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Joint structure-texture low dimensional modeling for image decomposition with1

a plug and play framework2

Antoine Guennec∗ , Jean-François Aujol , and Yann Traonmilin3

4

Abstract. To address the problem of separating images into a structure and a texture component, we introduce5
a joint structure-texture model. Instead of considering two separate regularizations for each compo-6
nent, we consider a joint structure-texture model regularization function that takes both components7
as inputs. This allows for the regularization to take into account the shared information between the8
two components. We present evidence that shows a performance gain compared to separate regular-9
ization models. To implement the joint regularization, we adapt the plug and play framework to our10
setting, using deep neural networks. We train the corresponding deep prior on a randomly generated11
synthetic dataset of examples of this model. In the context of image decomposition, we show that12
while trained on synthetic datasets, our plug and play method generalizes well to natural images.13
Furthermore, we show that this framework permits to leverage the structure-texture decompositions14
to solve inverse imaging problems such as inpainting.15

Key words. image decomposition, low dimensional models, regularization learning, plug-and-play prior16

MSC codes. 68U10, 62H35, 90C26, 94A0817

1. Introduction. The inverse problem of decomposing an image into structure and texture18

components (also known as cartoon-texture decomposition) has been a longstanding area19

of research, with many applications such as image/video compression, material recognition,20

biomedical imaging and texture enhancement/removal. The problem is defined as follows:21

given an image f ∈ E = Rn1×n2 , find a decomposition22

(1.1) f = u+ v23

such that the image u is a piecewise constant (or piecewise smooth depending on the definition)24

approximation of f , containing the basic geometries present in the image. The image v25

contains the texture which is locally zero-mean and contains the oscillating and local patterns.26

As the system associated to the problem is underdetermined, prior information on the cartoon27

and texture components is needed to hope for a satisfactory decomposition.28

The classical method achieve such a decomposition is to solve the optimization problem29

(1.2) minimize
u,v∈E

Rs(u) + λRt(v) subject to f = u+ v30

where Rs(·) and Rt(·) are regularization functions that enforce the characteristics of the31

structure and texture components respectively, and λ is a tuning parameter that balances the32

relative strengths of the structure and the texture respective priors. Many preceding works33

use the total variation [2, 30, 31] for the regularization function Rs in order to enforce some34

piecewise constant characteristics into the structure component. The texture regularization35

has been the center of attention of the different models, with various proposals such as L236
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2 A. GUENNEC, J. F. AUJOL, AND Y. TRAONMILIN

regularization [30, 40] or norms that emphasize sparsity [34, 41] or low-rank of the matrix37

of texture patches [31, 23, 16]. However, these approaches to image decomposition have two38

flaws:39

1. The structure and texture priors are enforced separately. As we will argue more40

precisely in Section 2.2, while locally the two components are uncorrelated, this is41

not the case in the full image: the structural component often defines the frontiers of42

different structures present in the image. This often leads to uncertainty at the edges43

in the decomposition.44

2. They introduce a necessary tuning parameter λ to balance the two regularization mod-45

els. Current methods are relatively costly and it is often needed to perform multiple46

runs of the decomposition algorithm in order to set this parameter correctly. Without47

prior information on the underlying structure and texture components of an image,48

it is not possible to set the correct parameter. Furthermore, additional parameters49

are often introduced in the regularization functions. This leads to difficult and/or50

misleading comparison between proposed methods.51

To the best of our knowledge, there are no methods considering a joint model on structure52

and texture. Moreover, the general problem of building good regularizations for complex53

combinations of low-dimensional models in inverse problems is in general an open question (see54

e.g. [24]).55

For parameter tuning, there have been multiple attempts to mitigate this issue. In [3],56

it was proposed to use the correlation between the two components in order to tune the57

parameter for different total variation-based variational models. In [16] it was proposed to58

automatically tune the low patch rank model [31] by estimating the gradient sparsity of the59

structure and the patch-rank of the texture. However, setting a global parameter is still60

needed.61

In this paper, to address these two problems, we explore the use of plug and play methods62

in order to construct a new regularization function for image decomposition.63

1.1. The plug and play framework. A recent advance in the field of inverse problems has64

been the introduction of the plug-and-play (PnP) framework [36]. Inverse problems are often65

solved via the minimization scheme66

(1.3) minimize
x∈E

R(x) + F (x, y),67

where R is the regularization term, F is the data fidelity term with respect to the observation68

y. For example, in the case where an image x0 is corrupted by a linear operator A and a69

white Gaussian noise ϵ, i.e y = Ax0 + ϵ, we may set F (x, y) = ∥Ax− y∥22.70

The PnP method leverages proximal splitting algorithms, established initially for convex71

problems, by substituting the traditional proximal operator ProxR,η(x) with a denoiser D(x).72

In this context, associating a denoiser with a regularization function is not straightforward if73

we wish to obtain convergence properties. First initiated in [29], it was proposed to construct74

an explicit regularization function from a denoiser. However, given a differentiable denoiser75

D : RN → RN , it was later proven in [28] that the desirable property76

(1.4) ∇R = Id−D,77
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cannot hold without a Jacobian Symmetry property. Other models such as [17, 15] have been78

proposed, in order to bypass this constraint. In this paper, we focus on the gradient step79

denoiser [17], in which the regularization is set as R(x) = 1
2 ∥x−N(x)∥22, where N : E → E80

is parametrized by a neural network and the denoiser is defined from the constraint (1.4). As81

R is differentiable, (1.3) can be solved using descent iterative schemes such as the forward-82

backward algorithm (FB)83

(1.5)

{
zk+1 = xk − τ∇R(xk)

xk+1 = ProxF (·,y),η(zk+1)
;84

where the proximal operator of a function G : RN → R is defined by85

(1.6) ProxG,η(x) := argmin
z

G(z) +
1

2η
∥z − x∥22 .86

1.2. Contributions. In this work, we introduce the joint structure-texture model for image87

decomposition and its implementation using an adapted PnP framework88

• In Section 2, we present a low-dimensional model of image where structure and texture89

are considered to share support information. To enforce this model, we deviate from90

the classical paradigm (1.2) by considering the minimization of a single function that91

acts on both the structure and texture at the same time, i.e the structure-texture92

decomposition is the result of the optimization problem93

(1.7) minimize
x=(u,v)∈E×E

R(x) subject to f = u+ v.94

• In Section 3, we construct a regularization for the joint structure-texture model, by95

adapting the PnP framework: it suffices to train a joint structure-texture denoiser.96

This framework removes the necessity of a tuning parameter for the structure-texture97

decomposition. In place, we provide an optional parameter that balances the projec-98

tion direction onto the constraint f = u+ v.99

• In Section 4, we construct a prior of the decomposition model, using a database of100

randomly generated synthetic decompositions to train the denoiser in our PnP algo-101

rithm. The resulting regularization function is able to take into account information102

shared between the structure and texture. We demonstrate that our adapted PnP103

framework is able to define regularizations adapted to complex combinations of two104

low-dimensional models, which was shown to be generally impossible with just the105

sum of individual regularizations. Furthermore, we present evidence that the joint106

structure-texture modeling outperforms the usual separated models (Section 4.3).107

• In Section 5, we perform experiments on synthetic and real natural images in order to108

illustrate the performance of our method. In particular, our constructed regularization109

allows to solve difficult inverse problems such as inpainting, working simultaneously110

on both the structure and texture component (Section 5.2). We also show that this111

model, while trained on synthetic data, is able to generalize well to natural images112

(Section 5.3) leading to interesting perspectives for the construction of deep priors for113

image processing.114

This manuscript is for review purposes only.



4 A. GUENNEC, J. F. AUJOL, AND Y. TRAONMILIN

1.3. Related Work. The first structure-texture decomposition models relied on varia-115

tional methods, using the total variation to characterize the structural component and a116

function space norm to constrain the texture component, such as the L2-norm [30], G-norm117

[22, 37] or H-norm [3, 2]. While theoretically well-founded and able to capture the oscillating118

nature of texture, these norms are either difficult to implement or cannot capture textures119

with a small magnitude. To counteract the staircase effect given by the total variation [8],120

other regularization such as the total generalized variation [7] and the relative total variation121

[38] were proposed.122

A more modern approach has been to consider the structure-texture decomposition in the123

context of sparse/low-rank priors. One of the earliest approach was to consider that texture124

can be sparsely represented in a suitable given transformation (e.g discrete cosine transform125

(DCT), Gabor transform) [34, 10]. While very successful in some applications, the issue with126

this approach is that many textures that arise in practical applications cannot be modeled127

by DCT or other related dictionaries. More recently, this approach was extended to use128

convolutional sparse coding instead [41], where convolutional filters are learned beforehand.129

Another approach was to consider that the matrix of texture patches is of low patch rank130

(LPR) [31]. However, this approach can fail if too many different textures are present in the131

image since the resulting sets of textures no longer live in a small patch-space. [23] proposed132

the blockwise low-rank texture model to counteract against this issue with LPR. Similarly133

to the low patch-rank prior, in [39] the cartoon and texture were separated based upon local134

patch recurrence with a given orientation. All of the aforementioned models above provide135

more or less an appropriate decomposition. However, they are relatively slow and require a136

tuning parameter to balance the resulting structure and texture. To address this matter, [16]137

took advantage of the underlying low dimensionality of the structure and texture spaces in138

order to provide a near tuning parameter-free and highly parallelized localized version of the139

LPR model.140

Recently, learning based approaches have been proposed to solve the image decomposi-141

tion problem. In [45] the authors proposed a self-example and unsupervised learning approach142

where the structure-texture decomposition associated regularization is optimized through the143

back propagation of a neural network. Similarly, in [32] it was proposed to recover the struc-144

tural component from a random input z from a convolutional generative neural network fθ,145

and to model the texture as low-rank. In [11], the authors showed that the iterative steps146

in the minimization of TV-ℓ1 are similar to the architecture of an LSTM neural network and147

they proposed to use an LSTM in order to unfold the iterative hard-thresholding algorithm148

of TV-ℓ1. Similarly, in [18], the authors proposed to use a CNN network in order to learn the149

structure prior. In [33, 44], other methods based upon unfolding the TV proximal operator150

have been proposed. One of the closest approach to our work can be found in [21], where the151

authors proposed to learn an image decomposition neural network training upon a handmade152

structure-texture dataset consisting of cartoon images onto which a homogeneous texture was153

added. However, this approach lacks two core details: texture locality (see Figure 1) and an154

associated regularization function to the decomposition that can thereafter be used to solve155

inverse problems.156
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2. Structure-Texture decomposition as a low dimensional recovery problem. In this157

section, we describe the image decomposition problem as a low-dimensional recovery problem.158

We highlight the fact that an optimal regularization for this problem cannot be the sum of159

a structural regularization and a textural regularization of the form (1.2), thus justifying the160

introduction of our framework for a joint regularization (1.7).161

A way to describe image decomposition is to consider it as a low-dimensional recovery162

problem. In this setting, the underlying assumption is that the image we wish to decompose163

belongs to the sum of two low dimensional models, i.e. f = u0 + v0 with u0 and v0 each164

belonging to a low-dimensional model, denoted by Σs for the structure model and Σt for the165

texture model respectively. Then, the decomposition problem becomes: recover (u0, v0) ∈166

Σs × Σt from f = u0 + v0.167

For each data model Σs and Σt, we typically set corresponding regularization functions Rs168

and Rt whose minimization should enforce Σs and Σt respectively. We aim to recover (u0, v0)169

(or at least an approximation) via the optimization problem170

(2.1) minimize
(u,v)∈E×E

Rs(u) +Rt(v) subject to f = u+ v.171

Optimally in this setting [6, 35], the regularization functions should be set as172

(2.2) Rs(u) = dist(u,Σs)
2 and Rt(v) = dist(v,Σt)

2.173

Since this approach generally leads to NP-hard problems (e.g ℓ0, rank minimization), a con-174

vex relaxation is often considered instead (e.g ℓ1 norm used instead of ℓ0 for sparsity). This175

setting can also be viewed in the context of compressive sensing. By setting the linear oper-176

ator A=(Id Id), we aim to recover x0=(u0, v0) ∈ Σs × Σt from measurements f=Ax0, with177

dim(f) = n1n2 < 2n1n2 = dim(x).178

The choice of Σs and Σt is also of utmost importance to tune the texture scaling dilemma179

(which is tightly linked to the image resolution): repetitive patterns may be part of the180

structure if enlarged (zoom in) or be part of the texture component when shrunk (zoom out).181

In between these two states, it is ambiguous to distinguish between structure and texture with182

confidence. This is a choice that should be set in accordance to the specific application we183

wish to perform.184

2.1. Previous work on low dimensional recovery for image decomposition. For the185

structure component, the total variation186

(2.3) ∥u∥TV =
∑
i∈Ω

∥(∇u)i∥2 = ∥∇u∥1 , with Ω = [[1, n1n2]],187

has been widely used to enforce gradient-sparsity and its associated low dimensional model is188

given by189

(2.4) ΣGS = {u ∈ Rn1×n2 | ∥∇u∥0 ≤ k},190

the set of vectors that are k-gradient-sparse. On the other hand, for the texture component a191

variety of models have been proposed. We present a (non-exhaustive) list of previous methods:192
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1. The earliest example of image decomposition by exploiting sparsity is given by [34],193

where we assume that both the structure and texture are sparse in an appropriate194

overcomplete dictionary. In essence, we assume that195

(2.5) u0 ∈ ΣDs = {Dsx | ∥x∥0 ≤ k1} and v0 ∈ ΣDt = {Dty | ∥y∥0 ≤ k2},196

where Ds and Dt are the chosen overcomplete dictionaries. For example, Ds may corre-197

spond to a curvelet dictionary and Dt may correspond to a DCT or Gabor dictionary.198

We recover the decomposition via the minimization of an ℓ1 optimization problem199

(2.6) (x0, y0) = argmin
x,y

∥x∥1 + ∥y∥1 subject to f = Dsx+Dty,200

and the resulting decomposition is given by (u, v) = (Dsx0,Dty0). In fact, with the201

appropriate constraints upon the dictionaries and underlying sparsity of u0 and v0,202

(2.6) is able to exactly recover (u0, v0).203

2. In the Low Patch rank interpretation of texture (LPR) model [31], the texture is204

considered to be of low patch-rank, i.e205

(2.7) v0 ∈ ΣLPR = {v ∈ Rn1×n2 | rank(P(v)) ≤ l},206

where P is a patch operator. Moreover, since the nuclear norm207

(2.8) ∥X∥∗ =
min(n1,n2)∑

i=1

σi(X)208

is a convex relaxation of the rank, (2.7) is able to recover the low patch-rank textures209

(under some conditions) . The decomposition is pursued via the optimization problem:210

(2.9) minimize
(u,v)

µ ∥u∥TV + γ ∥P(v)∥∗ subject to f = u+ v.211

3. Similarly, in the Blockwise Low-Rank Texture Characterization (BNN) model [23] the212

texture is considered to be of low-rank ‘blockwise’, with v0 = v10+ ...+vm0 and for each213

i ∈ {1, . . . ,m}214

(2.10) vi0 ∈ Σi
BNN

= {v ∈ Rn1×n2 | rank(Pki,δi ◦ Sθi(v)) ≤ l},215

where Pki,δi is a periodically-expanding operator with parameters (ki, δi) and Sθi(v)216

is a shearing operator with parameter θi (see [23] for more information). Then, the217

BNN model of the texture component is given by218

(2.11) ΣBNN = Σ1
BNN

+ · · ·+Σm
BNN

219

and structure and texture are recovered by the optimization problem220

(2.12) minimize
u,v∈E

µ ∥u∥TV +
m∑
i=1

γ ∥v∥i∗,BNN subject to f = u+ v.221
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4. In the convolutional sparse and low rank coding-based image decomposition model222

[41], convolutional filters {ds,i}Ks
i=1, {dt,i}

Kt
i=1 that sparsely represent the structure and223

texture components are learned. The associated low dimensional models are given by224

(2.13)

ΣCS
s =

{ Ks∑
i=1

ds,i∗xi |
Ks∑
i=1

∥xi∥0 ≤ k1

}
and ΣCS

t =

{ Kt∑
i=1

dt,i∗xi |
Ks∑
i=1

rank(xi) ≤ k2

}
.225

The decomposition model can be further restricted by considering that the structure226

component
Ks∑
i=1

ds,i ∗ xi is also gradient sparse.227

Note that while the ℓ1-norm (respectively the nuclear norm) has been shown to be optimal228

for sparse recovery (respectively low-rank recovery) [35], all these methods consider a sum229

of regularizations for decomposition. This ”sum” approach is adapted for product models230

Σs × Σr. We argue in the following that structure and texture are not best approximated by231

such product models.232

2.2. The joint structure-texture with shared support model. For natural images, the233

structure and texture components should not be considered disjointedly because they share234

some common information: the support. While locally the structure and texture components235

can be considered uncorrelated, it is not so the case when taking the whole image into account.236

Usually, the structure and texture present in an image share a common border (e.g Figure 1),237

i.e. the texture is expected to end when the structure also ends.238

Figure 1: An example of decomposition of the Barbara image. From left to right: original
image f , structure component u, texture component v. We observe that structure and texture
share a common border.

239

Consider Σs and Σt two low-dimensional models which contain all the structure and tex-240

ture components separately, for example we may choose gradient sparsity Σs = ΣGS and low241

patch rank Σt = ΣLPR. We define the notion of structure and texture with a given support.242

Definition 2.1. Consider a set of disjoint supports I = (Ir)
|I|
r=1 (Ir ⊂ [[1, n1]]× [[1, n2]]) and243

uI the restriction of u to the support I. We define the support-wise structure and texture low244
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8 A. GUENNEC, J. F. AUJOL, AND Y. TRAONMILIN

dimensional models as245

Σs,I =

{
u ∈ Σs : |∇uIr | = 0,∀Ir ∈ I

}
;

Σt,I =

{∑
r

1Ir · vr | vr ∈ Σt

}
.

(2.14)246

By abuse of notation, we suppose that ∇uIr only contains the gradients inside the support Ir247

(we exclude the gradients on the boundary of Ir).248

Fundamentally, this definition stems from the fact that textures can be expanded (infin-249

itely) on a canvas and the observed textures in a local section of an image are delimited by250

the structure. Hence the consideration that a local texture should be 1Ir · vr in the definition251

of the support-wise texture model.252

We set Q(n1, n2) as the set of partitions of [[1, n1]]× [[1, n2]]
1with connected sets. We can253

now define the joint low-dimensional structure model.254

Definition 2.2. We define the joint structure-texture with a shared support model as255

(2.15) Σs⊗t =
⋃

Ω∈Q(n1,n2)

Σs,Ω × Σt,Ω256

We immediately remark that Σs⊗t is a union of product models that cannot be written as257

a cartesian product of structure and texture.258

2.3. On optimal regularization for low dimensional models ?. In the case of separated259

models, where we consider that the structure and texture components are uncorrelated, the260

optimization problem (2.1) is natural to consider. Indeed, if we set the regularization func-261

tions Rs, Rt as in (2.2) and Rs,t(u, v) = dist((u, v),Σs × Σt)
2, since dist((u, v),Σs × Σt)

2 =262

dist(u,Σs)
2 + dist(v,Σt)

2, we have263

min
u,v∈E

u+v=f

Rs,t(u, v) = min
u,v∈E

u+v=f

dist(u,Σs)
2 + dist(v,Σt)

2

= min
u,v∈E

u+v=f

Rs(u) +Rt(v).
(2.16)264

Hence, the optimal strategy in this case is to minimize Rs + Rt. However, in the case of the265

joint structure-texture model, this property is no longer satisfied and shared borders between266

the two components imposes an additional constraint on the optimization problem. Since267

the model Σs⊗t is more constrained than Σs × Σt, a dedicated joint regularization can thus268

potentially perform better.269

Note that a similar problem has been studied in [24], where the recovery of matrices that270

are both sparse and low-rank is studied (intersection of models). Oymak et al. show that a271

sum of dedicated regularizations cannot perform better than individual regularizations. Later272

work studies theoretically heuristics to solve such problems [12]. This shows that designing273

1Ω = {Ω1, . . . ,Ωm} ∈ Q(n1, n2) ⇐⇒
⋃m

i=1 Ωi = [[1, n1]]× [[1, n2]] and Ωi ∩ Ωj = ∅, ∀i ̸= j.
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joint regularization functions for such complex combinations of models directly is not an easy274

task. In the next Section, we introduce a PnP method to design such adapted regularizations.275

This framework permits to stay within the global theory of regularization of low-dimensional276

models.277

3. PnP for Image decomposition. Instead of considering two regularization functions in278

order to decompose an image (one for each component), we propose to use a single regulariza-279

tion function that takes both the structure and texture components as input. By doing so, we280

solve the problem of joint regularization and we remove the necessity of a structure/texture281

balance tuning parameter. We aim to recover x0 =

(
u0
v0

)
∈ Σs⊗t from the original image282

f = Ax0, with A = (Id Id), via an optimization of the form283

(3.1) minimize
x=(u,v)

R(x) subject to f = Ax.284

However, setting an explicit regularization that achieves this goal is clearly inconceivable as285

minimizing over the set of partitions Q(n1, n2) introduces an exploding complexity.286

We propose to use a gradient-step denoiser in order to obtain a regularization function R that287

accurately captures the joint structure-texture with a shared support model. Experiments288

validating this approach are given in Section 4 and Section 5.289

3.1. The gradient step denoiser applied to image decomposition. In [17], the authors290

proposed the gradient step denoiser, a plug-and-play scheme in which the denoiser is connected291

to an explicit regularization functional. The gradient step denoiser takes the form292

(3.2) D(x) = (Id−∇R)(x),293

where R is the associated regularization function294

(3.3) R(x) =
1

2
∥x−N(x)∥2295

and N : Rn → Rn is parametrized by a neural network. In the context of plug and play,296

the authors used the gradient step denoiser with a forward-backward algorithm to solve an297

optimization problem of the form298

(3.4) minimize
x

R(x) + F (x)299

where F : Rn → R is the data fidelity term. For example, in the case of image restoration300

from a linear observation (deblurring, inpainting, etc...), we may set F (x) = ∥y −Ax∥22 where301

y is our degraded image and A the degradation operation.302

If we set Cf := {x = (u, v) ∈ E × E |
(
Id Id

)
x = f}, the convex set of couples (u, v)303

that decompose f , then (3.1) is equivalent to304

(3.5) minimize
x∈E×E

R(x) + χCf (x)305
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10 A. GUENNEC, J. F. AUJOL, AND Y. TRAONMILIN

where χ is the indicator function, i.e for a convex set C, χC(x) =

{
0 if x ∈ C
+∞ otherwise

. Then, the306

decomposition (3.5) fits nicely in the context of image restoration (3.4) with F = χCf which307

can be solved using a projected gradient descent [5]. The following Lemma gives explicitly308

the proximal operator of309

Lemma 3.1. The proximal operator of χCf (the orthogonal projection onto Cf ) for x =

(
u
v

)
310

is given by311

PCf (x) := ProxχCf ,λ
(x) =

(
u
v

)
− 1

2

(
u+ v − f
u+ v − f

)
(3.6)312

Proof. This is an immediate consequence of the more general Lemma 3.2. For b = f =313

u+ v, we have (with L =
(
Id Id

)
and L+ is the pseudo-inverse of L),314

L+Lx =
(
Id Id

)T
(
(
Id Id

)T (
Id Id

)
)−1

(
Id Id

)
x =

1

2

(
u+ v
u+ v

)
315

and L+b = 1
2

(
f
f

)
and316

ProxχCf ,λ
(x) = (I − L+L)x+ L+b

=

(
u
v

)
− 1

2

(
u+ v − f
u+ v − f

)
.

(3.7)317

In full, the projected gradient step (equivalent to the Forward-Backward algorithm (1.5))318

iterations for image decomposition to minimize (3.1) with R satisfying (3.2), is by319

(3.8)

{
yk+1 = (1− τ)xk + τD(xk)

xk+1 = PCf (yk)
320

where τ is the gradient step parameter. Notice that in the convex case, the Forward-321

Backward algorithm (1.5) converges as soon as τ ≤ 2
L , where L is the Lipschitz constant of322

the regularization function R.323

We train the gradient step denoiser with Gaussian noise (3.2) by minimizing the mean324

square error loss function325

(3.9) L(D) = Ex∈Σs⊗t,ϵ∼N (0,σ2) ∥D(x + ϵ)− x∥22 .326

Essentially, the loss guarantees that the denoiser ‘projects’ well onto Σs⊗t, since327

dist(D(x + ϵ),Σs⊗t)
2 = inf

y∈Σs⊗t

∥D(x + ϵ)− y∥22

≤ ∥D(x + ϵ)− x∥22 ,
(3.10)328
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Algorithm 3.1 Joint structure-texture gradient descent

Param.: τ > 0
Inputf
Output: The output structure and texture x̂ = (û, v̂)
x0 = (f, 0)
while not converged do

yk+1 = (1− τ)xk + τD(xk)
xk+1 = PCf

(
yk+1

)
end while

for any x ∈ Σs⊗t and a perturbation ϵ such that x + ϵ /∈ Σs⊗t. In our approach, we deviate329

from the original implementation as we do not add the noise level σ as input of the model330

(blind denoising). The training is performed on multiple noise levels without prior knowledge331

of σ. Furthermore, 30% of the training was performed without noise. Similarly to [26], we332

observed that prioritizing the training of the denoiser on low noise levels greatly improved the333

overall performance of the denoising.334

By using differentiable layers in N (e.g ELU layer instead of RELU), we ensure that the335

projected gradient descent converges. Indeed, χCf is lower semi-continuous and thus we are in336

the convergence conditions provided by Theorem 1 of [17]. In what follows, we parametrized337

the neural network N using a DRUNet architecture (Fig. [42]), with ELU layers instead of338

RELU.339

Figure 2: Architecture of the DRUNet denoiser [42] used to parametrize N . Contrarily to
the initial implementation of the gradient step PnP, we do not use a noise level map and the
structure/texture components are both set in an invidual channel.

3.2. Application to inverse problems. The structure and texture each provide an impor-340

tant perceptual information of the content in an image. With prior knowledge on the structure341

and texture components in the original image, we may use the regularization R(u, v) in the342

applications to solve inverse problems of the form343

(3.11) b = Mx or b = Mx+ ε,344

where M is a linear operator, ε is a Gaussian white noise and b is the observation.345
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In the noiseless setting, given M (e.g a mask) and a corrupted observation b = Mf , we346

aim to recover f through solving the optimization problem347

(3.12) min
x=(u,v)

R(x) subject to M(u+ v) = b348

To solve this problem, we consider the convex set Cb(M) = {x = (u, v) | M(u + v) = b}349

and we set350

(3.13) PCb(M)(x) = argmin
M(Id Id)y=b

1

2
∥y− x∥22 .351

Then, we solve the problem via a projected gradient descent352

(3.14)

{
zn = xn − τ∇R(xn)

xn+1 = PCb(M)(zn+1)
.353

The projection is given by the following Lemma.354

Lemma 3.2. Let M be a linear operator. The proximal operator of χCb(M) (the orthogonal355

projection onto Cb(M)) for x =

(
u
v

)
is given by356

PCb(M)(x) := ProxχCb(M),λ(x) = (I − L+L)x+ L+b(3.15)357

where L = M
(
Id Id

)
and L+ is the pseudo-inverse of L.358

Proof. Let L = M
(
Id Id

)
, λ > 0 and x = (u, v) ∈ E2, we have359

ProxχCf (b),λ(x) = argmin
y∈E2

λχCf (b)(y) +
1

2
∥y− x∥22

= argmin
y∈E2

Ly=b

1

2
∥y− x∥22 .

(3.16)360

We have that Ly = b is equivalent to y = L+b + w where w = ker(L). Hence we minimize361

min
w∈kerL

∥w − x + L+b∥22. The solution of this least squares problem is the definition of the362

orthogonal projection of x − L+b on kerL. The orthogonal projection on kerL is given by363

I − L+L and, as L+LL+ = L+, we have364

ProxχCf ,λ
(x) = (I − L+L)x− (I − L+L)L+b+ L+b = (I − L+L)x+ L+b.(3.17)365

For example, when M is a mask operator, i.e the inpainting task (see Section 5.2), we366

find that its associated projection operator is given by367

(3.18) PCb(M)(u, v) =

(
u
v

)
+

1

2

(
M(b− u− v)
M(b− u− v)

)
.368
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Similarly, if we consider the inverse problem with noise, we aim to recover f through the369

optimization problem370

(3.19) min
x=(u,v)

R(x) +
µ

2
∥M(u+ v)− b∥22 .371

As (u, v) 7→ ∥M(u+ v)− b∥22 is differentiable, this can be solved using a gradient descent372

scheme373

(3.20) xn+1 = xn − τ∇R(xn)− τµ

(
Id
Id

)
MT

(
M

(
Id Id

)
xn − b

)
374

3.3. Projection Tuning parameter for the joint structure-texture model. One of the375

constraints given by considering a single regularization for both the structure and texture is376

that we lose any type of control on the given result. Because we are in the setting of exact377

decomposition, we do not have any tuning parameter. While it is often advantageous to378

have little to no tuning in a decomposition method, we introduce a method to balance the379

structure/texture output through the projection operation PCf .380

Essentially, the projection PCf equally adds the residual of the output of the denoiser into381

both the structure and texture components in order for the result to fit the equation f = u+v.382

However, depending on the residual one may wish to add more or less of the residual to either383

the structure or texture component. Hence, we may consider the non-orthogonal projection384

instead385

(3.21) P̃Cf ((u, v)
T , µ) =

(
u
v

)
+

(
µ(f − u− v)

(1− µ)(f − u− v)

)
,386

where µ ∈ (0, 1) is a tuning parameter. Setting µ low will import less of the remaining texture387

from the residual into the structure and a high µ will import less of the remaining structure388

contained in the residual into the texture (see Figure 3).389

3.4. Adaptive step selection. The projected gradient step descent denoiser has the down-390

side to be non-convex and usual convex techniques may fail. To handle this, there are multiple391

ways we may approach to stabilize the gradient descent:392

1. Initialization near the true solution, e.g using another decomposition scheme to ini-393

tialize x0 or a trained neural network that directly does a first decomposition.394

2. Backtracking methods as it was originally implemented in [17],395

3. Regularization search: at each iteration, we perform a line search in order to set an396

optimal gradient step τ and projection tuning parameter µ that minimizes the most397

the regularization function Rx.398

We found that this last approach with the simple initialization x0 = (f, 0) leads to the best399

recovery result for synthetic images. In a second step, we may also decrease the gradient step400

τn in order to enforce ∥xn − yn∥ → 0.401

The parameter search does not impact much the speed of the projected gradient step algorithm402

as the computational cost of R(x) is low when compared to ∇R(x). Moreover, the rate of403

convergence is greatly increased, so less iterations are required to reach an optimal output.404
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µ=0 µ=0.5 µ=0.75 µ=1.0µ=0.25

Figure 3: Illustration of the projection direction µ on a synthetic image. At the far left:
original image f , top: structure component uµ, bottom: texture component vµ. For each
decomposition, the first two iterations of the projected gradient descent were obtained using
µ=0.5 in order to obtain an initial decomposition and the following iterations were obtained
using the indicated projection direction µ. Setting µ low will reinforce the structure model
and setting µ high will reinforce the texture model. The PSNR with respect to the ground
truth decomposition is given at the bottom left of each image.

Algorithm 3.2 Joint structure-texture projected gradient descent with optimal regularization
line search

Init.: x0 = (f, 0),
Inputf
Output: The output structure and texture x̂ = (û, v̂)
while not converged do

τk = argmin
τ∈R+

R((1− τ)xk + τD(xk))

yk+1 = (1− τk)xk + τkD(xk)

µk = argmin
µ∈R

R(P̃Cf
(
yk+1, µ))

xk+1 = PCf
(
yk+1, µk

)
end while

4. Synthetic images as a regularity prior.405

4.1. Background. Inherently, we wish that our neural network learns the low-dimensional406

joint structure-texture model Σs⊗t. One of the core dilemmas with associating machine learn-407

ing methods to the image decomposition problem is the absence of ground truth (especially408

with natural images). In order to train the denoiser, we designed a procedure that gener-409

ates random piecewise constant images (with a connected support) and an associated texture410

component, generated from a texture model. This enabled us to train the denoiser with an411

endless supply of training examples, without any ambiguity on the ground truth. In [1], the412
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Figure 4: Examples of generated structure (left) and texture (center) images used in the
numerical experiments and to train the different neural networks. On the right, we show their
sum.

authors used a similar approach where they trained a denoiser on the dead leaves synthetic413

image model and demonstrated that it could reach near-optimal results by training only upon414

synthetic images. The synthetic joint structure-texture image model that we propose follows415

the same construction: we generate a synthetic image by superposing random shapes with an416

additional texture. However, contrarily to the dead leaves generation, we heavily limit the417

number of superposed shapes as the associated textures should remain small locally.418

4.2. Database design. In order to create a connected support, we proceeded in two419

steps. First we produce a connected support via the Lane-Riesenfeld algorithm [20], where420

we randomly scatter initial points around an origin ((posx, posy) in Algoritm 4.1) and we421

recursively apply a subdivision process (split + average) to those points until we obtain a422

smooth curve (Figure 5).423

Given the ordered points P = {p1, ..., pk} ⊂ R2, we define the splitting and averaging424

procedures as425

• split(P) = {p1, p1+p2
2 , p2,

p2+p3
2 , ..., pk,

pk+p1
2 },426

• average(P) = {p1+p2
2 , ...,

pk−1+pk
2 , pk+p1

2 }.427

Note that in the averaging step, other weights may be used. Using any weights taken from a428

line in Pascal’s triangle will lead the points to converge to a smooth curve. Once the contour429

of the shape is generated, we may fill it using a flood fill algorithm. In full summary, single430
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connected support is generated as follows:431

1. Randomly select k (ordered) points around a central point c ∈ N2, P0 = {p1, . . . pk}.432

2. Subdivide the points, Pn+1 = average(split)(Pn), until a smooth enough set of points433

is achieved.434

3. Project the resulting points onto a canvas and use a flood fill algorithm to obtain the435

image support.436

To generate the final structural component, we randomly scatter the aforementioned generated437

shapes onto a canvas with varying level of intensity.
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Figure 5: Illustration of the subdivison process (a) Initial point scatter, (b) Splitting step, (c)
averaging step, (d) Final shape (in red) after ten subdivisions.

438

Algorithm 4.1 Synthetic image generation

Param.: K, tmin, tmax, smin, smax

Output: S, T (the synthetic structure and texture components)
S = ones(n,m)
T = generate texture(n,m)
for i in [0, ...,K − 1] do
poxx, poxy = randint(0, n), randint(0,m)
Ω = generate support(posx, posy)
αs, αt = uniform(smin, smax),uniform(tmin, tmax)
S|Ω = αs · 1Ω

T|Ω = αt · 1Ω · generate random texture()
end for

The textural component is much more straightforward to generate. In the literature there439

have been multiple texture models that have been proposed, e.g low-patch rank [31], low-rank440

[41, 43], sparse dictionary [25], etc... Using random distributions, we generate textures from441

these models, which are then cropped to fit its corresponding support. We provide an example442

of the sparse Fourier texture generation in Algorithm 4.2.443

4.3. A tool to build an optimal regularization. Up to our knowledge, every image de-444

composition model has relied upon a regularization of the form λRs(u) +Rt(v). As discussed445

in Section 2.3, while this scheme is optimal when we consider the two components to be un-446

correlated, it is not the case otherwise. We show evidence that this is in fact suboptimal447
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Algorithm 4.2 Random sparse Fourier texture generation

Param.: freqxmin, freq
y
min, smax,

Output: T
s = randint(1, smax)
Tfreq = zeros(n,m)
for i in [0, ..., smax] do

xfreq = randint(freqxmin, n− freqxmin)
yfreq = randint(freqymin,m− freqymin)

T̂ [xfreq, yfreq] = 1

T̂ [−xfreq,−yfreq] = 1
end for
T = ifft(T )

in the case of the joint structure-texture model, and that a regularization which takes both448

structure and texture as inputs leads to a better result. This further supports our main hy-449

pothesis that the interaction between the structure and the texture components provides an450

invaluable information to perform an efficient separation.451

In our experiments, we selected the DRUNet architecture (see Figure 2) in order to parame-452

trize the neural network N in (3.3), and we set the texture model Σt to a sparse model in the453

high frequencies (superposition of cosines/sines). We trained three separate denoisers:454

• Dx = Id−∇Rx which is trained on denoising structure-texture couples x = (u, v)455

• Ds = Id−∇Rs which is trained on denoising only the structure.456

• Dt = Id−∇Rt which is trained on denoising only the texture.457

In terms of denoising performance, we observe that Dx slightly outperforms Ds and Dt in both458

structure and texture performance (Table 1). Unsurprisingly, there is a large performance gap459

between the structural and textural components for the task of Gaussian noise removal. Piece-460

wise constant images are possibly the easiest image category to denoise, whereas textures are461

oppositely the most difficult ones. Diverging from the rest, we observed that Ds has an ex-462

ceptionally high fixed point PSNR (σ = 0), indicating that the underlying structure space463

should lie near the minimizer of Rs.464

465

While Dx is able to achieve similar denoising performance to Ds and Dt for both structure466

and texture components respectively, our experiments show that Dx is superior in the appli-467

cation of image decomposition. Given a dataset of 1000 synthetic images, we chose for each468

image a tuning parameter λ for the minimization of λRs+Rt that maximizes the PSNR with469

respect to the ground truth. Even with this harsh condition in favor of the separated models,470

the joint structure-texture model algorithm has ability to better recover the decomposition471

into structure and texture (Table 2), with no user input for parameter tuning.472

This manuscript is for review purposes only.



18 A. GUENNEC, J. F. AUJOL, AND Y. TRAONMILIN

Figure 6: Denoising of a synthetic structure and texture with the different methods and
different noise levels using a denoiser Dx that takes both structure and texture as input and
Ds, Dt that takes only one component (structure and texture respectively). The results are
close for low-level noise, however for high level noise Dx performs much better, especially on
the texture recovery. The PSNR with respect to the ground truth is shown at the bottom left
of the images.

mean PSNR (best iteration) mean PSNR (20 iterations)

Rx 42.69 40.85
λRs +Rt 40.12 38.83

Table 2: Comparison between joint and separated (Rx and λRs+Rt) regularization minimiza-
tion for image decomposition, on a test set of 100 images. We used the line search method for
Rx, and with an initialization with the LPR algorithm for λRs +Rt and an optimal choice of
λ. We find that the joint structure-texture modeling performs better than the separated one.
We present the best PSNR out of 100 iterations and the PSNR at 20 iterations (around when
the algorithm should achieve the best result).
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σ(./255) 0 5 10 15 20

(Structure)
Dx 49.50 47.03 43.88 40.99 38.42
Ds 55.07 46.08 43.27 40.46 38.24

(Texture)
Dx 44.96 36.22 32.24 30.04 28.52
Dt 39.51 35.18 31.39 29.31 27.90

Table 1: Mean PSNR denoising performance comparison between the joint and separated
structure-texture denoisers, on a test set of 1000 generated 64×64 synthetic structure-texture
images. While the denoising performance is similar for noise with a small standard deviation,
denoising both components at the same time provides better denoising capability for both
structure and texture.

5. Experiments.473

5.1. Synthetic image decomposition. As discussed in Section 4.3, we compared the de-474

compositions between the two regularization schemes R(u, v) and R(u) + R(v). As we can475

observe in Figure 7, even for images where the PSNR was close between the two decomposi-476

tions, the joint structure-texture approach was able to better separate the two models. For477

example, in the second image, while the structure components for each approach have similar478

PSNR with respect to the ground truth, there is less texture present in the structure with the479

joint structure-texture method. Finally, the decomposition using the joint model converges480

very quickly to an appropriate point, needing less than 10 iterations to reach an optimal value481

(Fig. 8).482

5.2. Inpainting. The task of inpainting large holes is very ill-posed and thus necessitates483

a prior knowledge in order to achieve a satisfactory recovery. As presented in [4], image de-484

composition modeling can be used to inpaint simultaneously both structure and texture. In485

the case of missing pixels in an image, we found the initialization of the projected gradient486

algorithm to be of utmost importance in order to recover correctly both the structure and487

the texture. If initialization is incorrectly set, the masked areas may be considered as pro-488

viding structure. We found that filling the missing regions with an average onion-peel filling489

(iteratively filling the holes one layer at a time by taking the average of the surrounding pix-490

els) provided an adequate initialization. In our experiments (Figure 9) on synthetic images491

we observe a perfect recovery of the textures present in the image and with an appropriate492

structure recovery (note that there is no way to recover the correct boundary in the masked493

areas). This indicates that the denoising task was able to successfully learn the texture model494

it was trained on.495

5.3. Natural image decomposition. Using a denoiser Dx trained on 64 × 64 synthetic496

structure-texture image we decomposed natural images patch-wise using an overlap of 16 (and497

a patch-size of 64 × 64). Moreover, we used a line search (as presented in Section (3.4)) at498

every iteration in order to select an optimal gradient descent parameter. We set the structure499

model Σs as piecewise constant images and the texture model Σt as the combination of sparse500

Fourier textures and low-patch rank. We stress that each decomposition reached in each case501
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Figure 7: Comparison between the decompositions given by R(u, v) and Rs(u) +Rt(v) mini-
mization. From left to right: original image, output from R(u, v), output from λR(u) +R(v)
and the target decomposition (u0, v0). In order to avoid cherry picking bias, the decomposi-
tions were selected with a small PSNR difference between each other. We observe that the
regularization R(u, v), trained on both component simultaneously is able to better fit the low
dimensional models it was trained on. This demonstrates that the shared information between
the two component is useful for the regularization in separating the two components. The
PSNR with respect to the ground truth is shown at the bottom left of the images.
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Figure 8: Regularization plots associated with the image decompositions of Fig 7. a) Regu-

larization function Rx, b) Residual error
∥y1n+y2n−f∥

2
∥f∥2

in log scale, c) PSNR error with respect

to the ground truth x0 for yn (blue curve) and xn (green curve), d-e) PSNR error with respect
to the cartoon/texture components respectively. In less than 10 iterations the algorithm con-
verges to its optimal value, with only a slight dip in the PSNR plot. The residual error (The
normalized error of yn from Cf ) tends to zero in the last iterations as we half τ between each
iterations.

was performed using no tuning parameter or manual input. We evaluated our algorithm on502

real images (Figure 10) and observed that the model, while trained only on synthetic images503

was able to generalize well to natural images.504

We performed some decomposition on satellite images taken from the MLSRNet dataset505

[27]. As the images are noisy, we performed decomposition with a residual, i.e we do not use506

the projection PCf in the last iteration. As the original measured image is noisy, this removes507

some of the noise present in the original image from the decomposition as it belong to neither508

the structure or texture models. However, we observed that this also extracts some features509

in the image such as the central road lines for the same reasons.510

5.4. Towards natural image inpainting. In the context of natural image inpainting, we511

found that if the texture is close to the learned low dimensional model, we are able to appro-512

priately inpaint the masked regions in the image (Figure 12). The mask shape is not visible in513

the reconstructed image. These preliminary results are encouraging for the design of inpaint-514

ing methods (and more generally methods to solve inverse imaging problems) based on deep515

neural network architectures with a fully controlled low dimensional prior using a synthetic516
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Figure 9: Inpainting recovery on synthetic images. From left to right: input masked image,
reconstruction, original image. While the holes are relatively large, the regularization is able
to recover well the different textures in the images. The PSNR with respect to the ground
truth is shown at the bottom right of the images.

database.517

6. Discussion. The joint structure-texture model and plug and play scheme trained using518

a synthetic dataset we have introduced is general and highly adaptable. Essentially, as long519

as we can generate data that fit the low dimensional models, we may learn a regularization520

function that can perform the decomposition. Furthermore, our research indicates that the521

learned regularization through denoising random synthetic data is able to learn effectively522

different low-dimensional models based on sparsity and low-rank. These last two decades,523

theoretical results were obtained that guaranteed (or not) recovery under certain conditions524

for different regularization functions associated with low dimensional models [13]. Learned525

regularization of low dimensional models as we introduced in this paper could be explored526

further in this context to solve various inverse problems.527

Here, we have limited our area of study to piecewise constant structures and sparse Fourier528

and low patch rank textures. Other structure/texture models such as piecewise continuous529

structures and dictionary sparse textures could be investigated. Moreover, the texture can530

be learned on a mixture of different models. Even more broadly, our scheme allows a more531

abstract definition of texture such as learning the regularization using a dataset of textures532

[19]. Extensions of the two-component decomposition such as the jump-oscillation-trend [9]533

or cartoon-smooth-texture [14] could also be investigated in the future using the same process534

we have introduced here.535
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Figure 10: Natural image decomposition using the joint structure-texture model, using a
projected gradient descent with line search. From left to right: structure, texture, original
image.
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Figure 11: Satellite image decomposition with a residual. From left to right: structure,
texture, residual f − u− v, denoised image u+ v, original image.

Figure 12: Inpainting experiment on the Torsilyo image. From left to right: masked image,
recovered image, original image. We observe that the masked regions on the scales of the
fish are well recovered as the textures are close to the learned texture low dimensional model
(sparse fourier texture/low patch rank).

Alternative PnP methods to the gradient step denoiser [17] should also be considered to536

accelerate the training and iterations in the optimization algorithm. While the gradient step537

denoiser is robust and performs well, the computation of ∇R(x) via autograd has a high538

computation and GPU memory cost for both training and inference.539
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