𝜒 ± 𝑜 (1) =
𝑞

𝑞 + 𝜒 (1 ± 𝑜 (1)),

since 𝜒 = Θ(1) and 𝑞 = 𝑂 (1).
By regarding complementary events, we obtain the remaining

two rows of Table 1:

Pr[𝑥 ′𝑖 ≠ 𝑥𝑖 | 𝑥
′
𝑖 = 𝑥𝑖] = 1 − Pr[𝑥 ′𝑖 = 𝑥𝑖 | 𝑥

′
𝑖 = 𝑥𝑖]

=

𝜒𝑞

𝑛2(
1 − 𝜒

𝑛

) (
1 − 𝑞

𝑛

)
+ 𝑞𝜒

𝑛2

=
𝑞𝜒

𝑛2

(
1 +𝑂

(
1

𝑛

))
=
𝑞𝜒

𝑛2
+𝑂

(
1

𝑛3

)
,

Pr[𝑥 ′𝑖 ≠ 𝑥𝑖 | 𝑥
′
𝑖 ≠ 𝑥𝑖] = 1 − Pr[𝑥 ′𝑖 = 𝑥𝑖 | 𝑥

′
𝑖 ≠ 𝑥𝑖]

=
𝜒

𝑞 + 𝜒 (1 ± 𝑜 (1)). □

Lemma 2 can be interpreted in the way that given 𝑥 and 𝑥 ′, the
true offspring 𝑥 ′ is, asymptotically, a biased crossover between 𝑥

and 𝑥 ′, taking bit values from 𝑥 with probability
𝑞

𝑞+𝜒 and from 𝑥 ′

otherwise. Indeed, if 𝑥 and 𝑥 ′ agree in a bit value, then with high

probability 𝑥 ′ also has this value in this bit (the first and the third

lines of Table 1). Where 𝑥 and 𝑥 ′ differ, the offspring 𝑥 ′ takes the
value from 𝑥 with probability

𝑞
𝑞+𝜒 ± 𝑜 (1), see the second line of

Table 1, and otherwise from 𝑥 ′.
By linearity of expectation, this observation can be lifted to

distances, which is what we do in the following lemma. It implies,

in particular, that if we observe some progress towards some target

solution with respect to the noisy offspring, then a constant fraction

of this progress is real, that is, witnessed by the true offspring.

This insight will be the central tool in our later analyses. We are

optimistic that it will be useful in other runtime analyses of EAs in

the presence of noise as well.

Lemma 3. Consider some arbitrary, but fixed parent 𝑥 . Let 𝑑 (·)
denote the Hamming distance to some arbitrary point 𝑥∗ in the search

11 . . . 1 11 . . . 1 00 . . . 0 00 . . . 0𝑥 :

11 . . . 1 00 . . . 0 11 . . . 1 00 . . . 0𝑧 :

𝐴 𝐵 𝐶 𝐷

Figure 1: Illustration of the four groups of bits in the proof

of Lemma 3.

space. Then for any bit string 𝑧 we have

𝐸 [𝑑 (𝑥) − 𝑑 (𝑥 ′) | 𝑥 ′ = 𝑧]

≥ (𝑑 (𝑥) − 𝑑 (𝑧)) · 𝜒

𝑞 + 𝜒 · (1 ± 𝑜 (1)) −
𝑞𝜒

𝑛
−𝑂

(
1

𝑛2

)
.

Proof. W.l.o.g. we assume that 𝑥∗ is the all-ones bit string1, thus
𝑑 (·) stands for the number of zero-bits in its argument. Consider

some arbitrary 𝑧. We divide the bits into four groups depending

on their values in 𝑥 and 𝑧 as illustrated in Figure 1. Let 𝐴 be the

number of bits which are both ones in 𝑥 and 𝑧, let 𝐵 be the number

of bits which are ones in 𝑥 and zeros in 𝑧, let 𝐶 be the number of

bits which are zeros in 𝑥 and ones in 𝑧, and let 𝐷 be the number of

bits with are both zeros in 𝑥 and 𝑧. Note that in each of these four

groups the number of zero-bits in 𝑥 ′ follows a binomial distribution,

with success probability as given in Table 1. We denote the precise

probabilities from rows 3 and 4 of Table 1 by 𝑝3 and 𝑝4 respectively

(the ones in column Pr[𝐴 | 𝐵]). Then the probabilities from rows 1

and 2 are (1− 𝑝3) an (1− 𝑝4) respectively. Hence, for any arbitrary

𝑧 we have

𝐸 [𝑑 (𝑥 ′) | 𝑥 ′ = 𝑧] = 𝑝3𝐴 + 𝑝4𝐵 + (1 − 𝑝4)𝐶 + (1 − 𝑝3)𝐷
= 𝐷 +𝐶 + 𝑝3 (𝐴 − 𝐷) + 𝑝4 (𝐵 −𝐶)

= (𝐷 +𝐶) + (𝐴 − 𝐷)
(
𝑞𝜒

𝑛2
+𝑂

(
1

𝑛3

))
+ (𝐵 −𝐶) 𝜒

𝑞 + 𝜒 (1 ± 𝑜 (1))

≤ 𝑑 (𝑥) + 𝑛
(
𝑞𝜒

𝑛2
+𝑂

(
1

𝑛3

))
+ (𝑑 (𝑧) − 𝑑 (𝑥)) 𝜒

𝑞 + 𝜒 (1 ± 𝑜 (1))

= 𝑑 (𝑥) + 𝑞𝜒
𝑛
+𝑂

(
1

𝑛2

)
+ (𝑑 (𝑧) − 𝑑 (𝑥)) 𝜒

𝑞 + 𝜒 (1 ± 𝑜 (1)),

since𝐶 +𝐷 = 𝑑 (𝑥),𝐴−𝐷 ≤ 𝑛, and 𝐵 −𝐶 = 𝑑 (𝑧) −𝑑 (𝑥). By moving

𝑑 (𝑥) to the left hand side and multiplying both sides by −1, we
finish the proof. □

5 RUNTIME ANALYSIS

We use the results from Section 4 to estimate upper bounds on the

runtime of the (1 + _) EA and the (1, _) EA. The main result of this

section is the following theorem.

Theorem 4. Consider a run of the (1, _) EA or the (1 + _) EA
with mutation rate

𝜒
𝑛 where 𝜒 = Θ(1) on the OneMax problem with

1
To generalize this proof for an arbitrary bit string 𝑥∗ , it is sufficient to replace “one-

bits” with “bits which have the same value in 𝑥∗” and “zero-bits” with “bits which have

a different value in 𝑥∗”. We avoid doing so to improve the readability of the proof.

1528

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Denis Antipov, Benjamin Doerr, and Alexandra Ivanova

bit-wise noise with rate
𝑞
𝑛 where 𝑞 = 𝑂 (1). If the population size _ is

at least 𝐶 ln(𝑛) for some constant 𝐶 depending on 𝜒 and 𝑞, then the

expected number 𝐸 [𝑇𝐹] of fitness evaluations until the optimum is

sampled is

𝑂

(
𝑛 log(𝑛) + 𝑛_ log log(_)

log(_)

)
.

To prove Theorem 4, we use the variable drift theorem (Theo-

rem 1). The process we apply it to is {𝑑𝑡 }𝑡 ∈N0
, which is the distance

of the current individual (of either the (1, _) EA or the (1 + _) EA)
to the optimum after iteration 𝑡 . Since we consider the OneMax

function, 𝑑𝑡 is equal to the number of zero-bits in that individual.

To bound the drift of 𝑑𝑡 , we study what happens in one iteration

of the two considered algorithms. We use the notation defined in

Section 3.2, and additionally we denote the individuals accepted as

the parent for the next iteration by 𝑥com for the (1, _) EA and by

𝑥
plus

for the (1 + _) EA. Note that 𝑥com is always equal to 𝑦 (the

winning offspring), while 𝑥
plus

can be either 𝑦 or 𝑥 , depending on

their noisy comparison. We also denote the distances to the opti-

mum from different individuals as follows. By𝑑 and ˜𝑑 we denote the

distance to the optimum from the parent 𝑥 and the noisy parent 𝑥 ,

respectively. By 𝑑𝑦 and
˜𝑑𝑦 we denote the distance to the optimum

from the mutation winner𝑦 and its noisy version𝑦, respectively. By

𝑑com and 𝑑
plus

we denote distances from next generation parents

𝑥com and 𝑥
plus

to the optimum, respectively.

With this notation the drift in one iteration is defined as

Δcom (𝑑) B 𝐸 [𝑑 − 𝑑com] for the (1, _) EA, and

Δplus (𝑑) B 𝐸 [𝑑 − 𝑑
plus
] for the (1 + _) EA.

We estimate these drifts in the following lemma.

Lemma 5. Let

Δ+ (𝑑) B
𝑑∑︁
𝑖=1

Pr[˜𝑑𝑦 ≤ 𝑑 − 𝑖], and

Δ− (𝑑) B
𝑛−𝑑∑︁
𝑗=1

Pr[˜𝑑𝑦 ≥ 𝑑 + 𝑗] .

Then the drift of the current individual 𝑥 towards the optimum in one

iteration is at least

Δcom (𝑑) ≥ (1 − 𝑜 (1)) 𝜒

𝑞 + 𝜒
(
Δ+ (𝑑) − Δ− (𝑑)

)
− 𝑞𝜒
𝑛
−𝑂

(
1

𝑛2

)
(1)

for the (1, _) EA, and it is at least

Δplus (𝑑) ≥ (1 − 𝑜 (1)) 𝜒

𝑞 + 𝜒
(
(1 − 𝑜 (1))𝑒−𝑞Δ+ (𝑑) − Δ− (𝑑)

)
− 𝑞𝜒
𝑛
−𝑂

(
1

𝑛2

) (2)

for the (1 + _) EA.

Before we prove this lemma we note that Δ+ (𝑑) and Δ− (𝑑) are
the positive and the negative components of the drift of 𝑦 from 𝑥

respectively, since we have 𝐸 [𝑑 − ˜𝑑𝑦] = Δ+ (𝑑) − Δ− (𝑑).

Proof. In this proof we consider a fixed parent individual 𝑥 , and

therefore 𝑑 is also fixed (that is, it is not a random variable). For the

(1, _) EA we have 𝑥com = 𝑦, hence we have

Δcom (𝑑) = 𝐸 [𝑑 − 𝑑com] = 𝐸 [𝑑 − 𝑑𝑦]

=
∑︁

𝑌 ∈{0,1}𝑛
Pr[𝑦 = 𝑌]𝐸 [𝑑 − 𝑑𝑦 | 𝑦 = 𝑌] .

For any bit string 𝑧 ∈ {0, 1}𝑛 we denote the distance to the optimum

by 𝑑𝑧 . Then by Lemma 3 we have

Δcom (𝑑)

≥
∑︁

𝑧∈{0,1}𝑛
Pr[𝑦 = 𝑧]

(
(𝑑 − 𝑑𝑧)

𝜒

𝑞 + 𝜒 (1 ± 𝑜 (1)) −
𝑞𝜒

𝑛
−𝑂

(
1

𝑛2

))
=
©«(1 − 𝑜 (1)) 𝜒

𝑞 + 𝜒
∑︁

𝑧∈{0,1}𝑛
Pr[𝑦 = 𝑧] (𝑑 − 𝑑𝑧)

ª®¬ − 𝑞𝜒𝑛 −𝑂
(
1

𝑛2

)
= (1 − 𝑜 (1)) 𝜒

𝑞 + 𝜒 𝐸 [𝑑 −
˜𝑑𝑦] −

𝑞𝜒

𝑛
−𝑂

(
1

𝑛2

)
.

Noting that 𝐸 [𝑑 − ˜𝑑𝑦] = Δ+ (𝑑) − Δ− (𝑑) by the definition of

Δ+ (𝑑) and Δ− (𝑑) completes the proof of eq. (1).

Estimating drift for the (1 + _) EA requires more effort, since

we are not guaranteed that 𝑥
plus

= 𝑦. This happens if and only if

𝑦 appears no worse than 𝑥 (the individual we obtain from 𝑥 via

noise). Consequently, we have

𝑑 − 𝑑
plus

= (𝑑 − 𝑑𝑦)I
[
˜𝑑 ≥ ˜𝑑𝑦

]
, (3)

where all random variables are over the joint probability space of

noise on 𝑥 , noise on offspring and the mutation, I[·] is an indicator

random variable, and eq. (3) is an identity of random variables

functions. Therefore, by the law of total probability, the drift for

the (1 + _) EA is

Δplus (𝑑) = 𝐸 [𝑑 − 𝑑
plus
] = 𝐸

[
(𝑑 − 𝑑𝑦)I

[
˜𝑑 ≥ ˜𝑑𝑦

]]
=

∑︁
𝑧∈{0,1}𝑛

Pr[𝑦 = 𝑧] ·
(
Pr

[
˜𝑑 ≥ ˜𝑑𝑦 | 𝑦 = 𝑧

]
· 𝐸

[
𝑑 − 𝑑𝑦 | 𝑦 = 𝑧, ˜𝑑 ≥ ˜𝑑𝑦

]
+ Pr

[
˜𝑑 < ˜𝑑𝑦 | 𝑦 = 𝑧

]
· 0
)
.

Note that when we fix 𝑥 and 𝑦, then event
˜𝑑 ≥ ˜𝑑𝑦 depends only

on the noise which affects 𝑥 . This noise does not affect any offspring

of 𝑥 , hence the random variable 𝑑 − 𝑑𝑦 conditioned on 𝑦 = 𝑧 is

independent of
˜𝑑 ≥ ˜𝑑𝑦 , which together with Lemma 3 implies that

𝐸

[
𝑑 − 𝑑𝑦 | 𝑦 = 𝑧, ˜𝑑 ≥ ˜𝑑𝑦

]
= 𝐸

[
𝑑 − 𝑑𝑦 | 𝑦 = 𝑧

]
≥ (1 ± 𝑜 (1)) 𝜒

𝑞 + 𝜒 (𝑑 − 𝑑𝑧) −
𝑞𝜒

𝑛
−𝑂

(
1

𝑛2

)
.

Hence, we have

Δplus (𝑑) ≥ (1 − 𝑜 (1)) 𝜒

𝑞 + 𝜒
·

∑︁
𝑧∈{0,1}𝑛

Pr[𝑦 = 𝑧] Pr[˜𝑑 ≥ ˜𝑑𝑦 | 𝑦 = 𝑧] (𝑑 − 𝑑𝑧)

− 𝑞𝜒
𝑛
−𝑂

(
1

𝑛2

)
.

(4)

1529

Already Moderate Population Sizes Provably Yield Strong Robustness to Noise GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

When 𝑑𝑧 > 𝑑 , we estimate the conditional probability Pr[˜𝑑 ≥
˜𝑑𝑦 | 𝑦 = 𝑧] by one. Otherwise, if 𝑑𝑧 < 𝑑 , this probability is at

least the probability that 𝑥 = 𝑥 , that is, that the noise has not

flipped any bit in 𝑥 when we compared it with 𝑦. This probability

is (1 − 𝑞
𝑛)

𝑛 = (1 − 𝑜 (1))𝑒−𝑞 . With this observation, similar to the

(1, _) EA, we can rewrite the sum above as follows∑︁
𝑧∈{0,1}𝑛

Pr[𝑦 = 𝑧] Pr[˜𝑑 ≥ ˜𝑑𝑦 | 𝑦 = 𝑧] (𝑑 − 𝑑𝑧)

≥
𝑑∑︁
𝑖=1

(1 − 𝑜 (1))𝑒−𝑞𝑖 Pr[˜𝑑𝑦 = 𝑑 − 𝑖] −
𝑛−𝑑∑︁
𝑗=1

𝑗 Pr[˜𝑑𝑦 = 𝑑 + 𝑗]

= (1 − 𝑜 (1))𝑒−𝑞Δ+ (𝑑) − Δ− (𝑑) .
Putting this into eq. (4) completes the proof of eq. (2). □

Above we obtained a weaker drift estimate for the (1 + _) EA
than the (1, _) EA. This is counter-intuitive – one would feel that

the (1 + _) EA should profit to some extent from the property that

the current-best solution is participating in the selection of the next

parent. The reason for our weaker bound in the estimate following

eq. 4, where we pessimistically estimated that inferior mutation

winners 𝑦 are always accepted, but superior ones only when the

parent is not subject to noise. We feel that this cannot be avoided

in the general case (note that Lemma 5 is valid in general and is not

specific for the optimization of OneMax). We are sure that when

exploiting properties of OneMax, stronger bounds could be shown.

We refrain from this both because we like our general, problem-

independent approach and because all we can gain are constant

factors, which are generally ignored in an asymptotic analysis as

ours (note that we lose constant factors and lower order terms in

the later part of the analysis anyway).

In the following lemmaswe show estimates for Δ+ (𝑑) andΔ− (𝑑),
which naturally are specific to the OneMax problem. Lemmas 6-8

estimate the positive component of the drift for different distances.

We omit their proofs for reasons of space
2
. We also note that im-

plicitly these results exist in the proofs in [12], but distilling them

from there is rather complicated.

Lemma 6 (Positive drift, large distance). If _ = 𝜔 (1) then
for any distance 𝑑 ≥ 𝑛

ln_
we have Pr[𝑑 − ˜𝑑𝑦 ≥ ⌊ ln_

2 ln ln_
⌋] ≥ 1

4
and

the positive component of the drift is at least

Δ+ (𝑑) ≥ 1

4

⌊
ln _

2 ln ln _

⌋
.

Lemma 7 (Positive drift, medium distance). For 𝑑 ∈ [𝑛
_
, 𝑛
ln_
]

we have Pr[𝑑 − ˜𝑑𝑦 ≥ 1] ≥ 𝑟
_𝑒𝑟
(1 − 𝑜 (1)) and the positive drift is at

least Δ+ (𝑑) ≥ 𝑟
2𝑒𝑟 (1 − 𝑜 (1)) = Θ(1), where 𝑟 = 𝑞 + 𝜒 − 2𝑞𝜒

𝑛 .

Lemma 8 (Positive drift, small distance). For 𝑑 ≤ 𝑛
_
we have

Pr[𝑑 − ˜𝑑𝑦 ≥ 1] ≥ 𝑟
_𝑒𝑟
(1 − 𝑜 (1)) and the positive drift is at least

Δ+ (𝑑) ≥ _𝑑𝑟
2𝑛𝑒𝑟 (1 − 𝑜 (1)).

We proceed with bounding the negative component of the drift.

A similar estimate for this negative part of the drift of the (1, _) EA
on the noiseless OneMax was shown in [42]. However, there this

drift was bounded with a constant, which is not enough in our

situation, so we give a stronger bound.

2
All proofs can be found in the full version of this paper available at arXiv [2].

Lemma 9 (Negative drift). If _ > 𝐶 ln(𝑛) for some sufficiently

large constant 𝐶 which depends on 𝑟 , then for all 𝑑 ∈ [1..𝑛] we have
Δ− (𝑑) ≤ 1

𝑛 .

Proof. If
˜𝑑𝑦 is at least 𝑑 , then for all _ noisy offspring 𝑥 ′ their

distances to the optimum
˜𝑑′ are at least 𝑑 . Then we have

𝑛−𝑑∑︁
𝑗=1

Pr[𝑑 − ˜𝑑𝑦 ≥ 𝑗] =
𝑛−𝑑∑︁
𝑗=1

(
Pr[𝑑 − ˜𝑑′ ≥ 𝑗]

)_
.

Let 𝑝 𝑗 B Pr[𝑑 − ˜𝑑′ ≥ 𝑗]. Since 𝑝1 is at most the probability that

at least one 1-bit in 𝑥 is flipped, we have 𝑝1 ≤ 1 −
(
1 − 𝑟

𝑛

)𝑛−𝑑 ≤
1 − 𝑒−𝑟 + 𝑜 (1) (the last inequality is by eq. 3.6.2 in [46]). Hence,

𝑝_
1
≤

(
1 − 𝑒−𝑟 + 𝑜 (1)

)_ ≤ 1

𝑛2

for _ ≥ 𝐶 ln𝑛 with 𝐶 = − 2

ln(1−𝑒−𝑟+𝑜 (1)) . For all 𝑗 ∈ N we have

𝑝 𝑗 ≤ 𝑝1, and therefore 𝑝_
𝑗
≤ 1

𝑛2
. Consequently,

Δ− (𝑑) =
𝑛−𝑑∑︁
𝑗=1

(
Pr[𝑑 − ˜𝑑′ ≥ 𝑗]

)_
=

𝑛−𝑑∑︁
𝑗=1

𝑝_𝑗 ≤
𝑛 − 𝑑
𝑛2
≤ 1

𝑛
. □

With Lemma 5 and and with estimates given in Lemmas 6-9 we

are now in position to prove our main result, Theorem 4. We only

sketch the proof for reasons of space
3
.

By Lemmas 6-9, for all 𝑑 ∈ [1..𝑛] the positive component

Δ+ (𝑑) of the drift is asymptotically larger than the negative com-

ponent Δ− (𝑑). Together with Lemma 5 this observation allows

us to show that the drift is always bounded from below by some

ℎ(𝑑) = Θ(Δ+ (𝑑)), both for the (1 + _) EA and for the (1, _) EA.
We then apply Theorem 1 to this ℎ(𝑑) and split the sum into

three ranges of distance 𝑑 which correspond to Lemmas 6-8. The

sum of ℎ−1 (𝑑) over large distances is 𝑂 (𝑛 log log_

log_
), over medium

distances it is 𝑂 (𝑛
log_
) and over small distances it is 𝑂 (𝑛

_
log

𝑛
_
).

We sum these three values and multiply them by the number of

fitness evaluations performed by the algorithms in one iteration,

that is, _ for the (1, _) EA and _ + 1 for the (1 + _) EA, which yields

the stated bound.

We also note that for all _ = 𝑂 (log(𝑛) log log(𝑛)
log log log(𝑛)) the first term of

the upper bound in Theorem 4 is dominating, hence the expected

runtime is 𝑂 (𝑛 log(𝑛)), that is, the same as in the noiseless case.

6 EXPERIMENTS

In this sectionwe describe the results of our empirical study, the goal

of which is to give a better understanding of the noisy optimization

process and to answer some questions for which our theoretical

analysis was not detailed enough.

When we estimated the drift of the (1 + _) EA in Lemma 5, we

pessimistically assumed that the elitism of this algorithm can be

only harmful. Namely, in our proofs, the comparisonwith the parent

does not save us from decreasing the fitness (since the parent’s

fitnessmight be decreased by the noise) and it might prevent us from

increasing fitness (since the parent’s fitness might be increased by

the noise). This pessimistic view eased the proof without harming

3
The full proof can be found in the arXiv version of this paper [2].

1530

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Denis Antipov, Benjamin Doerr, and Alexandra Ivanova

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

8

10

12

14

Problem size 𝑛

R
u
n
t
i
m
e
/𝑛

l
n
𝑛

(1 + _) EA, _ = ⌊14 · ln𝑛⌋
(1, _) EA, _ = ⌊14 · ln𝑛⌋

Figure 2: Mean runtimes (number of fitness evaluations, nor-

malized by 𝑛 ln𝑛) and their standard deviations over 100 runs

of the (1 + _) EA and the (1, _) EA on OneMax with noise

rates 𝑞 = 1 with varying problem size 𝑛.

the asymptotic order of magnitude of the runtime, so it was fully

appropriate for the theoretical analysis. Still, it raises the question

which of the two algorithms is better when looking at the precise

runtime rather than its asymptotics. To understand this question,

we ran the (1 + _) EA and the (1, _) EA on OneMax with problem

sizes 𝑛 = {26, 27, . . . , 214}, with 100 repetitions for each value of 𝑛.

We used a strong noise with 𝑞 = 1 to maximize its effect, standard

bit mutation with 𝜒 = 1, and we chose _ = ⌈𝐶 ln(𝑛)⌉ with 𝐶 = 14,

since for the chosen values of 𝑞 and 𝜒 this 𝐶 would satisfy the

assumptions of Lemma 9. The mean runtimes of these runs and

their standard deviations are shown in the plot in Figure 2. For better

visual comparison, we normalize both runtimes by 𝑛 ln(𝑛), which is

our upper bound on their asymptotical runtime and the well-known

lower bound for all unary unbiased black-box algorithms [33]. In

the plot we see that for all problem sizes the difference between

the mean runtimes of two algorithms is very small compared to the

standard deviations of their runtimes. Therefore, we conclude that

in practice for this population size the elitism does not slow down

the algorithm by more than some lower order terms (but neither

can speed it up). We note that this is well-known for the noisefree

setting, simply because with high probability some offspring equals

the parent, so removing the parent in the (1, _) EA has no negative

effect. For the noisy setting, as our proof shows, this is less obvious.

We also compare the (1 + _) EA with _ = ⌊ln(𝑛)⌋ and the

(1 + 1) EA on OneMax in the presence of bit-wise noise with small

but constant value of 𝑞 = 0.01. Ours and the previous theoretical

works showed that in this setting the asymptotic runtime of the

(1 + _) EA is much better, but the question is if this translates to sig-

nificant runtime differences already for common problem sizes. Our

results, depicted in Figure 3, show that the difference between the

algorithms is notable already on the smallest problem size 𝑛 = 2
6
.

We also note that since we use a logarithmic scale for both axes,

the convex plot of the (1 + 1) EA indicates that its runtime is super-

polynomial in problem size 𝑛, which lines up with the theoretical

results in [23].

2
6

2
7

2
8

2
9

2
10

10
3

10
4

10
5

10
6

10
7

Problem size 𝑛

R
u
n
t
i
m
e

(1 + _) EA, _ = ⌊ln(𝑛)⌋
(1 + 1) EA

Figure 3: Mean runtimes (number of fitness evaluations) and

their standard deviations over 100 runs of the (1 + _) EA and

the (1 + 1) EA on OneMax with noise rates 𝑞 = 0.01 with

varying problem size 𝑛.

7 CONCLUSION

In this work, we have proven that both the (1 + _) EA and (1, _) EA
with at least logarithmic population sizes are very robust to noise,

that is, with up to constant noise probabilities they optimize the

OneMax benchmark in asymptotically the same time as if no noise

was present. This significantly improves the state of the art for

the (1 + _) EA, considerably reducing both the required population

size and the runtime guarantee, and this is the first such result for

the (1, _) EA.
The reason for this progress is the general observation that the

noisefree offspring can be seen as a biased uniform crossover be-

tween the parent and the noisy offspring. From this we proved that

the true progress is at least a constant fraction of the noisy progress.

The latter can be analyzed with known methods because the noisy

offspring, asymptotically, has the distribution of an offspring ob-

tained from bit-wise mutation with a rate that is the sum of the

mutation and the noise rate. We are optimistic that this or analo-

gous arguments will find applications in future runtime analyses

again.

Next steps to continue this line of research could include the

first analysis of the (`, _) EA [1] in the presence of noise or an

analysis of the algorithms studied in this work on the Leading-

Ones benchmark, which generally is more affected by noise.

ACKNOWLEDGMENTS

This research benefited from the support of the FMJH Program

Gaspard Monge for optimization and operations research and their

interactions with data science. It was also supported by Australian

Research Council through grant DP190103894.

REFERENCES

[1] Denis Antipov and Benjamin Doerr. 2021. A tight runtime analysis for the

(` + _) EA. Algorithmica 83 (2021), 1054–1095.

[2] Denis Antipov, Benjamin Doerr, and Alexandra Ivanova. 2024. Already Mod-

erate Population Sizes Provably Yield Strong Robustness to Noise. (2024).

1531

Already Moderate Population Sizes Provably Yield Strong Robustness to Noise GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

arXiv:2404.02090

[3] Anne Auger and Benjamin Doerr (Eds.). 2011. Theory of Randomized Search

Heuristics. World Scientific Publishing.

[4] Duc-Cuong Dang and Per Kristian Lehre. 2015. Simplified runtime analysis of

estimation of distribution algorithms. In Genetic and Evolutionary Computation

Conference, GECCO 2015. ACM, 513–518.

[5] Duc-Cuong Dang, Andre Opris, Bahare Salehi, and Dirk Sudholt. 2023. Analysing

the robustness of NSGA-II under noise. In Genetic and Evolutionary Computation

Conference, GECCO 2023. ACM, 642–651.

[6] Raphaël Dang-Nhu, Thibault Dardinier, Benjamin Doerr, Gautier Izacard, and

Dorian Nogneng. 2018. A new analysis method for evolutionary optimization of

dynamic and noisy objective functions. In Genetic and Evolutionary Computation

Conference, GECCO 2018. ACM, 1467–1474.

[7] Matthieu Dinot, Benjamin Doerr, Ulysse Hennebelle, and Sebastian Will. 2023.

Runtime analyses of multi-objective evolutionary algorithms in the presence

of noise. In International Joint Conference on Artificial Intelligence, IJCAI 2023.

ijcai.org, 5549–5557.

[8] Benjamin Doerr, Carola Doerr, and Franziska Ebel. 2015. From black-box com-

plexity to designing new genetic algorithms. Theoretical Computer Science 567

(2015), 87–104.

[9] Benjamin Doerr, Carola Doerr, and Jing Yang. 2020. Optimal parameter choices

via precise black-box analysis. Theoretical Computer Science 801 (2020), 1–34.

[10] Benjamin Doerr, Ashish Ranjan Hota, and Timo Kötzing. 2012. Ants easily

solve stochastic shortest path problems. In Genetic and Evolutionary Computation

Conference, GECCO 2012. ACM, 17–24.

[11] Benjamin Doerr, Thomas Jansen, Dirk Sudholt, Carola Winzen, and Christine

Zarges. 2013. Mutation rate matters even when optimizing monotone functions.

Evolutionary Computation 21 (2013), 1–21.

[12] Benjamin Doerr and Marvin Künnemann. 2015. Optimizing linear functions with

the (1 + _) evolutionary algorithm—different asymptotic runtimes for different

instances. Theoretical Computer Science 561 (2015), 3–23.

[13] Benjamin Doerr and Frank Neumann (Eds.). 2020. Theory of Evolutionary

Computation—Recent Developments in Discrete Optimization. Springer. Also avail-

able at http://www.lix.polytechnique.fr/Labo/Benjamin.Doerr/doerr_neumann_

book.html.

[14] Benjamin Doerr and Andrew M. Sutton. 2019. When resampling to cope with

noise, use median, not mean. In Genetic and Evolutionary Computation Conference,

GECCO 2019. ACM, 242–248.

[15] Benjamin Doerr, Carsten Witt, and Jing Yang. 2021. Runtime analysis for self-

adaptive mutation rates. Algorithmica 83 (2021), 1012–1053.

[16] Stefan Droste. 2002. Analysis of the (1+1) EA for a dynamically changing OneMax-

variant. In Congress on Evolutionary Computation, CEC 2002. IEEE, 55–60.

[17] Stefan Droste. 2004. Analysis of the (1+1) EA for a noisy OneMax. In Genetic and

Evolutionary Computation Conference, GECCO 2004. Springer, 1088–1099.

[18] Stefan Droste. 2005. Not all linear functions are equally difficult for the compact

genetic algorithm. In Genetic and Evolutionary Computation Conference, GECCO

2005. ACM, 679–686.

[19] Stefan Droste, Thomas Jansen, and Ingo Wegener. 2002. On the analysis of the

(1+1) evolutionary algorithm. Theoretical Computer Science 276 (2002), 51–81.

[20] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, and Andrew M. Sutton. 2016.

Robustness of ant colony optimization to noise. Evolutionary Computation 24

(2016), 237–254.

[21] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, and Andrew M. Sutton. 2017.

The compact genetic algorithm is efficient under extreme Gaussian noise. IEEE

Transactions on Evolutionary Computation 21 (2017), 477–490.

[22] Tobias Friedrich, Timo Kötzing, Frank Neumann, and Aishwarya Radhakrishnan.

2022. Theoretical study of optimizing rugged landscapes with the cGA. In Parallel

Problem Solving from Nature, PPSN 2022, Part II. Springer, 586–599.

[23] Christian Gießen and Timo Kötzing. 2016. Robustness of populations in stochastic

environments. Algorithmica 75 (2016), 462–489.

[24] Walter J. Gutjahr. 2008. First steps to the runtime complexity analysis of ant

colony optimization. Computers & Operations Research 35 (2008), 2711–2727.

[25] Thomas Jansen. 2013. Analyzing Evolutionary Algorithms – The Computer Science

Perspective. Springer.

[26] Thomas Jansen, Kenneth A. De Jong, and IngoWegener. 2005. On the choice of the

offspring population size in evolutionary algorithms. Evolutionary Computation

13 (2005), 413–440.

[27] Daniel Johannsen. 2010. Random Combinatorial Structures and Randomized Search

Heuristics. Ph. D. Dissertation. Universität des Saarlandes.

[28] Joost Jorritsma, Johannes Lengler, and Dirk Sudholt. 2023. Comma selection

outperforms plus selection on OneMax with randomly planted optima. In Genetic

and Evolutionary Computation Conference, GECCO 2023. ACM, 1602–1610.

[29] Jörg Lässig and Dirk Sudholt. 2011. Adaptive population models for offspring

populations and parallel evolutionary algorithms. In Foundations of Genetic Algo-

rithms, FOGA 2011. ACM, 181–192.

[30] Per Kristian Lehre and Phan Trung Hai Nguyen. 2021. Runtime analyses

of the population-based univariate estimation of distribution algorithms on

LeadingOnes. Algorithmica 83 (2021), 3238–3280.

[31] Per Kristian Lehre and Xiaoyu Qin. 2023. Self-adaptation can improve the noise-

tolerance of evolutionary algorithms. In Foundations of Genetic Algorithms, FOGA

2023. ACM, 105–116.

[32] Per Kristian Lehre and Xiaoyu Qin. 2024. More precise runtime analyses of

non-elitist evolutionary algorithms in uncertain environments. Algorithmica 86

(2024), 396–441.

[33] Per Kristian Lehre and CarstenWitt. 2012. Black-box search by unbiased variation.

Algorithmica 64 (2012), 623–642.

[34] BorisMitavskiy, Jonathan E. Rowe, and Chris Cannings. 2009. Theoretical analysis

of local search strategies to optimize network communication subject to preserv-

ing the total number of links. International Journal on Intelligent Computing and

Cybernetics 2 (2009), 243–284.

[35] Heinz Mühlenbein. 1992. How genetic algorithms really work: mutation and

hillclimbing. In Parallel Problem Solving from Nature, PPSN 1992. Elsevier, 15–26.

[36] Frank Neumann and Carsten Witt. 2009. Runtime analysis of a simple ant colony

optimization algorithm. Algorithmica 54 (2009), 243–255.

[37] Frank Neumann and Carsten Witt. 2010. Bioinspired Computation in Combinato-

rial Optimization – Algorithms and Their Computational Complexity. Springer.

[38] Chao Qian, Chao Bian, Wu Jiang, and Ke Tang. 2019. Running time analysis of

the (1 + 1)-EA for OneMax and LeadingOnes under bit-wise noise. Algorithmica

81 (2019), 749–795.

[39] Chao Qian, Chao Bian, Yang Yu, Ke Tang, and Xin Yao. 2021. Analysis of noisy

evolutionary optimization when sampling fails. Algorithmica 83 (2021), 940–975.

[40] Chao Qian, Yang Yu, Ke Tang, Yaochu Jin, Xin Yao, and Zhi-Hua Zhou. 2018. On

the effectiveness of sampling for evolutionary optimization in noisy environ-

ments. Evolutionary Computation 26 (2018), 237–267.

[41] Jonathan E. Rowe and Aishwaryaprajna. 2019. The benefits and limitations

of voting mechanisms in evolutionary optimisation. In Foundations of Genetic

Algorithms, FOGA 2019. ACM, 34–42.

[42] Jonathan E. Rowe and Dirk Sudholt. 2014. The choice of the offspring population

size in the (1, _) evolutionary algorithm. Theoretical Computer Science 545 (2014),

20–38.

[43] Günter Rudolph. 1997. Convergence Properties of Evolutionary Algorithms. Verlag

Dr. Kovǎc.

[44] Dirk Sudholt. 2021. Analysing the robustness of evolutionary algorithms to noise:

refined runtime bounds and an example where noise is beneficial. Algorithmica

83 (2021), 976–1011.

[45] Dirk Sudholt and Christian Thyssen. 2012. A simple ant colony optimizer for

stochastic shortest path problems. Algorithmica 64 (2012), 643–672.

[46] Petar M. Vasić and Dragoslav S. Mitrinović. 2012. Analytic Inequalities. Springer

Berlin Heidelberg.

[47] Carsten Witt. 2006. Runtime analysis of the (` + 1) EA on simple pseudo-Boolean

functions. Evolutionary Computation 14 (2006), 65–86.

[48] Weijie Zheng and Benjamin Doerr. 2023. From understanding genetic drift to a

smart-restart mechanism for estimation-of-distribution algorithms. Journal of

Machine Learning Research 24 (2023), 1–40.

[49] Zhi-Hua Zhou, Yang Yu, and Chao Qian. 2019. Evolutionary Learning: Advances

in Theories and Algorithms. Springer.

1532

https://arxiv.org/abs/2404.02090
http://www.lix.polytechnique.fr/Labo/Benjamin.Doerr/doerr_neumann_book.html
http://www.lix.polytechnique.fr/Labo/Benjamin.Doerr/doerr_neumann_book.html

	Abstract
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 OneMax with Bit-wise Noise
	3.2 The (1+) EA and the (1,) EA
	3.3 Drift Analysis

	4 Offspring Distribution
	5 Runtime Analysis
	6 Experiments
	7 Conclusion
	Acknowledgments
	References

