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Joint structure-texture low dimensional modeling for image decomposition with
a plug and play framework

Antoine Guennec∗ , Jean-François Aujol , and Yann Traonmilin

Abstract. To address the problem of separating images into a structure and a texture component, we introduce
a joint structure-texture model. Instead of considering two separate regularizations for each compo-
nent, we consider a joint structure-texture model regularization function that takes both components
as inputs. This allows for the regularization to take into account the shared information between the
two components. We present evidence that shows a performance gain compared to separate regular-
ization models. To implement the joint regularization, we adapt the plug and play framework to our
setting, using deep neural networks. We train the corresponding deep prior on a randomly generated
synthetic dataset of examples of this model. In the context of image decomposition, we show that
while trained on synthetic datasets, our plug and play method generalizes well to natural images.
Furthermore, we show that this framework permits to leverage the structure-texture decompositions
to solve inverse imaging problems such as inpainting.

Key words. image decomposition, low dimensional models, regularization learning, plug-and-play prior
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1. Introduction. The inverse problem of decomposing an image into structure and texture
components (also known as cartoon-texture decomposition) has been a longstanding area
of research, with many applications such as image/video compression, material recognition,
biomedical imaging and texture enhancement/removal. The problem is defined as follows:
given an image f ∈ E = Rn1×n2 , find a decomposition

(1.1) f = u+ v

such that the image u is a piecewise constant (or piecewise smooth depending on the definition)
approximation of f , containing the basic geometries present in the image. The image v
contains the texture which is locally zero-mean and contains the oscillating and local patterns.
As the system associated to the problem is underdetermined, prior information on the cartoon
and texture components is needed to hope for a satisfactory decomposition.

The classical method achieve such a decomposition is to solve the optimization problem

(1.2) minimize
u,v∈E

Rs(u) + λRt(v) subject to f = u+ v

where Rs(·) and Rt(·) are regularization functions that enforce the characteristics of the
structure and texture components respectively, and λ is a tuning parameter that balances the
relative strengths of the structure and the texture respective priors. Many preceding works
use the total variation [2, 30, 31] for the regularization function Rs in order to enforce some
piecewise constant characteristics into the structure component. The texture regularization
has been the center of attention of the different models, with various proposals such as L2
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regularization [30, 40] or norms that emphasize sparsity [34, 41] or low-rank of the matrix
of texture patches [31, 23, 16]. However, these approaches to image decomposition have two
flaws:

1. The structure and texture priors are enforced separately. As we will argue more
precisely in Section 2.2, while locally the two components are uncorrelated, this is
not the case in the full image: the structural component often defines the frontiers of
different structures present in the image. This often leads to uncertainty at the edges
in the decomposition.

2. They introduce a necessary tuning parameter λ to balance the two regularization mod-
els. Current methods are relatively costly and it is often needed to perform multiple
runs of the decomposition algorithm in order to set this parameter correctly. Without
prior information on the underlying structure and texture components of an image,
it is not possible to set the correct parameter. Furthermore, additional parameters
are often introduced in the regularization functions. This leads to difficult and/or
misleading comparison between proposed methods.

To the best of our knowledge, there are no methods considering a joint model on structure
and texture. Moreover, the general problem of building good regularizations for complex
combinations of low-dimensional models in inverse problems is in general an open question (see
e.g. [24]).

For parameter tuning, there have been multiple attempts to mitigate this issue. In [3],
it was proposed to use the correlation between the two components in order to tune the
parameter for different total variation-based variational models. In [16] it was proposed to
automatically tune the low patch rank model [31] by estimating the gradient sparsity of the
structure and the patch-rank of the texture. However, setting a global parameter is still
needed.

In this paper, to address these two problems, we explore the use of plug and play methods
in order to construct a new regularization function for image decomposition.

1.1. The plug and play framework. A recent advance in the field of inverse problems has
been the introduction of the plug-and-play (PnP) framework [36]. Inverse problems are often
solved via the minimization scheme

(1.3) minimize
x∈E

R(x) + F (x, y),

where R is the regularization term, F is the data fidelity term with respect to the observation
y. For example, in the case where an image x0 is corrupted by a linear operator A and a
white Gaussian noise ϵ, i.e y = Ax0 + ϵ, we may set F (x, y) = ∥Ax− y∥22.

The PnP method leverages proximal splitting algorithms, established initially for convex
problems, by substituting the traditional proximal operator ProxR,η(x) with a denoiser D(x).
In this context, associating a denoiser with a regularization function is not straightforward if
we wish to obtain convergence properties. First initiated in [29], it was proposed to construct
an explicit regularization function from a denoiser. However, given a differentiable denoiser
D : RN → RN , it was later proven in [28] that the desirable property

(1.4) ∇R = Id−D,
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cannot hold without a Jacobian Symmetry property. Other models such as [17, 15] have been
proposed, in order to bypass this constraint. In this paper, we focus on the gradient step
denoiser [17], in which the regularization is set as R(x) = 1

2 ∥x−N(x)∥22, where N : E → E
is parametrized by a neural network and the denoiser is defined from the constraint (1.4). As
R is differentiable, (1.3) can be solved using descent iterative schemes such as the forward-
backward algorithm (FB)

(1.5)

{
zk+1 = xk − τ∇R(xk)

xk+1 = ProxF (·,y),η(zk+1)
;

where the proximal operator of a function G : RN → R is defined by

(1.6) ProxG,η(x) := argmin
z

G(z) +
1

2η
∥z − x∥22 .

1.2. Contributions. In this work, we introduce the joint structure-texture model for image
decomposition and its implementation using an adapted PnP framework

• In Section 2, we present a low-dimensional model of image where structure and texture
are considered to share support information. To enforce this model, we deviate from
the classical paradigm (1.2) by considering the minimization of a single function that
acts on both the structure and texture at the same time, i.e the structure-texture
decomposition is the result of the optimization problem

(1.7) minimize
x=(u,v)∈E×E

R(x) subject to f = u+ v.

• In Section 3, we construct a regularization for the joint structure-texture model, by
adapting the PnP framework: it suffices to train a joint structure-texture denoiser.
This framework removes the necessity of a tuning parameter for the structure-texture
decomposition. In place, we provide an optional parameter that balances the projec-
tion direction onto the constraint f = u+ v.

• In Section 4, we construct a prior of the decomposition model, using a database of
randomly generated synthetic decompositions to train the denoiser in our PnP algo-
rithm. The resulting regularization function is able to take into account information
shared between the structure and texture. We demonstrate that our adapted PnP
framework is able to define regularizations adapted to complex combinations of two
low-dimensional models, which was shown to be generally impossible with just the
sum of individual regularizations. Furthermore, we present evidence that the joint
structure-texture modelization outperforms the usual separated models (Section 4.3).

• In Section 5, we perform experiments on synthetic and real natural images in order to
illustrate the performance of our method. In particular, our constructed regularization
allows to solve difficult inverse problems such as inpainting, working simultaneously
on both the structure and texture component (Section 5.2). We also show that this
model, while trained on synthetic data, is able to generalize well to natural images
(Section 5.3) leading to interesting perspectives for the construction of deep priors for
image processing.
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1.3. Related Work. The first structure-texture decomposition models relied on varia-
tional methods, using the total variation to characterize the structural component and a
function space norm to constrain the texture component, such as the L2-norm [30], G-norm
[22, 37] or H-norm [3, 2]. While theoretically well-founded and able to capture the oscillating
nature of texture, these norms are either difficult to implement or cannot capture textures
with a small magnitude. To counteract the staircase effect given by the total variation [8],
other regularization such as the total generalized variation [7] and the relative total variation
[38] were proposed.

A more modern approach has been to consider the structure-texture decomposition in the
context of sparse/low-rank priors. One of the earliest approach was to consider that texture
can be sparsely represented in a suitable given transformation (e.g discrete cosine transform
(DCT), Gabor transform) [34, 10]. While very successful in some applications, the issue with
this approach is that many textures that arise in practical applications cannot be modeled
by DCT or other related dictionaries. More recently, this approach was extended to use
convolutional sparse coding instead [41], where convolutional filters are learned beforehand.
Another approach was to consider that the matrix of texture patches is of low patch rank
(LPR) [31]. However, this approach can fail if too many different textures are present in the
image since the resulting sets of textures no longer live in a small patch-space. [23] proposed
the blockwise low-rank texture model to counteract against this issue with LPR. Similarly
to the low patch-rank prior, in [39] the cartoon and texture were separated based upon local
patch recurrence with a given orientation. All of the aforementioned models above provide
more or less an appropriate decomposition. However, they are relatively slow and require a
tuning parameter to balance the resulting structure and texture. To address this matter, [16]
took advantage of the underlying low dimensionality of the structure and texture spaces in
order to provide a near tuning parameter-free and highly parallelized localized version of the
LPR model.

Recently, learning based approaches have been proposed to solve the image decomposi-
tion problem. In [45] the authors proposed a self-example and unsupervised learning approach
where the structure-texture decomposition associated regularization is optimized through the
back propagation of a neural network. Similarly, in [32] it was proposed to recover the struc-
tural component from a random input z from a convolutional generative neural network fθ,
and to model the texture as low-rank. In [11], the authors showed that the iterative steps
in the minimization of TV-ℓ1 are similar to the architecture of an LSTM neural network and
they proposed to use an LSTM in order to unfold the iterative hard-thresholding algorithm
of TV-ℓ1. Similarly, in [18], the authors proposed to use a CNN network in order to learn the
structure prior. In [33, 44], other methods based upon unfolding the TV proximal operator
have been proposed. One of the closest approach to our work can be found in [21], where the
authors proposed to learn an image decomposition neural network training upon a handmade
structure-texture dataset consisting of cartoon images onto which a homogeneous texture was
added. However, this approach lacks two core details: texture locality (see Figure 1) and an
associated regularization function to the decomposition that can thereafter be used to solve
inverse problems.
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2. Structure-Texture decomposition as a low dimensional recovery problem. In this
section, we describe the image decomposition problem as a low-dimensional recovery problem.
We highlight the fact that an optimal regularization for this problem cannot be the sum of
a structural regularization and a textural regularization of the form (1.2), thus justifying the
introduction of our framework for a joint regularization (1.7).

A way to describe image decomposition is to consider it as a low-dimensional recovery
problem. In this setting, the underlying assumption is that the image we wish to decompose
belongs to the sum of two low dimensional models, i.e. f = u0 + v0 with u0 and v0 each
belonging to a low-dimensional model, denoted by Σs for the structure model and Σt for the
texture model respectively. Then, the decomposition problem becomes: recover (u0, v0) ∈
Σs × Σt from f = u0 + v0.
For each data model Σs and Σt, we typically set corresponding regularization functions Rs

and Rt whose minimization should enforce Σs and Σt respectively. We aim to recover (u0, v0)
(or at least an approximation) via the optimization problem

(2.1) minimize
(u,v)∈E×E

Rs(u) +Rt(v) subject to f = u+ v.

Optimally in this setting [6, 35], the regularization functions should be set as

(2.2) Rs(u) = dist(u,Σs)
2 and Rt(v) = dist(v,Σt)

2.

Since this approach generally leads to NP-hard problems (e.g ℓ0, rank minimization), a con-
vex relaxation is often considered instead (e.g ℓ1 norm used instead of ℓ0 for sparsity). This
setting can also be viewed in the context of compressive sensing. By setting the linear oper-
ator A=(Id Id), we aim to recover x0=(u0, v0) ∈ Σs × Σt from measurements f=Ax0, with
dim(f) = n1n2 < 2n1n2 = dim(x).

The choice of Σs and Σt is also of utmost importance to tune the texture scaling dilemma
(which is tightly linked to the image resolution): repetitive patterns may be part of the
structure if enlarged (zoom in) or be part of the texture component when shrunk (zoom out).
In between these two states, it is ambiguous to distinguish between structure and texture with
confidence. This is a choice that should be set in accordance to the specific application we
wish to perform.

2.1. Previous work on low dimensional recovery for image decomposition. For the
structure component, the total variation

(2.3) ∥u∥TV =
∑
i∈Ω

∥(∇u)i∥2 = ∥∇u∥1 , with Ω = [[1, n1n2]],

has been widely used to enforce gradient-sparsity and its associated low dimensional model is
given by

(2.4) ΣGS = {u ∈ Rn1×n2 | ∥∇u∥0 ≤ k},

the set of vectors that are k-gradient-sparse. On the other hand, for the texture component a
variety of models have been proposed. We present a (non-exhaustive) list of previous methods:
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1. The earliest example of image decomposition by exploiting sparsity is given by [34],
where we assume that both the structure and texture are sparse in an appropriate
overcomplete dictionary. In essence, we assume that

(2.5) u0 ∈ ΣDs = {Dsx | ∥x∥0 ≤ k1} and v0 ∈ ΣDt = {Dty | ∥y∥0 ≤ k2},

where Ds and Dt are the chosen overcomplete dictionaries. For example, Ds may corre-
spond to a curvelet dictionary and Dt may correspond to a DCT or Gabor dictionary.
We recover the decomposition via the minimization of an ℓ1 optimization problem

(2.6) (x0, y0) = argmin
x,y

∥x∥1 + ∥y∥1 subject to f = Dsx+Dty,

and the resulting decomposition is given by (u, v) = (Dsx0,Dty0). In fact, with the
appropriate constraints upon the dictionaries and underlying sparsity of u0 and v0,
(2.6) is able to exactly recover (u0, v0).

2. In the Low Patch rank interpretation of texture (LPR) model [31], the texture is
considered to be of low patch-rank, i.e

(2.7) v0 ∈ ΣLPR = {v ∈ Rn1×n2 | rank(P(v)) ≤ l},

where P is a patch operator. Moreover, since the nuclear norm

(2.8) ∥X∥∗ =
min(n1,n2)∑

i=1

σi(X)

is a convex relaxation of the rank, (2.7) is able to recover the low patch-rank textures
(under some conditions) . The decomposition is pursued via the optimization problem:

(2.9) minimize
(u,v)

µ ∥u∥TV + γ ∥P(v)∥∗ subject to f = u+ v.

3. Similarly, in the Blockwise Low-Rank Texture Characterization (BNN) model [23] the
texture is considered to be of low-rank ‘blockwise’, with v0 = v10+ ...+vm0 and for each
i ∈ {1, . . . ,m}

(2.10) vi0 ∈ Σi
BNN

= {v ∈ Rn1×n2 | rank(Pki,δi ◦ Sθi(v)) ≤ l},

where Pki,δi is a periodically-expanding operator with parameters (ki, δi) and Sθi(v)
is a shearing operator with parameter θi (see [23] for more information). Then, the
BNN model of the texture component is given by

(2.11) ΣBNN = Σ1
BNN

+ · · ·+Σm
BNN

and structure and texture are recovered by the optimization problem

(2.12) minimize
u,v∈E

µ ∥u∥TV +
m∑
i=1

γ ∥v∥i∗,BNN subject to f = u+ v.
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4. In the convolutional sparse and low rank coding-based image decomposition model
[41], convolutional filters {ds,i}Ks

i=1, {dt,i}
Kt
i=1 that sparsely represent the structure and

texture components are learned. The associated low dimensional models are given by
(2.13)

ΣCS
s =

{ Ks∑
i=1

ds,i∗xi |
Ks∑
i=1

∥xi∥0 ≤ k1

}
and ΣCS

t =

{ Kt∑
i=1

dt,i∗xi |
Ks∑
i=1

rank(xi) ≤ k2

}
.

The decomposition model can be further restricted by considering that the structure

component
Ks∑
i=1

ds,i ∗ xi is also gradient sparse.

Note that while the ℓ1-norm (respectively the nuclear norm) has been shown to be optimal
for sparse recovery (respectively low-rank recovery) [35], all these methods consider a sum
of regularizations for decomposition. This ”sum” approach is adapted for product models
Σs × Σr. We argue in the following that structure and texture are not best approximated by
such product models.

2.2. The joint structure-texture with shared support model. For natural images, the
structure and texture components should not be considered disjointedly because they share
some common information: the support. While locally the structure and texture components
can be considered uncorrelated, it is not so the case when taking the whole image into account.
Usually, the structure and texture present in an image share a common border (e.g Figure 1),
i.e. the texture is expected to end when the structure also ends.

Figure 1: An example of decomposition of the Barbara image. From left to right: original
image f , structure component u, texture component v. We observe that structure and texture
share a common border.

Consider Σs and Σt two low-dimensional models which contain all the structure and tex-
ture components separately, for example we may choose gradient sparsity Σs = ΣGS and low
patch rank Σt = ΣLPR. We define the notion of structure and texture with a given support.

Definition 2.1. Consider a set of disjoint supports I = (Ir)
|I|
r=1 (Ir ⊂ [[1, n1]]× [[1, n2]]) and

uI the restriction of u to the support I. We define the support-wise structure and texture low
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dimensional models as

Σs,I =

{
u ∈ Σs : |∇uIr | = 0,∀Ir ∈ I

}
;

Σt,I =

{∑
r

1Ir · vr | vr ∈ Σt

}
.

(2.14)

By abuse of notation, we suppose that ∇uIr only contains the gradients inside the support Ir
(we exclude the gradients on the boundary of Ir).

Fundamentally, this definition stems from the fact that textures can be expanded (infin-
itely) on a canvas and the observed textures in a local section of an image are delimited by
the structure. Hence the consideration that a local texture should be 1Ir · vr in the definition
of the support-wise texture model.

We set Q(n1, n2) as the set of partitions of [[1, n1]]× [[1, n2]]
1with connected sets. We can

now define the joint low-dimensional structure model.

Definition 2.2. We define the joint structure-texture with a shared support model as

(2.15) Σs⊗t =
⋃

Ω∈Q(n1,n2)

Σs,Ω × Σt,Ω

We immediately remark that Σs⊗t is a union of product models that cannot be written as
a cartesian product of structure and texture.

2.3. On optimal regularization for low dimensional models ?. In the case of separated
models, where we consider that the structure and texture components are uncorrelated, the
optimization problem (2.1) is natural to consider. Indeed, if we set the regularization func-
tions Rs, Rt as in (2.2) and Rs,t(u, v) = dist((u, v),Σs × Σt)

2, since dist((u, v),Σs × Σt)
2 =

dist(u,Σs)
2 + dist(v,Σt)

2, we have

min
u,v∈E

u+v=f

Rs,t(u, v) = min
u,v∈E

u+v=f

dist(u,Σs)
2 + dist(v,Σt)

2

= min
u,v∈E

u+v=f

Rs(u) +Rt(v).
(2.16)

Hence, the optimal strategy in this case is to minimize Rs + Rt. However, in the case of the
joint structure-texture model, this property is no longer satisfied and shared borders between
the two components imposes an additional constraint on the optimization problem. Since
the model Σs⊗t is more constrained than Σs × Σt, a dedicated joint regularization can thus
potentially perform better.

Note that a similar problem has been studied in [24], where the recovery of matrices that
are both sparse and low-rank is studied (intersection of models). Oymak et al. show that a
sum of dedicated regularizations cannot perform better than individual regularizations. Later
work studies theoretically heuristics to solve such problems [12]. This shows that designing

1Ω = {Ω1, . . . ,Ωm} ∈ Q(n1, n2) ⇐⇒
⋃m

i=1 Ωi = [[1, n1]]× [[1, n2]] and Ωi ∩ Ωj = ∅, ∀i ̸= j.
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joint regularization functions for such complex combinations of models directly is not an easy
task. In the next Section, we introduce a PnP method to design such adapted regularizations.
This framework permits to stay within the global theory of regularization of low-dimensional
models.

3. PnP for Image decomposition. Instead of considering two regularization functions in
order to decompose an image (one for each component), we propose to use a single regulariza-
tion function that takes both the structure and texture components as input. By doing so, we
solve the problem of joint regularization and we remove the necessity of a structure/texture

balance tuning parameter. We aim to recover x0 =

(
u0
v0

)
∈ Σs⊗t from the original image

f = Ax0, with A = (Id Id), via an optimization of the form

(3.1) minimize
x=(u,v)

R(x) subject to f = Ax.

However, setting an explicit regularization that achieves this goal is clearly inconceivable as
minimizing over the set of partitions Q(n1, n2) introduces an exploding complexity.
We propose to use a gradient-step denoiser in order to obtain a regularization function R that
accurately captures the joint structure-texture with a shared support model. Experiments
validating this approach are given in Section 4 and Section 5.

3.1. The gradient step denoiser applied to image decomposition. In [17], the authors
proposed the gradient step denoiser, a plug-and-play scheme in which the denoiser is connected
to an explicit regularization functional. The gradient step denoiser takes the form

(3.2) D(x) = (Id−∇R)(x),

where R is the associated regularization function

(3.3) R(x) =
1

2
∥x−N(x)∥2

and N : Rn → Rn is parametrized by a neural network. In the context of plug and play,
the authors used the gradient step denoiser with a forward-backward algorithm to solve an
optimization problem of the form

(3.4) minimize
x

R(x) + F (x)

where F : Rn → R is the data fidelity term. For example, in the case of image restoration
from a linear observation (deblurring, inpainting, etc...), we may set F (x) = ∥y −Ax∥22 where
y is our degraded image and A the degradation operation.

If we set Cf := {x = (u, v) ∈ E × E |
(
Id Id

)
x = f}, the convex set of couples (u, v)

that decompose f , then (3.1) is equivalent to

(3.5) minimize
x∈E×E

R(x) + χCf (x)
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where χ is the indicator function, i.e for a convex set C, χC(x) =

{
0 if x ∈ C
+∞ otherwise

. Then, the

decomposition (3.5) fits nicely in the context of image restoration (3.4) with F = χCf which
can be solved using a projected gradient descent [5]. The following Lemma gives explicitly
the proximal operator of

Lemma 3.1. The proximal operator of χCf (the orthogonal projection onto Cf ) for x =

(
u
v

)
is given by

PCf (x) := ProxχCf ,λ
(x) =

(
u
v

)
− 1

2

(
u+ v − f
u+ v − f

)
(3.6)

Proof. This is an immediate consequence of the more general Lemma 3.2. For b = f =
u+ v, we have (with L =

(
Id Id

)
and L+ is the pseudo-inverse of L),

L+Lx =
(
Id Id

)T
(
(
Id Id

)T (
Id Id

)
)−1

(
Id Id

)
x =

1

2

(
u+ v
u+ v

)

and L+b = 1
2

(
f
f

)
and

ProxχCf ,λ
(x) = (I − L+L)x+ L+b

=

(
u
v

)
− 1

2

(
u+ v − f
u+ v − f

)
.

(3.7)

In full, the projected gradient step (equivalent to the Forward-Backward algorithm (1.5))
iterations for image decomposition to minimize (3.1) with R satisfying (3.2), is by

(3.8)

{
yk+1 = (1− τ)xk + τD(xk)

xk+1 = PCf (yk)

where τ is the gradient step parameter. Notice that in the convex case, the Forward-
Backward algorithm (1.5) converges as soon as τ ≤ 2

L , where L is the Lipschitz constant of
the regularization function R.

We train the gradient step denoiser with Gaussian noise (3.2) by minimizing the mean
square error loss function

(3.9) L(D) = Ex∈Σs⊗t,ϵ∼N (0,σ2) ∥D(x + ϵ)− x∥22 .

Essentially, the loss guarantees that the denoiser ‘projects’ well onto Σs⊗t, since

dist(D(x + ϵ),Σs⊗t)
2 = inf

y∈Σs⊗t

∥D(x + ϵ)− y∥22

≤ ∥D(x + ϵ)− x∥22 ,
(3.10)
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Algorithm 3.1 Joint structure-texture gradient descent

Param.: τ > 0
Inputf
Output: The output structure and texture x̂ = (û, v̂)
x0 = (f, 0)
while not converged do

yk+1 = (1− τ)xk + τD(xk)
xk+1 = PCf

(
yk+1

)
end while

for any x ∈ Σs⊗t and a perturbation ϵ such that x + ϵ /∈ Σs⊗t. In our approach, we deviate
from the original implementation as we do not add the noise level σ as input of the model
(blind denoising). The training is performed on multiple noise levels without prior knowledge
of σ. Furthermore, 30% of the training was performed without noise. Similarly to [26], we
observed that prioritizing the training of the denoiser on low noise levels greatly improved the
overall performance of the denoising.

By using differentiable layers in N (e.g ELU layer instead of RELU), we ensure that the
projected gradient descent converges. Indeed, χCf is lower semi-continuous and thus we are in
the convergence conditions provided by Theorem 1 of [17]. In what follows, we parametrized
the neural network N using a DRUNet architecture (Fig. [42]), with ELU layers instead of
RELU.

Figure 2: Architecture of the DRUNet denoiser [42] used to parametrize N . Contrarily to
the initial implementation of the gradient step PnP, we do not use a noise level map and the
structure/texture components are both set in an invidual channel.

3.2. Application to inverse problems. The structure and texture each provide an impor-
tant perceptual information of the content in an image. With prior knowledge on the structure
and texture components in the original image, we may use the regularization R(u, v) in the
applications to solve inverse problems of the form

(3.11) b = Mx or b = Mx+ ε,

where M is a linear operator, ε is a Gaussian white noise and b is the observation.
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In the noiseless setting, given M (e.g a mask) and a corrupted observation b = Mf , we
aim to recover f through solving the optimization problem

(3.12) min
x=(u,v)

R(x) subject to M(u+ v) = b

To solve this problem, we consider the convex set Cb(M) = {x = (u, v) | M(u + v) = b}
and we set

(3.13) PCb(M)(x) = argmin
M(Id Id)y=b

1

2
∥y− x∥22 .

Then, we solve the problem via a projected gradient descent

(3.14)

{
zn = xn − τ∇R(xn)

xn+1 = PCb(M)(zn+1)
.

The projection is given by the following Lemma.

Lemma 3.2. Let M be a linear operator. The proximal operator of χCb(M) (the orthogonal

projection onto Cb(M)) for x =

(
u
v

)
is given by

PCb(M)(x) := ProxχCb(M),λ(x) = (I − L+L)x+ L+b(3.15)

where L = M
(
Id Id

)
and L+ is the pseudo-inverse of L.

Proof. Let L = M
(
Id Id

)
, λ > 0 and x = (u, v) ∈ E2, we have

ProxχCf (b),λ(x) = argmin
y∈E2

λχCf (b)(y) +
1

2
∥y− x∥22

= argmin
y∈E2

Ly=b

1

2
∥y− x∥22 .

(3.16)

We have that Ly = b is equivalent to y = L+b + w where w = ker(L). Hence we minimize
min

w∈kerL
∥w − x + L+b∥22. The solution of this least squares problem is the definition of the

orthogonal projection of x − L+b on kerL. The orthogonal projection on kerL is given by
I − L+L and, as L+LL+ = L+, we have

ProxχCf ,λ
(x) = (I − L+L)x− (I − L+L)L+b+ L+b = (I − L+L)x+ L+b.(3.17)

For example, when M is a mask operator, i.e the inpainting task (see Section 5.2), we
find that its associated projection operator is given by

(3.18) PCb(M)(u, v) =

(
u
v

)
+

1

2

(
M(b− u− v)
M(b− u− v)

)
.
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Similarly, if we consider the inverse problem with noise, we aim to recover f through the
optimization problem

(3.19) min
x=(u,v)

R(x) +
µ

2
∥M(u+ v)− b∥22 .

As (u, v) 7→ ∥M(u+ v)− b∥22 is differentiable, this can be solved using a gradient descent
scheme

(3.20) xn+1 = xn − τ∇R(xn)− τµ

(
Id
Id

)
MT

(
M

(
Id Id

)
xn − b

)
3.3. Projection Tuning parameter for the joint structure-texture model. One of the

constraints given by considering a single regularization for both the structure and texture is
that we lose any type of control on the given result. Because we are in the setting of exact
decomposition, we do not have any tuning parameter. While it is often advantageous to
have little to no tuning in a decomposition method, we introduce a method to balance the
structure/texture output through the projection operation PCf .
Essentially, the projection PCf equally adds the residual of the output of the denoiser into
both the structure and texture components in order for the result to fit the equation f = u+v.
However, depending on the residual one may wish to add more or less of the residual to either
the structure or texture component. Hence, we may consider the non-orthogonal projection
instead

(3.21) P̃Cf ((u, v)
T , µ) =

(
u
v

)
+

(
µ(f − u− v)

(1− µ)(f − u− v)

)
,

where µ ∈ (0, 1) is a tuning parameter. Setting µ low will import less of the remaining texture
from the residual into the structure and a high µ will import less of the remaining structure
contained in the residual into the texture (see Figure 3).

3.4. Adaptive step selection. The projected gradient step descent denoiser has the down-
side to be non-convex and usual convex techniques may fail. To handle this, there are multiple
ways we may approach to stabilize the gradient descent:

1. Initialization near the true solution, e.g using another decomposition scheme to ini-
tialize x0 or a trained neural network that directly does a first decomposition.

2. Backtracking methods as it was originally implemented in [17],
3. Regularization search: at each iteration, we perform a line search in order to set an

optimal gradient step τ and projection tuning parameter µ that minimizes the most
the regularization function Rx.

We found that this last approach with the simple initialization x0 = (f, 0) leads to the best
recovery result for synthetic images. In a second step, we may also decrease the gradient step
τn in order to enforce ∥xn − yn∥ → 0.
The parameter search does not impact much the speed of the projected gradient step algorithm
as the computational cost of R(x) is low when compared to ∇R(x). Moreover, the rate of
convergence is greatly increased, so less iterations are required to reach an optimal output.
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µ=0 µ=0.5 µ=0.75 µ=1.0µ=0.25

Figure 3: Illustration of the projection direction µ on a synthetic image. At the far left:
original image f , top: structure component uµ, bottom: texture component vµ. For each
decomposition, the first two iterations of the projected gradient descent were obtained using
µ=0.5 in order to obtain an initial decomposition and the following iterations were obtained
using the indicated projection direction µ. Setting µ low will reinforce the structure model
and setting µ high will reinforce the texture model. The PSNR with respect to the ground
truth decomposition is given at the bottom left of each image.

Algorithm 3.2 Joint structure-texture projected gradient descent with optimal regularization
line search

Init.: x0 = (f, 0),
Inputf
Output: The output structure and texture x̂ = (û, v̂)
while not converged do

τk = argmin
τ∈R+

R((1− τ)xk + τD(xk))

yk+1 = (1− τk)xk + τkD(xk)

µk = argmin
µ∈R

R(P̃Cf
(
yk+1, µ))

xk+1 = PCf
(
yk+1, µk

)
end while

4. Synthetic images as a regularity prior.

4.1. Background. Inherently, we wish that our neural network learns the low-dimensional
joint structure-texture model Σs⊗t. One of the core dilemmas with associating machine learn-
ing methods to the image decomposition problem is the absence of ground truth (especially
with natural images). In order to train the denoiser, we designed a procedure that gener-
ates random piecewise constant images (with a connected support) and an associated texture
component, generated from a texture model. This enabled us to train the denoiser with an
endless supply of training examples, without any ambiguity on the ground truth. In [1], the
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Figure 4: Examples of generated structure (left) and texture (center) images used in the
numerical experiments and to train the different neural networks. On the right, we show their
sum.

authors used a similar approach where they trained a denoiser on the dead leaves synthetic
image model and demonstrated that it could reach near-optimal results by training only upon
synthetic images. The synthetic joint structure-texture image model that we propose follows
the same construction: we generate a synthetic image by superposing random shapes with an
additional texture. However, contrarily to the dead leaves generation, we heavily limit the
number of superposed shapes as the associated textures should remain small locally.

4.2. Database design. In order to create a connected support, we proceeded in two
steps. First we produce a connected support via the Lane-Riesenfeld algorithm [20], where
we randomly scatter initial points around an origin ((posx, posy) in Algoritm 4.1) and we
recursively apply a subdivision process (split + average) to those points until we obtain a
smooth curve (Figure 5).

Given the ordered points P = {p1, ..., pk} ⊂ R2, we define the splitting and averaging
procedures as

• split(P) = {p1, p1+p2
2 , p2,

p2+p3
2 , ..., pk,

pk+p1
2 },

• average(P) = {p1+p2
2 , ...,

pk−1+pk
2 , pk+p1

2 }.
Note that in the averaging step, other weights may be used. Using any weights taken from a
line in Pascal’s triangle will lead the points to converge to a smooth curve. Once the contour
of the shape is generated, we may fill it using a flood fill algorithm. In full summary, single



16 A. GUENNEC, J. F. AUJOL, AND Y. TRAONMILIN

connected support is generated as follows:
1. Randomly select k (ordered) points around a central point c ∈ N2, P0 = {p1, . . . pk}.
2. Subdivide the points, Pn+1 = average(split)(Pn), until a smooth enough set of points

is achieved.
3. Project the resulting points onto a canvas and use a flood fill algorithm to obtain the

image support.
To generate the final structural component, we randomly scatter the aforementioned generated
shapes onto a canvas with varying level of intensity.
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Figure 5: Illustration of the subdivison process (a) Initial point scatter, (b) Splitting step, (c)
averaging step, (d) Final shape (in red) after ten subdivisions.

Algorithm 4.1 Synthetic image generation

Param.: K, tmin, tmax, smin, smax

Output: S, T (the synthetic structure and texture components)
S = ones(n,m)
T = generate texture(n,m)
for i in [0, ...,K − 1] do
poxx, poxy = randint(0, n), randint(0,m)
Ω = generate support(posx, posy)
αs, αt = uniform(smin, smax),uniform(tmin, tmax)
S|Ω = αs · 1Ω

T|Ω = αt · 1Ω · generate random texture()
end for

The textural component is much more straightforward to generate. In the literature there
have been multiple texture models that have been proposed, e.g low-patch rank [31], low-rank
[41, 43], sparse dictionary [25], etc... Using random distributions, we generate textures from
these models, which are then cropped to fit its corresponding support. We provide an example
of the sparse Fourier texture generation in Algorithm 4.2.

4.3. A tool to build an optimal regularization. Up to our knowledge, every image de-
composition model has relied upon a regularization of the form λRs(u) +Rt(v). As discussed
in Section 2.3, while this scheme is optimal when we consider the two components to be un-
correlated, it is not the case otherwise. We show evidence that this is in fact suboptimal
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Algorithm 4.2 Random sparse Fourier texture generation

Param.: freqxmin, freq
y
min, smax,

Output: T
s = randint(1, smax)
Tfreq = zeros(n,m)
for i in [0, ..., smax] do

xfreq = randint(freqxmin, n− freqxmin)
yfreq = randint(freqymin,m− freqymin)

T̂ [xfreq, yfreq] = 1

T̂ [−xfreq,−yfreq] = 1
end for
T = ifft(T )

in the case of the joint structure-texture model, and that a regularization which takes both
structure and texture as inputs leads to a better result. This further supports our main hy-
pothesis that the interaction between the structure and the texture components provides an
invaluable information to perform an efficient separation.
In our experiments, we selected the DRUNet architecture (see Figure 2) in order to parame-
trize the neural network N in (3.3), and we set the texture model Σt to a sparse model in the
high frequencies (superposition of cosines/sines). We trained three separate denoisers:

• Dx = Id−∇Rx which is trained on denoising structure-texture couples x = (u, v)
• Ds = Id−∇Rs which is trained on denoising only the structure.
• Dt = Id−∇Rt which is trained on denoising only the texture.

In terms of denoising performance, we observe that Dx slightly outperforms Ds and Dt in both
structure and texture performance (Table 1). Unsurprisingly, there is a large performance gap
between the structural and textural components for the task of Gaussian noise removal. Piece-
wise constant images are possibly the easiest image category to denoise, whereas textures are
oppositely the most difficult ones. Diverging from the rest, we observed that Ds has an ex-
ceptionally high fixed point PSNR (σ = 0), indicating that the underlying structure space
should lie near the minimizer of Rs.

While Dx is able to achieve similar denoising performance to Ds and Dt for both structure
and texture components respectively, our experiments show that Dx is superior in the appli-
cation of image decomposition. Given a dataset of 1000 synthetic images, we chose for each
image a tuning parameter λ for the minimization of λRs+Rt that maximizes the PSNR with
respect to the ground truth. Even with this harsh condition in favor of the separated models,
the joint structure-texture model algorithm has ability to better recover the decomposition
into structure and texture (Table 2), with no user input for parameter tuning.
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Figure 6: Denoising of a synthetic structure and texture with the different methods and
different noise levels using a denoiser Dx that takes both structure and texture as input and
Ds, Dt that takes only one component (structure and texture respectively). The results are
close for low-level noise, however for high level noise Dx performs much better, especially on
the texture recovery. The PSNR with respect to the ground truth is shown at the bottom left
of the images.

mean PSNR (best iteration) mean PSNR (20 iterations)

Rx 42.69 40.85
λRs +Rt 40.12 38.83

Table 2: Comparison between joint and separated (Rx and λRs+Rt) regularization minimiza-
tion for image decomposition, on a test set of 100 images. We used the line search method for
Rx, and with an initialization with the LPR algorithm for λRs +Rt and an optimal choice of
λ. We find that the joint structure-texture modeling performs better than the separated one.
We present the best PSNR out of 100 iterations and the PSNR at 20 iterations (around when
the algorithm should achieve the best result).
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σ(./255) 0 5 10 15 20

(Structure)
Dx 49.50 47.03 43.88 40.99 38.42
Ds 55.07 46.08 43.27 40.46 38.24

(Texture)
Dx 44.96 36.22 32.24 30.04 28.52
Dt 39.51 35.18 31.39 29.31 27.90

Table 1: Mean PSNR denoising performance comparison between the joint and separated
structure-texture denoisers, on a test set of 1000 generated 64×64 synthetic structure-texture
images. While the denoising performance is similar for noise with a small standard deviation,
denoising both components at the same time provides better denoising capability for both
structure and texture.

5. Experiments.

5.1. Synthetic image decomposition. As discussed in Section 4.3, we compared the de-
compositions between the two regularization schemes R(u, v) and R(u) + R(v). As we can
observe in Figure 7, even for images where the PSNR was close between the two decomposi-
tions, the joint structure-texture approach was able to better separate the two models. For
example, in the second image, while the structure components for each approach have similar
PSNR with respect to the ground truth, there is less texture present in the structure with the
joint structure-texture method. Finally, the decomposition using the joint model converges
very quickly to an appropriate point, needing less than 10 iterations to reach an optimal value
(Fig. 8).

5.2. Inpainting. The task of inpainting large holes is very ill-posed and thus necessitates
a prior knowledge in order to achieve a satisfactory recovery. As presented in [4], image de-
composition modeling can be used to inpaint simultaneously both structure and texture. In
the case of missing pixels in an image, we found the initialization of the projected gradient
algorithm to be of utmost importance in order to recover correctly both the structure and
the texture. If initialization is incorrectly set, the masked areas may be considered as pro-
viding structure. We found that filling the missing regions with an average onion-peel filling
(iteratively filling the holes one layer at a time by taking the average of the surrounding pix-
els) provided an adequate initialization. In our experiments (Figure 9) on synthetic images
we observe a perfect recovery of the textures present in the image and with an appropriate
structure recovery (note that there is no way to recover the correct boundary in the masked
areas). This indicates that the denoising task was able to successfully learn the texture model
it was trained on.

5.3. Natural image decomposition. Using a denoiser Dx trained on 64 × 64 synthetic
structure-texture image we decomposed natural images patchwise using an overlap of 16 (and
a patchsize of 64 × 64). Moreover, we used a line search (as presented in Section (3.4)) at
every iteration in order to select an optimal gradient descent parameter. We set the structure
model Σs as piecewise constant images and the texture model Σt as the combination of sparse
Fourier textures and low-patch rank. We stress that each decomposition reached in each case
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Figure 7: Comparison between the decompositions given by R(u, v) and Rs(u) +Rt(v) mini-
mization. From left to right: original image, output from R(u, v), output from λR(u) +R(v)
and the target decomposition (u0, v0). In order to avoid cherry picking bias, the decomposi-
tions were selected with a small PSNR difference between each other. We observe that the
regularization R(u, v), trained on both component simultaneously is able to better fit the low
dimensional models it was trained on. This demonstrates that the shared information between
the two component is useful for the regularization in separating the two components. The
PSNR with respect to the ground truth is shown at the bottom left of the images.
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Figure 8: Regularization plots associated with the image decompositions of Fig 7. a) Regu-

larization function Rx, b) Residual error
∥y1n+y2n−f∥

2
∥f∥2

in log scale, c) PSNR error with respect

to the ground truth x0 for yn (blue curve) and xn (green curve), d-e) PSNR error with respect
to the cartoon/texture components respectively. In less than 10 iterations the algorithm con-
verges to its optimal value, with only a slight dip in the PSNR plot. The residual error (The
normalized error of yn from Cf ) tends to zero in the last iterations as we half τ between each
iterations.

was performed using no tuning parameter or manual input. We evaluated our algorithm on
real images (Figure 10) and observed that the model, while trained only on synthetic images
was able to generalize well to natural images.

We performed some decomposition on satellite images taken from the MLSRNet dataset
[27]. As the images are noisy, we performed decomposition with a residual, i.e we do not use
the projection PCf in the last iteration. As the original measured image is noisy, this removes
some of the noise present in the original image from the decomposition as it belong to neither
the structure or texture models. However, we observed that this also extracts some features
in the image such as the central road lines for the same reasons.

5.4. Towards natural image inpainting. In the context of natural image inpainting, we
found that if the texture is close to the learned low dimensional model, we are able to appro-
priately inpaint the masked regions in the image (Figure 12). The mask shape is not visible in
the reconstructed image. These preliminary results are encouraging for the design of inpaint-
ing methods (and more generally methods to solve inverse imaging problems) based on deep
neural network architectures with a fully controlled low dimensional prior using a synthetic



22 A. GUENNEC, J. F. AUJOL, AND Y. TRAONMILIN

Figure 9: Inpainting recovery on synthetic images. From left to right: input masked image,
reconstruction, original image. While the holes are relatively large, the regularization is able
to recover well the different textures in the images. The PSNR with respect to the ground
truth is shown at the bottom right of the images.

database.

6. Discussion. The joint structure-texture model and plug and play scheme trained using
a synthetic dataset we have introduced is general and highly adaptable. Essentially, as long
as we can generate data that fit the low dimensional models, we may learn a regularization
function that can perform the decomposition. Furthermore, our research indicates that the
learned regularization through denoising random synthetic data is able to learn effectively
different low-dimensional models based on sparsity and low-rank. These last two decades,
theoretical results were obtained that guaranteed (or not) recovery under certain conditions
for different regularization functions associated with low dimensional models [13]. Learned
regularization of low dimensional models as we introduced in this paper could be explored
further in this context to solve various inverse problems.

Here, we have limited our area of study to piecewise constant structures and sparse Fourier
and low patch rank textures. Other structure/texture models such as piecewise continuous
structures and dictionary sparse textures could be investigated. Moreover, the texture can
be learned on a mixture of different models. Even more broadly, our scheme allows a more
abstract definition of texture such as learning the regularization using a dataset of textures
[19]. Extensions of the two-component decomposition such as the jump-oscillation-trend [9]
or cartoon-smooth-texture [14] could also be investigated in the future using the same process
we have introduced here.
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Figure 10: Natural image decomposition using the joint structure-texture model, using a
projected gradient descent with line search. From left to right: structure, texture, original
image.
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Figure 11: Satellite image decomposition with a residual. From left to right: structure,
texture, residual f − u− v, denoised image u+ v, original image.

Figure 12: Inpainting experiment on the Torsilyo image. From left to right: masked image,
recovered image, original image. We observe that the masked regions on the scales of the
fish are well recovered as the textures are close to the learned texture low dimensional model
(sparse fourier texture/low patch rank).

Alternative PnP methods to the gradient step denoiser [17] should also be considered to
accelerate the training and iterations in the optimization algorithm. While the gradient step
denoiser is robust and performs well, the computation of ∇R(x) via autograd has a high
computation and GPU memory cost for both training and inference.
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