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Joint structure-texture low dimensional modeling for image decomposition with1

a plug and play framework2

Antoine Guennec∗ , Jean-François Aujol , and Yann Traonmilin3

4

Abstract. To address the problem of separating images into a structure and a texture component, we introduce5
a joint structure-texture model. Instead of considering two separate regularizations for each compo-6
nent, we consider a joint structure-texture model regularization function that takes both components7
as inputs. This allows for the regularization to take into account the shared information between the8
two components. We present evidence that shows a performance gain compared to separate regular-9
ization models. To implement the joint regularization, we adapt the plug and play framework to our10
setting, using deep neural networks. We train the corresponding deep prior on a randomly generated11
synthetic dataset of examples of this model. In the context of image decomposition, we show that12
while trained on synthetic datasets, our plug and play method generalizes well to natural images.13
Furthermore, we show that this framework permits to leverage the structure-texture decompositions14
to solve inverse imaging problems such as inpainting.15

Key words. image decomposition, low dimensional models, regularization learning, plug-and-play prior16
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1. Introduction. The inverse problem of decomposing an image into structure and texture18

components (also known as cartoon-texture decomposition) has been a longstanding area19

of research, with many applications such as image/video compression, material recognition,20

biomedical imaging, and texture enhancement/removal. The problem is defined as follows:21

given an image f ∈ E = Rn1×n2 , find a decomposition22

(1.1) f = u+ v23

such that the image u is a piecewise constant (or piecewise smooth depending on the definition)24

approximation of f , containing the basic geometries present in the image. The image v25

contains the texture which is locally zero-mean and contains the oscillating and local patterns.26

As the system associated with the problem is underdetermined, prior information on the27

cartoon and texture components is needed to hope for a satisfactory decomposition.28

The classical method to achieve such a decomposition is to solve the optimization problem29

(1.2) minimize
u,v∈E

Rs(u) + λRt(v) subject to f = u+ v30

where Rs(·) and Rt(·) are regularization functions that enforce the characteristics of the31

structure and texture components respectively, and λ is a tuning parameter that balances the32

relative strengths of the structure and the texture respective priors. Many preceding works33

use the total variation [2, 35, 36] for the regularization function Rs to enforce some piecewise34

constant characteristics into the structure component. The texture regularization has been35

the center of attention of the different models, with various proposals such as L2 regularization36
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[35, 45] or norms that emphasize sparsity [39, 46] or low-rank of the matrix of texture patches37

[36, 28, 18]. However, these approaches to image decomposition have two flaws:38

1. The structure and texture priors are enforced separately. As we will argue more39

precisely in Section 2.2, while locally the two components are uncorrelated, this is40

not the case in the full image: the structural component often defines the frontiers of41

different structures present in the image. This often leads to uncertainty at the edges42

in the decomposition.43

2. They introduce a necessary tuning parameter λ to balance the two regularization mod-44

els. Current methods are relatively costly and it is often needed to perform multiple45

runs of the decomposition algorithm in order to set this parameter correctly. Without46

prior information on the underlying structure and texture components of an image,47

it is not possible to set the correct parameter. Furthermore, additional parameters48

are often introduced in the regularization functions. This leads to difficult and/or49

misleading comparisons between proposed methods.50

To the best of our knowledge, there are no methods considering a joint model on structure51

and texture. Moreover, the general problem of building good regularizations for complex com-52

binations of low-dimensional models in inverse problems is, in general, an open question (see53

e.g. [29]).54

For parameter tuning, there have been multiple attempts to mitigate this issue. In [3],55

it was proposed to use the correlation between the two components in order to tune the56

parameter for different total variation-based variational models. In [18] it was proposed to57

automatically tune the low patch rank model [36] by estimating the gradient sparsity of the58

structure and the patch-rank of the texture. However, setting a global parameter is still59

needed.60

In this paper, to address these two problems, we explore the use of plug-and-play methods61

to construct a new regularization function for image decomposition.62

1.1. The plug and play framework. A recent advance in the field of inverse problems has63

been the introduction of the plug-and-play (PnP) framework [41]. Inverse problems are often64

solved via the minimization scheme65

(1.3) minimize
x∈E

R(x) + F (x, y),66

where R is the regularization term, F is the data fidelity term with respect to the observation67

y. For example, in the case where an image x0 is corrupted by a linear operator A and a68

white Gaussian noise ϵ, i.e y = Ax0 + ϵ, we may set F (x, y) = ∥Ax− y∥22.69

The PnP method leverages proximal splitting algorithms, established initially for convex70

problems, by substituting the traditional proximal operator ProxR,η(x) with a denoiser D(x).71

In this context, associating a denoiser with a regularization function is not straightforward if72

we wish to obtain convergence properties. First initiated in [34], it was proposed to construct73

an explicit regularization function from a denoiser. However, given a differentiable denoiser74

D : RN → RN , it was later proven in [33] that the desirable property75

(1.4) ∇R = Id−D,76
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cannot hold without a Jacobian Symmetry property. Other models such as [22, 17] have been77

proposed, in order to bypass this constraint. In this paper, we focus on the gradient step78

denoiser [22], in which the regularization is set as R(x) = 1
2 ∥x−N(x)∥22, where N : E → E79

is parametrized by a neural network and the denoiser is defined from the constraint (1.4). As80

R is differentiable, (1.3) can be solved using descent iterative schemes such as the forward-81

backward algorithm (FB)82

(1.5)

{
zk+1 = xk − τ∇R(xk)

xk+1 = ProxF (·,y),η(zk+1)
;83

where the proximal operator of a function G : RN → R is defined by84

(1.6) ProxG,η(x) := argmin
z

G(z) +
1

2η
∥z − x∥22 .85

1.2. Contributions. In this work, we introduce the joint structure-texture model for image86

decomposition and its implementation using an adapted PnP framework87

• In Section 2, we present a low-dimensional model of image where structure and texture88

are considered to share support information. To enforce this model, we deviate from89

the classical paradigm (1.2) by considering the minimization of a single function that90

acts on both the structure and texture at the same time, i.e the structure-texture91

decomposition is the result of the optimization problem92

(1.7) minimize
x=(u,v)∈E×E

R(x) subject to f = u+ v.93

• In Section 3, we construct a regularization for the joint structure-texture model, by94

adapting the PnP framework: it suffices to train a joint structure-texture denoiser.95

This framework removes the necessity of a tuning parameter for the structure-texture96

decomposition. In place, we provide an optional parameter that balances the projec-97

tion direction onto the constraint f = u+ v.98

• In Section 4, we construct a prior of the decomposition model, using a database of ran-99

domly generated synthetic decompositions to train the denoiser in our PnP algorithm.100

The resulting regularization function is able to take into account information shared101

between the structure and texture. We demonstrate that our adapted PnP framework102

can define regularizations adapted to complex combinations of two low-dimensional103

models, which was shown to be generally impossible with just the sum of individual104

regularizations [29]. Furthermore, we present evidence that the joint structure-texture105

modeling outperforms the usual separated models (Section 5.1).106

• In Section 6, we perform experiments on synthetic and real natural images to illustrate107

the performance of our method. In particular, our constructed regularization allows108

to solve difficult inverse problems such as inpainting, working simultaneously on both109

the structure and texture component (Section 6.1). We also show that this model,110

while trained on synthetic data, is able to generalize well to natural images (Section111

6.2) leading to interesting perspectives for the construction of deep priors for image112

processing.113
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1.3. Related Work. The first structure-texture decomposition models relied on varia-114

tional methods, using the total variation to characterize the structural component and a115

function space norm to constrain the texture component, such as the L2-norm [35], G-norm116

[27, 42] or H-norm [3, 2]. While theoretically well-founded and able to capture the oscillating117

nature of texture, these norms are either difficult to implement or cannot capture textures118

with a small magnitude. To counteract the staircase effect given by the total variation [8],119

other regularizations such as the total generalized variation [7] and the relative total variation120

[43] were proposed. In [15], the authors introduced the oscillatory TGV measure to capture121

structured textures. An extension of the TV framework to video has been proposed in [21].122

A more modern approach has been to consider the structure-texture decomposition in the123

context of sparse/low-rank priors. One of the earliest approaches was to consider that texture124

can be sparsely represented in a suitable given transformation (e.g. discrete cosine transform125

(DCT), Gabor transform) [39, 11]. While very successful in some applications, the issue with126

this approach is that many textures that arise in practical applications cannot be modeled127

by DCT or other related dictionaries. More recently, this approach was extended to use128

convolutional sparse coding instead [9, 46], where convolutional filters are learned beforehand.129

Another approach was to consider that the matrix of texture patches is of low patch rank130

(LPR) [36]. However, this approach can fail if too many different textures are present in the131

image since the resulting sets of textures no longer live in a small patch-space. [28] proposed132

the blockwise low-rank texture model to counteract against this issue with LPR. Similarly to133

the low patch-rank prior, in [44] the cartoon and texture were separated based on local patch134

recurrence with a given orientation. All of the aforementioned models above provide more135

or less an appropriate decomposition. However, they are relatively slow and require a tuning136

parameter to balance the resulting structure and texture. To address this matter, [?] took137

advantage of the underlying low dimensionality of the structure and texture spaces to provide138

a near parameter-free tuning and highly parallelized localized version of the LPR model.139

Recently, learning-based approaches have been proposed to solve the image decomposi-140

tion problem. In [50] the authors proposed a self-example and unsupervised learning approach141

where the structure-texture decomposition associated regularization is optimized through the142

backpropagation of a neural network. Similarly, in [37] it was proposed to recover the struc-143

tural component from a random input z from a convolutional generative neural network fθ,144

and to model the texture as low-rank. In [12], the authors showed that the iterative steps145

in the minimization of TV-ℓ1 are similar to the architecture of an LSTM neural network and146

they proposed to use an LSTM to unfold the iterative hard-thresholding algorithm of TV-ℓ1.147

Similarly, in [23], the authors proposed to use a CNN network in order to learn the struc-148

ture prior. In [38, 49], other methods based upon unfolding the TV proximal operator have149

been proposed. One of the closest approaches to our work can be found in [26], where the150

authors proposed to learn an image decomposition neural network training upon a handmade151

structure-texture dataset consisting of cartoon images onto which a homogeneous texture was152

added. However, this approach lacks two core details: texture locality (see Figure 1) and an153

associated regularization function to the decomposition that can thereafter be used to solve154

inverse problems.155
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2. Structure-Texture decomposition as a low dimensional recovery problem. In this156

section, we describe the image decomposition problem as a low-dimensional recovery problem.157

We highlight the fact that an optimal regularization for this problem cannot be the sum of158

a structural regularization and a textural regularization of the form (1.2), thus justifying the159

introduction of our framework for a joint regularization (1.7).160

A way to describe image decomposition is to consider it as a low-dimensional recovery161

problem. In this setting, the underlying assumption is that the image we wish to decompose162

belongs to the sum of two low-dimensional models, i.e. f = u0 + v0 with u0 and v0 each163

belonging to a low-dimensional model, denoted by Σs for the structure model and Σt for the164

texture model respectively. Then, the decomposition problem becomes: recover (u0, v0) ∈165

Σs × Σt from f = u0 + v0.166

For each data model Σs and Σt, we typically set corresponding regularization functions Rs167

and Rt whose minimization should enforce Σs and Σt respectively. We aim to recover (u0, v0)168

(or at least an approximation) via the optimization problem169

(2.1) minimize
(u,v)∈E×E

Rs(u) +Rt(v) subject to f = u+ v.170

Optimally in this setting [6, 40], the regularization functions should be set as171

(2.2) Rs(u) = dist(u,Σs)
2 and Rt(v) = dist(v,Σt)

2.172

Since this approach generally leads to NP-hard problems (e.g ℓ0, rank minimization), a con-173

vex relaxation is often considered instead (e.g ℓ1 norm used instead of ℓ0 for sparsity). This174

setting can also be viewed in the context of compressive sensing. By setting the linear oper-175

ator A=(Id Id), we aim to recover x0=(u0, v0) ∈ Σs × Σt from measurements f=Ax0, with176

dim(f) = n1n2 < 2n1n2 = dim(x).177

The choice of Σs and Σt is also of utmost importance to tune the texture scaling dilemma178

(which is tightly linked to the image resolution): repetitive patterns may be part of the179

structure if enlarged (zoom in) or be part of the texture component when shrunk (zoom out).180

In between these two states, it is ambiguous to distinguish between structure and texture with181

confidence. This is a choice that should be set in accordance with the specific application we182

wish to perform.183

2.1. Previous work on low dimensional recovery for image decomposition. For the184

structure component, the total variation185

(2.3) ∥u∥TV =
∑
i∈Ω

∥(∇u)i∥2 = ∥∇u∥1 , with Ω = [[1, n1n2]],186

has been widely used to enforce gradient-sparsity and its associated low dimensional model is187

given by188

(2.4) ΣGS = {u ∈ Rn1×n2 | ∥∇u∥0 ≤ k},189

the set of vectors that are k-gradient-sparse. On the other hand, a variety of models have been190

proposed for the texture component. We present a (non-exhaustive) list of previous methods:191
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1. The earliest example of image decomposition by exploiting sparsity is given by [39],192

where we assume that both the structure and texture are sparse in an appropriate193

overcomplete dictionary. In essence, we assume that194

(2.5) u0 ∈ ΣDs = {Dsx | ∥x∥0 ≤ k1} and v0 ∈ ΣDt = {Dty | ∥y∥0 ≤ k2},195

where Ds and Dt are the chosen overcomplete dictionaries. For example, Ds may corre-196

spond to a curvelet dictionary and Dt may correspond to a DCT or Gabor dictionary.197

We recover the decomposition via the minimization of an ℓ1 optimization problem198

(2.6) (x0, y0) = argmin
x,y

∥x∥1 + ∥y∥1 subject to f = Dsx+Dty,199

and the resulting decomposition is given by (u, v) = (Dsx0,Dty0). In fact, with the200

appropriate constraints upon the dictionaries and underlying sparsity of u0 and v0,201

(2.6) can exactly recover (u0, v0).202

2. In the Low Patch rank interpretation of texture (LPR) model [36], the texture is203

considered to be of low patch-rank, i.e204

(2.7) v0 ∈ ΣLPR = {v ∈ Rn1×n2 | rank(P(v)) ≤ l},205

where P is a patch operator. Moreover, since the nuclear norm206

(2.8) ∥X∥∗ =
min(n1,n2)∑

i=1

σi(X)207

is a convex relaxation of the rank, (2.7) is able to recover the low patch-rank textures208

(under some conditions) . The decomposition is pursued via the optimization problem:209

(2.9) minimize
(u,v)

µ ∥u∥TV + γ ∥P(v)∥∗ subject to f = u+ v.210

3. Similarly, in the Blockwise Low-Rank Texture Characterization (BNN) model [28] the211

texture is considered to be of low-rank ‘blockwise’, with v0 = v10+ ...+vm0 and for each212

i ∈ {1, . . . ,m}213

(2.10) vi0 ∈ Σi
BNN

= {v ∈ Rn1×n2 | rank(Pki,δi ◦ Sθi(v)) ≤ l},214

where Pki,δi is a periodically-expanding operator with parameters (ki, δi) and Sθi(v)215

is a shearing operator with parameter θi (see [28] for more information). Then, the216

BNN model of the texture component is given by217

(2.11) ΣBNN = Σ1
BNN

+ · · ·+Σm
BNN

218

and structure and texture are recovered by the optimization problem219

(2.12) minimize
u,v∈E

µ ∥u∥TV +
m∑
i=1

γ ∥v∥i∗,BNN subject to f = u+ v.220
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4. In the convolutional sparse and low rank coding-based image decomposition model221

[46], convolutional filters {ds,i}Ks
i=1, {dt,i}Kt

i=1 that sparsely represent the structure and222

texture components are learned. The associated low dimensional models are given by223

(2.13)

ΣCS
s =

{ Ks∑
i=1

ds,i∗xi |
Ks∑
i=1

∥xi∥0 ≤ k1

}
and ΣCS

t =

{ Kt∑
i=1

dt,i∗xi |
Ks∑
i=1

rank(xi) ≤ k2

}
.224

The decomposition model can be further restricted by considering that the structure225

component
Ks∑
i=1

ds,i ∗ xi is also gradient sparse.226

Note that while the ℓ1-norm (respectively the nuclear norm) has been shown to be optimal227

for sparse recovery (respectively low-rank recovery) [40], all these methods consider a sum228

of regularizations for decomposition. This ”sum” approach is adapted for product models229

Σs × Σr. We argue in the following that structure and texture are not best approximated by230

such product models.231

2.2. The joint structure-texture with shared support model. For natural images, the232

structure and texture components should not be considered disjointedly because they share233

some common information: the support. While locally the structure and texture components234

can be considered uncorrelated, it is not so the case when taking the whole image into account.235

Usually, the structure and texture present in an image share a common border (e.g. Figure 1),236

i.e. the texture is expected to end when the structure also ends.237

Figure 1: An example of decomposition of the Barbara image. From left to right: original
image f , structure component u, texture component v. We observe that structure and texture
share a common border.

238

Consider Σs and Σt two low-dimensional models that contain all the structure and texture239

components separately, for example, we may choose gradient sparsity Σs = ΣGS and low patch240

rank Σt = ΣLPR. We define the notion of structure and texture with a given support.241

Definition 2.1. Consider a set of disjoint supports I = (Ir)
|I|
r=1 (Ir ⊂ [[1, n1]]× [[1, n2]]) and242

uI the restriction of u to the support I. We define the support-wise structure and texture low243
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dimensional models as244

Σs,I =

{
u ∈ Σs : |∇uIr | = 0,∀Ir ∈ I

}
;

Σt,I =

{∑
r

1Ir · vr | vr ∈ Σt

}
.

(2.14)245

By abuse of notation, we suppose that ∇uIr only contains the gradients inside the support Ir246

(we exclude the gradients on the boundary of Ir).247

Fundamentally, this definition stems from the fact that textures can be expanded (infin-248

itely) on a canvas and the observed textures in a local section of an image are delimited by249

the structure. Hence the consideration that a local texture should be 1Ir · vr in the definition250

of the support-wise texture model.251

We set Q(n1, n2) as the set of partitions of [[1, n1]]× [[1, n2]]
1with connected sets. We can252

now define the joint low-dimensional structure model.253

Definition 2.2. We define the joint structure-texture with a shared support model as254

(2.15) Σs⊗t =
⋃

Ω∈Q(n1,n2)

Σs,Ω × Σt,Ω255

We immediately remark that Σs⊗t is a union of product models that cannot be written as256

a cartesian product of structure and texture.257

2.3. On optimal regularization for low dimensional models ?. In the case of separated258

models, where we consider that the structure and texture components are uncorrelated, the259

optimization problem (2.1) is natural to consider. Indeed, if we set the regularization func-260

tions Rs, Rt as in (2.2) and Rs,t(u, v) = dist((u, v),Σs × Σt)
2, since dist((u, v),Σs × Σt)

2 =261

dist(u,Σs)
2 + dist(v,Σt)

2, we have262

min
u,v∈E

u+v=f

Rs,t(u, v) = min
u,v∈E

u+v=f

dist(u,Σs)
2 + dist(v,Σt)

2

= min
u,v∈E

u+v=f

Rs(u) +Rt(v).
(2.16)263

Hence, the optimal strategy in this case is to minimize Rs + Rt. However, in the case of the264

joint structure-texture model, this property is no longer satisfied and shared borders between265

the two components imposes an additional constraint on the optimization problem. Since266

the model Σs⊗t is more constrained than Σs × Σt, a dedicated joint regularization can thus267

potentially perform better.268

Note that a similar problem has been studied in [29], where the recovery of matrices that269

are both sparse and low-rank is studied (intersection of models). Oymak et al. show that a270

sum of dedicated regularizations cannot perform better than individual regularizations. Later271

work theoretically studied heuristics to solve such problems [13]. This shows that designing272

1Ω = {Ω1, . . . ,Ωm} ∈ Q(n1, n2) ⇐⇒
⋃m

i=1 Ωi = [[1, n1]]× [[1, n2]] and Ωi ∩ Ωj = ∅, ∀i ̸= j.
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joint regularization functions for such complex combinations of models directly is not an easy273

task. In the next Section, we introduce a PnP method to design such adapted regularizations.274

This framework permits to stay within the global theory of regularization of low-dimensional275

models.276

3. PnP for Image decomposition. Instead of considering two regularization functions277

to decompose an image (one for each component), we propose to use a single regularization278

function that takes both the structure and texture components as input. By doing so, we279

solve the problem of joint regularization and we remove the necessity of a structure/texture280

balance tuning parameter. We aim to recover x0 =

(
u0
v0

)
∈ Σs⊗t from the original image281

f = Ax0, with A = (Id Id), via an optimization of the form282

(3.1) minimize
x=(u,v)

R(x) subject to f = Ax.283

However, setting an explicit regularization that achieves this goal is clearly inconceivable as284

minimizing over the set of partitions Q(n1, n2) introduces an exploding complexity.285

We propose to use a gradient-step denoiser in order to obtain a regularization function R that286

accurately captures the joint structure-texture with a shared support model. Experiments287

validating this approach are given in Section 4 and Section 6. The source code of the training,288

generation of the synthetic dataset and of the joint structure-texture decomposition presented289

in this paper can be found in the git repository [19].290

3.1. The gradient step denoiser applied to image decomposition. In [22], the authors291

proposed the gradient step denoiser, a plug-and-play scheme in which the denoiser is connected292

to an explicit regularization functional. The gradient step denoiser takes the form293

(3.2) D(x) = (Id−∇R)(x),294

where R is the associated regularization function295

(3.3) R(x) =
1

2
∥x−N(x)∥2296

and N : Rn → Rn is parametrized by a neural network. In the context of plug and play,297

the authors used the gradient step denoiser with a forward-backward algorithm to solve an298

optimization problem of the form299

(3.4) minimize
x

R(x) + F (x)300

where F : Rn → R is the data fidelity term. For example, in the case of image restoration301

from a linear observation (deblurring, inpainting, etc...), we may set F (x) = ∥y −Ax∥22 where302

y is our degraded image and A the degradation operation.303

If we set Cf := {x = (u, v) ∈ E × E |
(
Id Id

)
x = f}, the convex set of couples (u, v)304

that decompose f , then (3.1) is equivalent to305
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(3.5) minimize
x∈E×E

R(x) + χCf (x)306

where χ is the indicator function, i.e for a convex set C, χC(x) =

{
0 if x ∈ C
+∞ otherwise

. Then, the307

decomposition (3.5) fits nicely in the context of image restoration (3.4) with F = χCf which308

can be solved using a projected gradient descent [5]. The following Lemma gives explicitly309

the proximal operator of χCf , which corresponds to the orthogonal projection onto Cf .310

Lemma 3.1. The proximal operator of χCf (the orthogonal projection onto Cf ) for x =

(
u
v

)
311

is given by312

PCf (x) := ProxχCf ,λ
(x) =

(
u
v

)
− 1

2

(
u+ v − f
u+ v − f

)
(3.6)313

Proof. This is an immediate consequence of the more general Lemma 3.2. For b = f =314

u+ v, we have (with L =
(
Id Id

)
and L+ is the pseudo-inverse of L),315

L+Lx =
(
Id Id

)T
(
(
Id Id

) (
Id Id

)T
)−1

(
Id Id

)
x =

1

2

(
u+ v
u+ v

)
316

and L+b = 1
2

(
f
f

)
and317

ProxχCf ,λ
(x) = (I − L+L)x + L+b

=

(
u
v

)
− 1

2

(
u+ v − f
u+ v − f

)
.

(3.7)318

In full, the projected gradient step (equivalent to the Forward-Backward algorithm (1.5))319

iterations for image decomposition to minimize (3.1) with R satisfying (3.2), is by320

(3.8)

{
yk+1 = (1− τ)xk + τD(xk)

xk+1 = PCf (yk+1)
321

where τ is the gradient step parameter (Algorithm 3.1). Notice that in the convex case,322

the Forward-Backward algorithm (1.5) converges as soon as τ ≤ 2
L , where L is the Lipschitz323

constant of the regularization function R.324

We train the gradient step denoiser with Gaussian noise (3.2) by minimizing the mean325

square error loss function326

(3.9) L(D) = Ex∈Σs⊗t,ϵ∼N (0,σ2) ∥D(x + ϵ)− x∥22 .327
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Algorithm 3.1 Joint structure-texture gradient descent

Param.: τ > 0
Inputf
Output: The output structure and texture x̂ = (û, v̂)
x0 = (f, 0)
while not converged do

yk+1 = (1− τ)xk + τD(xk)
xk+1 = PCf

(
yk+1

)
end while

Essentially, the loss guarantees that the denoiser ‘projects’ well onto Σs⊗t, since328

dist(D(x + ϵ),Σs⊗t)
2 = inf

y∈Σs⊗t

∥D(x + ϵ)− y∥22

≤ ∥D(x + ϵ)− x∥22 ,
(3.10)329

for any x ∈ Σs⊗t and a perturbation ϵ such that x + ϵ /∈ Σs⊗t. In our approach, we deviate330

from the original implementation as we do not add the noise level σ as input of the model331

(blind denoising). The training is performed on multiple noise levels (σ ∈ [0, 25] (·/255))332

without prior knowledge of σ. Furthermore, 30% of the training was performed without noise333

to constrain elements of Σs⊗t to be fixed points of the neural network. Similarly to [31], we334

observed that prioritizing the training of the denoiser on low noise levels greatly improved the335

overall performance of the denoising.336

By using differentiable layers in N (e.g. ELU layer instead of RELU), we ensure that the337

projected gradient descent converges. Indeed, χCf is lower semi-continuous, and thus we are in338

the convergence conditions provided by Theorem 1 of [22]. In what follows, we parametrized339

the neural network N using a DRUNet architecture (Figure [47]), with ELU layers instead of340

RELU.341

Figure 2: Architecture of the DRUNet denoiser [47] used to parametrize N . Contrarily to
the initial implementation of the gradient step PnP, we do not use a noise level map and the
structure/texture components are both set in an individual channel.

3.2. Application to inverse problems. The structure and texture each provide important342

perceptual information about the content in an image. With prior knowledge on the structure343
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and texture components in the original image, we may use the regularization Rx(u, v) in the344

applications to solve inverse problems of the form345

(3.11) b = Mx or b = Mx+ ε,346

where M is a linear operator, ε is a Gaussian white noise and b is the observation.347

In the noiseless setting, given M (e.g a mask) and a corrupted observation b = Mf , we348

aim to recover f through solving the optimization problem349

(3.12) min
x=(u,v)

R(x) subject to M(u+ v) = b350

To solve this problem, we consider the convex set Cb(M) = {x = (u, v) | M(u + v) = b}351

and we set352

(3.13) PCb(M)(x) = argmin
M(Id Id)y=b

1

2
∥y− x∥22 .353

Then, we solve the problem via a projected gradient descent354

(3.14)

{
zn+1 = xn − τ∇R(xn)

xn+1 = PCb(M)(zn+1)
.355

The projection is given by the following Lemma.356

Lemma 3.2. Let M be a linear operator. The proximal operator of χCb(M) (the orthogonal357

projection onto Cb(M)) for x =

(
u
v

)
is given by358

PCb(M)(x) := ProxχCb(M),λ(x) = (I − L+L)x+ L+b(3.15)359

where L = M
(
Id Id

)
and L+ is the pseudo-inverse of L.360

Proof. Let L = M
(
Id Id

)
, λ > 0 and x = (u, v) ∈ E2, we have361

ProxχCf (b),λ(x) = argmin
y∈E2

λχCf (b)(y) +
1

2
∥y− x∥22

= argmin
y∈E2

Ly=b

1

2
∥y− x∥22 .

(3.16)362

We have that Ly = b is equivalent to y = L+b + w where w = ker(L). Hence we minimize363

min
w∈kerL

∥w − x + L+b∥22. The solution of this least squares problem is the definition of the364

orthogonal projection of x − L+b on kerL. The orthogonal projection on kerL is given by365

I − L+L and, as L+LL+ = L+, we have366

ProxχCf ,λ
(x) = (I − L+L)x− (I − L+L)L+b+ L+b = (I − L+L)x + L+b.(3.17)367

This manuscript is for review purposes only.



JOINT STRUCTURE-TEXTURE LOW DIMENSIONAL MODELING FOR IMAGE DECOMPOSITION 13

For example, when M is a mask operator, i.e the inpainting task (see Section 6.1), we368

find that its associated projection operator is given by369

(3.18) PCb(M)(u, v) =

(
u
v

)
+

1

2

(
M(b− u− v)
M(b− u− v)

)
.370

Similarly, if we consider the inverse problem with noise, we aim to recover f through the371

optimization problem372

(3.19) min
x=(u,v)

R(x) +
µ

2
∥M(u+ v)− b∥22 .373

As (u, v) 7→ ∥M(u+ v)− b∥22 is differentiable, this can be solved using a gradient descent374

scheme375

(3.20) xn+1 = xn − τ∇R(xn)− τµ

(
Id
Id

)
MT

(
M

(
Id Id

)
xn − b

)
376

3.3. Projection Tuning parameter for the joint structure-texture model. One of the377

constraints given by considering a single regularization for both the structure and texture is378

that we lose any type of control on the given result. Because we are in the setting of exact379

decomposition, we do not have any tuning parameter. While it is often advantageous to380

have little to no tuning in a decomposition method, we introduce a method to balance the381

structure/texture output through the projection operation PCf .382

Essentially, the projection PCf equally adds the residual of the output of the denoiser into383

both the structure and texture components in order for the result to fit the equation f = u+v.384

However, depending on the residual one may wish to add more or less of the residual to either385

the structure or texture component. Hence, we may consider the non-orthogonal projection386

instead387

(3.21) P̃Cf ((u, v)
T , µ) =

(
u
v

)
+

(
µ(f − u− v)

(1− µ)(f − u− v)

)
,388

where µ ∈ (0, 1) is a tuning parameter. Setting µ low will import less of the remaining texture389

from the residual into the structure and a high µ will import less of the remaining structure390

contained in the residual into the texture (see Figure 3). More generally, since the kernel of391

the composition operator is given by ker(A) = {(z,−z) | z ∈ E}, every projection onto Cf392

can be written as393

(3.22) P̃Cf (x, z) = PCf (x) +

(
z
−z

)
,394

with z ∈ E and the projection is orthogonal if and only if z = 0.395
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µ=0 µ=0.5 µ=0.75 µ=1.0µ=0.25

Figure 3: Illustration of the projection direction µ on a synthetic image. At the far left:
original image f , top: structure component uµ, bottom: texture component vµ. For each
decomposition, the first two iterations of the projected gradient descent were obtained using
µ=0.5 in order to obtain an initial decomposition, and the following iterations were obtained
using the indicated projection direction µ. Setting µ low will reinforce the structure model
and setting µ high will reinforce the texture model. The PSNR with respect to the ground
truth decomposition is given at the bottom left of each image.

3.4. Adaptive step selection. The projected gradient step descent denoiser has the down-396

side of being non-convex and usual convex techniques may fail. To handle this, there are397

multiple ways we may approach to stabilize the gradient descent:398

1. Initialization near the true solution, e.g. using another decomposition scheme to ini-399

tialize x0 or a trained neural network that directly does a first decomposition.400

2. Backtracking methods as it was originally implemented in [22],401

3. Regularization search: at each iteration, we perform a line search in order to set an402

optimal gradient step τ and projection tuning parameter µ that minimizes the most403

the regularization function Rx.404

We found that this last approach (Algorithm 3.2) with the simple initialization x0 = (f, 0)405

leads to the best recovery result for synthetic images. In a second step, we may also decrease406

the gradient step τn in order to enforce ∥xn − yn∥ → 0.407

The parameter search does not impact much the speed of the projected gradient step algorithm408

as the computational cost of R(x) is low when compared to ∇R(x). Moreover, the rate of409

convergence is greatly increased, so fewer iterations are required to reach an optimal output.410

4. Synthetic images as a regularity prior.411

4.1. Background. Inherently, we wish that our neural network learns the low-dimensional412

joint structure-texture model Σs⊗t. One of the core dilemmas with associating machine learn-413

ing methods with the image decomposition problem is the absence of ground truth (especially414

with natural images). In order to train the denoiser, we designed a procedure that gener-415

ates random piecewise constant images (with a connected support) and an associated texture416
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Algorithm 3.2 Joint structure-texture projected gradient descent with optimal regularization
line search

Init.: x0 = (f, 0),
Inputf
Output: The output structure and texture x̂ = (û, v̂)
while not converged do

τk = argmin
τ∈R+

R((1− τ)xk + τD(xk))

yk+1 = (1− τk)xk + τkD(xk)

µk = argmin
µ∈R

R(P̃Cf
(
yk+1, µ))

xk+1 = PCf
(
yk+1, µk

)
end while

component, generated from a texture model. This enabled us to train the denoiser with an417

endless supply of training examples, without any ambiguity on the ground truth. In [1], the418

authors used a similar approach where they trained a denoiser on the dead leaves synthetic419

image model and demonstrated that it could reach near-optimal results by training only upon420

synthetic images. The synthetic joint structure-texture image model that we propose follows421

the same construction: we generate a synthetic image by superposing random shapes with an422

additional texture. However, contrarily to the dead leaves generation, we heavily limit the423

number of superposed shapes as the associated textures should remain small locally.424

4.2. Database design. In order to create a connected support, we proceeded in two425

steps. First, we produce a connected support via the Lane-Riesenfeld algorithm [25], where426

we randomly scatter initial points around an origin ((posx, posy) in Algoritm 4.1) and we427

recursively apply a subdivision process (split + average) to those points until we obtain a428

smooth curve (Figure 5).429

Given the ordered points P = {p1, ..., pk} ⊂ R2, we define the splitting and averaging430

procedures as431

• split(P) = {p1, p1+p2
2 , p2,

p2+p3
2 , ..., pk,

pk+p1
2 },432

• average(P) = {p1+p2
2 , ...,

pk−1+pk
2 , pk+p1

2 }.433

Note that other weights may be used in the averaging step. Using any weights taken from a434

line in Pascal’s triangle will lead the points to converge to a smooth curve. Once the contour435

of the shape is generated, we may fill it using a flood fill algorithm. In full summary, single436

connected support is generated as follows:437

1. Randomly select k (ordered) points around a central point c ∈ N2, P0 = {p1, . . . pk}.438

2. Subdivide the points, Pn+1 = average(split)(Pn), until a smooth enough set of points439

is achieved.440

3. Project the resulting points onto a canvas and use a flood fill algorithm to obtain the441

image support.442

To generate the final structural component, we randomly scatter the aforementioned generated443

shapes onto a canvas with varying levels of intensity.444
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Figure 4: Examples of generated structure (left) and texture (center) images used in the
numerical experiments and to train the different neural networks. On the right, we show their
sum.
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Figure 5: Illustration of the subdivison process (a) Initial point scatter, (b) Splitting step, (c)
averaging step, (d) Final shape (in red) after ten subdivisions.

Algorithm 4.1 Synthetic image generation

Param.: K, tmin, tmax, smin, smax

Output: S, T (the synthetic structure and texture components)
S = ones(n,m)
T = generate texture(n,m)
for i in [0, ...,K − 1] do
poxx, poxy = randint(0, n), randint(0,m)
Ω = generate support(posx, posy)
αs, αt = uniform(smin, smax),uniform(tmin, tmax)
S|Ω = αs · 1Ω

T|Ω = αt · 1Ω · generate random texture()
end for
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The textural component is much more straightforward to generate. In the literature there445

have been multiple texture models that have been proposed, e.g low-patch rank [36], low-rank446

[46, 48], sparse dictionary [30], etc... Using random distributions, we generate textures from447

these models, which are then cropped to fit its corresponding support. We provide an example448

of the sparse Fourier texture generation in Algorithm 4.2.449

Algorithm 4.2 Random sparse Fourier texture generation

Param.: freqxmin, freq
y
min, smax,

Output: T
s = randint(1, smax)
Tfreq = zeros(n,m)
for i in [0, ..., smax] do

xfreq = randint(freqxmin, n− freqxmin)
yfreq = randint(freqymin,m− freqymin)

T̂ [xfreq, yfreq] = 1

T̂ [−xfreq,−yfreq] = 1
end for
T = ifft(T )

5. The superiority of joint regularization versus separate regularization. Up to our450

knowledge, every image decomposition model has relied upon a regularization of the form451

λRs(u) + Rt(v). As discussed in Section 2.3, while this scheme is optimal when we consider452

the two components to be uncorrelated, it is not the case otherwise. We show evidence that453

this is, in fact, suboptimal in the case of structure-texture decomposition and that a regu-454

larization that takes both structure and texture as inputs leads to a better result, with no455

tuning parameter. This further supports our main hypothesis that the interaction between the456

structure and the texture components provides invaluable information to perform an efficient457

separation.458

In what follows, we confronted the joint structure-texture framework against the separate459

regularization framework, on a test dataset of 1000 images. We evaluated both the denoising460

(Table 1 and Figure 6) and decomposition (Table 2 and Figure 7) performances of the reg-461

ularization function provided by the two approaches. For this evaluation, we trained three462

separate denoisers:463

• Dx = Id−∇Rx which is trained on denoising structure-texture couples x = (u, v)464

• Ds = Id−∇Rs which is trained on denoising only the structure.465

• Dt = Id−∇Rt which is trained on denoising only the texture.466

We selected the DRUNet architecture (see Figure 2) in order to parametrize the neural network467

N in (3.3) since it is currently state of the art in terms of denoising, and we set the texture468

model Σt to a sparse model in the high frequencies (superposition of cosines/sines). Finally,469

we used the LPR model (2.9) as our baseline since the corresponding structure/texture model470

is close to the generated dataset.471

We found that not only the joint modeling is more performant than separate regularization472

modeling for denoising and decomposition tasks, but it was also able to do so with no tuning473
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parameter.474

5.1. Denoising. In terms of denoising performance, we observe that Dx slightly outper-475

forms Ds and Dt in both structure and texture performance (Table 1 and Figure 6). Unsur-476

prisingly, there is a large performance gap between the structural and textural components for477

the task of Gaussian noise removal. Piecewise constant images are possibly the easiest image478

category to denoise, whereas textures are oppositely the most difficult ones. Diverging from479

the rest, we observed that Ds has an exceptionally high fixed point PSNR (σ = 0), indicating480

that the underlying structure space should lie near the minimizer of Rs. Furthermore, we481

found that the denoising performance of both Ds and Dt were of similar level to the LPR482

model.483

484

σ=0

σ=5

σ=10

σ=15

σ=20

u0 + ϵ v0 + ϵDx Ds TV Dx Ds ∥P(·)∥∗

Figure 6: Denoising of a synthetic structure and texture with the different methods and
different noise levels using a denoiser Dx that takes both structure and texture as input and
Ds, Dt that takes only one component (structure and texture respectively) and the respective
regularization functions of the LPR model (2.9). The results are close for low-level noise,
however for high level noise Dx performs much better, especially on the texture recovery. The
PSNR with respect to the ground truth is shown at the bottom left of the images.

5.2. Decomposition. While Dx is able to achieve similar denoising performance to Ds485

and Dt for both structure and texture components respectively, our experiments show that486
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σ(./255) 0 5 10 15 20

(Structure)
Dx 49.50 47.03 43.88 40.99 38.42
Ds 55.07 46.08 43.27 40.46 38.24
ProxTV [35] - 45.72 40.68 38.26 36.13

(Texture)
Dx 44.96 36.22 32.24 30.04 28.52
Dt 39.51 35.18 31.39 29.31 27.90
Prox∥P(·)∥∗ [36] − 36.27 31.84 29.175 27.62

Table 1: Mean PSNR denoising performance comparison between the joint and separated
structure-texture denoisers, on a test set of 1000 generated 64×64 synthetic structure-texture
images. While the denoising performance is similar for noise with a small standard deviation,
denoising both components at the same time provides better denoising capability for both
structure and texture. The total variation (TV) for the structure component and the patch-
nuclear norm for the texture are given for reference since the LPR model has good performance
on the dataset (Table 2).

Dx is superior in the application of image decomposition (Table 2). For each image in the487

dataset, we chose a tuning parameter λ for the minimization of λRs +Rt that maximizes the488

PSNR with respect to the ground truth. We applied the same methodology for TV-L2, TV-G489

and LPR. Even with this harsh condition in favor of the separated models, the joint structure-490

texture model algorithm has ability to better recover the decomposition into structure and491

texture (Table 2).492

As we can observe in Figure 7, even for images where the PSNR was close between the493

two decompositions, the joint structure-texture approach was able to better separate the two494

models. For example, in the second image, while the structure components for each approach495

have similar PSNR with respect to the ground truth, there is less texture present in the496

structure with the joint structure-texture method. Finally, the decomposition using the joint497

model converges very quickly to an appropriate point, needing less than 10 iterations to reach498

an optimal value (Figure 8).499

Rx λRs +Rt TV-L2 [9] TV-G [2] LPR (2.9)[36]

PSNR 42.69 40.12 38.84 38.86 41.61

Table 2: Comparison between joint and separated (Rx and λRs + Rt) regularization mini-
mization for image decomposition recovery, on a test set of 1000 images. We used the line
search method for Rx (algorithm 3.2), and with an initialization with the LPR algorithm for
λRs+Rt and an optimal choice of λ. Similarly, we performed a grid search to obtain best tun-
ing parameters for TV-L2, TV-G and LPR models. We find that the joint structure-texture
modeling performs better than the separated one. For the Rx and λRs + Rt minimization
models, we present the best PSNR out of 100 iterations as they are non-convex minimization.
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Rx(u, v) λRs(u) + Rt(v) LPR (u0, v0)

Figure 7: Comparison between the decompositions given by Rx(u, v), λRs(u) + Rt(v) and
LPR (2.9) minimization. From left to right: original image, output from Rx(u, v), output
from λRs(u) + Rt(v), result from (2.9), and the target decomposition (u0, v0). In order to
avoid cherry-picking bias, the decompositions were selected with a small PSNR difference
between each other. We observe that the regularization Rx(u, v), trained on both compo-
nents simultaneously is able to better fit the low dimensional models it was trained on. This
demonstrates that the shared information between the two components is useful for the reg-
ularization in separating the two components. The PSNR with respect to the ground truth
is shown at the bottom left of the images. In Table 2, we present the corresponding recovery
PSNR over the test dataset of 1000 images.
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Figure 8: Regularization plots associated with the image decompositions of Fig 7 using the

joint modelization R(u, v). a) Regularization function Rx, b) Residual error
∥y1n+y2n−f∥

2
∥f∥2

in

log scale, c) PSNR error with respect to the ground truth x0 for yn (blue curve) and xn (green
curve), d-e) PSNR error with respect to the cartoon/texture components respectively. In less
than 10 iterations the algorithm converges to its optimal value, with only a slight dip in the
PSNR plot. The residual error (The normalized error of yn from Cf ) tends to zero in the last
iterations as we half τ between each iteration.
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6. Experiments.500

6.1. Inpainting. The task of inpainting large holes is very ill-posed and thus necessitates501

prior knowledge to achieve a satisfactory recovery. As presented in [4], image decomposition502

modeling can be used to inpaint simultaneously both structure and texture. In the case of503

missing pixels in an image, we found the initialization of the projected gradient algorithm to be504

of utmost importance to recover correctly both the structure and the texture. If initialization505

is incorrectly set, the masked areas may be considered as providing structure. We found506

that filling the missing regions with an average onion-peel filling (iteratively filling the holes507

one layer at a time by taking the average of the surrounding pixels) provided an adequate508

initialization. In our experiments (Figure 9) on synthetic images we observe a perfect recovery509

of the textures present in the image and with an appropriate structure recovery (note that510

there is no way to recover the correct boundary in the masked areas). This indicates that the511

denoising task was able to successfully learn the texture model it was trained on.512

6.2. Natural image decomposition. Using a denoiser Dx trained on 64 × 64 synthetic513

structure-texture image we decomposed natural images patch-wise using an overlap of 16 (and514

a patch-size of 64 × 64). Moreover, we used a line search (as presented in Section (3.4)) at515

every iteration in order to select an optimal gradient descent parameter. We set the structure516

model Σs as piecewise constant images and the texture model Σt as the combination of sparse517

Fourier textures and low-patch rank. We stress that each decomposition reached in each case518

was performed using no tuning parameter or manual input. We evaluated our algorithm on519

real images (Figure 10) and observed that the model, while trained only on synthetic images520

was able to generalize well to natural images.521

We performed some decomposition on satellite images taken from the MLSRNet dataset522

[32]. As the images are noisy, we performed decomposition with a residual, i.e. we do not use523

the projection PCf in the last iteration. As the original measured image is noisy, this removes524

some of the noise present in the original image from the decomposition as it belongs to neither525

the structure nor texture models. However, we observed that this also extracts some features526

in the image such as the central road lines for the same reasons.527

6.3. Towards natural image inpainting. In the context of natural image inpainting, we528

found that if the texture is close to the learned low dimensional model, we are able to appro-529

priately inpaint the masked regions in the image (Figure 12), contrarily to the LPR model530

where we observe that the holes are too large for the patches of texture to be filled in by the531

nuclear norm. The mask shape is not visible in the reconstructed image. These preliminary532

results are encouraging for the design of inpainting methods (and more generally methods533

to solve inverse imaging problems) based on deep neural network architectures with a fully534

controlled low dimensional prior using a synthetic database.535

7. Discussion. The joint structure-texture model and plug-and-play scheme trained using536

a synthetic dataset we have introduced is general and highly adaptable. Essentially, as long537

as we can generate data that fits the low dimensional models, we may learn a regularization538

function that can perform the decomposition. Furthermore, our research indicates that the539

learned regularization through denoising random synthetic data can learn effectively different540

low-dimensional models based on sparsity and low-rank. In these last two decades, theoretical541
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results were obtained that guaranteed (or not) recovery under certain conditions for different542

regularization functions associated with low dimensional models [14]. Learned regularization543

of low dimensional models as we introduced in this paper could be explored further in this544

context to solve various inverse problems.545

Here, we have limited our area of study to piecewise constant structures and sparse Fourier546

and low patch rank textures. Other structure/texture models such as piecewise continuous547

structures and dictionary sparse textures could be investigated. Moreover, the texture can548

be learned on a mixture of different models. Even more broadly, our scheme allows a more549

abstract definition of texture such as learning the regularization using a dataset of textures550

[24]. Extensions of the two-component decomposition such as the jump-oscillation-trend [10]551

or cartoon-smooth-texture [16] could also be investigated in the future using the same process552

we have introduced here.553

Alternative PnP/learning methods to the gradient step denoiser [22], such as learned554

convex regularizations [17] or generative variational models [20], should also be considered555

with the joint structure-texture framework we have introduced here. While the gradient step556

denoiser is robust and performs well, the computation of ∇R(x) via autograd has a high557

computation and GPU memory cost for both training and inference.558

8. Acknowledgments. Experiments presented in this paper were carried out using the559

PlaFRIM experimental testbed, supported by Inria, CNRS (LABRI and IMB), Université560
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Mf Rx(u, v) LPR f

Figure 9: Inpainting recovery on synthetic images. From left to right: input masked image,
joint model, LPR model, original image. A close-up is presented underneath each image.
While the holes are relatively large, the regularization is able to recover well the different
textures in the images. The PSNR with respect to the ground truth is shown at the bottom
right of the images.

This manuscript is for review purposes only.



JOINT STRUCTURE-TEXTURE LOW DIMENSIONAL MODELING FOR IMAGE DECOMPOSITION 25

Figure 10: Natural image decomposition using the joint structure-texture model, using a
projected gradient descent with line search. From left to right: structure, texture, original
image.
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Figure 11: Satellite image decomposition with a residual. From left to right: structure,
texture, residual f − u− v, denoised image u+ v, original image.
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Figure 12: Inpainting experiment on the Torsilyo image. Top row: Masked image, original.
Bottom row: recovered image with the joint structure-texture model (ours), recovered image
with the LPR model. We observe that the masked regions on the scales of the fish are well
recovered as the textures are close to the learned texture low dimensional model (sparse Fourier
texture/low patch rank). Oppositely, the LPR model isn’t able to recover well the texture on
the fish fin.
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