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Abstract

While many nonlinear pattern recognition and data mining tasks rely on

embedding the data into a latent space, one often needs to extract the patterns

in the input space. Estimating the inverse of the nonlinear embedding is the

so-called pre-image problem. Several strategies have been proposed to address

the estimation of the pre-image; However, there are no theoretical results so

far to understand the pre-image problem and its resolution. In this paper, we

provide theoretical underpinnings of the resolution of the pre-image problem in

Machine Learning. These theoretical results are on the gradient descent opti-

mization, the fixed-point iteration algorithm and Newton’s method. We provide

sufficient conditions on the convexity/nonconvexity of the pre-image problem.

Moreover, we show that the fixed-point iteration is a Newton update and prove

that it is a Majorize-Minimization (MM) algorithm where the surrogate func-

tion is a quadratic function. These theoretical results are derived for the wide

classes of radial kernels and projective kernels. We also provide other insights

by connecting the resolution of this problem to the gradient density estimation

problem with the so-called mean shift algorithm.
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1. Introduction

In Machine Learning (ML), there has been an increasing interest in the

embedding principle for nonlinear pattern recognition and data mining, driven

by kernel machines and the revival of deep neural networks. The backbone of

these machines is the preprocessing of the data with a nonlinear transformation

(in kernel machines) or a cascade of nonlinear transformations (in deep neural

networks). Such transformations embed the data into a latent space (often called

feature space) where data-processing techniques can be easily carried out. A

major bottleneck is that one often needs to extract patterns in the input space,

not in the latent space. It is therefore necessary to represent in the input space

the results obtained in the latent space. This inverse map of the nonlinear

embedding is the so-called pre-image.

Establishing the pre-image is generally an ill-posed problem. Instead of aim-

ing for an exact pre-image, one estimates an approximate pre-image. Finding

the pre-image is a hard optimization problem since the objective function is

inherently nonlinear. Several strategies have been proposed to address the es-

timation of the pre-image [22]. While methods inspired from dimensionality

reduction and manifold learning literature operate as black-boxes, gradient-

descent and fixed-point iteration techniques provide a direct resolution of the

pre-image problem. Nevertheless, the underlying mechanism is still unclear. To

the best of our knowledge, there are no theoretical results that allow to clearly

analyze the pre-image problem and its resolution.

In this paper, we provide theoretical insights on the pre-image problem and

its resolution. This problem has been known for about 20 years [33], and is

still of great interest nowadays, as shown recently in many frameworks: when

dealing with nonlinear dictionary learning [40, 31] and matrix completion [17];

when dealing with structured input spaces, such as in interpretable time series

analytics [36], graph edit distances [23, 24], representation learning on graphs

[10] and structured prediction [15]; generative machines including generative

kernel PCA [29] and multiview generation [30].
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The main idea behind this work is to provide a novel viewpoint on the pre-

image problem and its resolution, thanks to recent advances in the literature of

gradient density estimation. However, such analogy is difficult to make and chal-

lenging due to several reasons (see Appendix A for more details): Kernel-based

ML and kernel density estimation (also known as Parzen window estimator in

statistics) do not share the same foundations, namely not all valid kernels in

the former are valid for the latter, and vice versa. Moreover, the parameters in

kernel-based ML are arbitrary, making the pre-image problem more difficult to

address due to its nonlinearity and nonconvexity in general. Therefore, these

issues make the theoretical analysis of the pre-image problem very challenging

and needs to be handled with care.

This paper presents first results on the first-order optimization of the pre-

image problem (Section 3) and then on the second-order optimization (Sec-

tion 4), providing sufficient conditions on the convexity and nonconvexity of the

problem under study. We then provide connections to other optimization prob-

lems, by proving that the fixed-point iteration is a Newton’s step and that it is

a Majorize-Minimization (MM) algorithm (Section 5). For the sake of clarity,

these theoretical results are carried out on the radial kernels, with the Gaus-

sian kernel being the cornerstone, and then extended to the class of projective

kernels, such as the polynomial kernels (Appendix B). Experiments illustrate

the main theoretical results (Section 6). These results can be extended to other

frameworks, such as infinitely wide neural networks with neural network Gaus-

sian process, neural tangent kernels and neural kernels without tangents [34],

and representation learning with kernels [16]. See also [1].

The main contributions of this paper in understanding the pre-image prob-

lem and its resolution are as follows, with the main results highlighted in Table 1:

• We provide solid foundations to the resolution of the pre-image problem,

by borrowing some ideas from the literature of gradient of the density

estimation with the mean shift algorithm; This provides a novel point of

view on the pre-image problem in ML.
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Table 1: A birdview of the main results in this paper, according to the investigated class of

kernels and further underlying conditions

Main theoretical results Radial kernels Projective kernels Conditions

Bound on the norm of the gradient Theorem 8 Gaussian kernel

Sufficient condition on the nonconvexity Theorem 14 Theorem 23

Sufficient condition on the convexity Theorem 15 Theorem 24

Fixed-point iteration as a Newton update Theorem 16 Theorem 25 Piecewise-constant derivative kernels

Fixed-point iteration as a quadratic optimization Theorem 17 Theorem 26

Fixed-point iteration as an MM algorithm Theorem 18 Theorem 27 αi ≥ 0

• We provide some theoretical insights on the Hessian of the objective func-

tion at hand, including sufficient conditions for its positive definiteness

and thus the convexity of the optimization problem.

• We establish a relationship between the fixed-point iteration technique

and Newton’s method and demonstrate that a fixed-point iteration is a

Majorize-Minimization.

• We derive general theoretical results for the wide classes of radial kernels

and projective kernels.

2. A Primer on the Pre-image Problem in ML

MLmethods aim to infer the structure of the data from a set of available sam-

ples. While conventional ML methods operate using linear models, extensions

to nonlinear models can be investigated by processing the data with a nonlinear

map to some space, prior to the application of conventional algorithms.

Let X be the input space, endowed with the inner product ⟨·, ·⟩ and norm ∥·∥,

where ⟨xi,xj⟩ = x⊤
i xj when dealing with a vector space. Let ϕ(·) be a nonlinear

transformation, mapping the data from the input space X to some latent space

H. Then, considering a set of n training samples, denoted x1,x2, . . . ,xn ∈ X ,

the resulting inference model in the latent space H takes the form

ψ =

n∑
i=1

αi ϕ(xi), (1)
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for some parameters α1, α2, . . . αn to be estimated. This representer theorem

is well-known in spline interpolation theory, kernel-based methods, deep neural

networks, and more generally in inverse problems and ML [37].

The kernel trick provides a mathematically elegant means to derive powerful

nonlinear variants of classical linear techniques, by replacing the inner product

operator in the latent space with a positive definite kernel κ(·, ·), i.e., satisfying∑
i,j

ξiξjκ(xi,xj) ≥ 0

for all ξi, ξj ∈ IR and xi,xj ∈ X . A large class of nonlinear kernels implicitly

defines the nonlinear embedding and the corresponding latent space, namely

κ(xi,xj) = ⟨ϕ(xi), ϕ(x)⟩H.

A preferred choice of positive definite kernels is the Gaussian kernel defined by

κσ(xi,xj) = exp
(
− 1

2σ2 ∥xi − xj∥2
)
, (2)

for a bandwidth parameter σ, and the polynomial kernel of degree p defined by

κp(xi,xj) =
(
1
σ ⟨xi,xj⟩+ c

)p
,

for some parameters c ≥ 0 and σ > 0. While kernel-based methods rely on

positive definite kernels, extensions to kernels not satisfying this fundamental

property exist. Of particular interest is the class of conditionally positive definite

kernels [32], satisfying∑
i,j

ξiξjκ(xi,xj) ≥ 0 for
∑
i

ξi = 0.

Examples of such kernels are the negative distance kernel κnd(xi,xj) = c −

∥xi − xj∥2 and its extension to any positive power p [6, 21].

2.1. The pre-image problem

For nonlinear pattern recognition and data mining, a major bottleneck is

that one needs to extract patterns in the data space, not in the “implicit” latent
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Figure 1: Illustration of the pre-image resolution (“?”) as an inverse of the data embedding

(ϕ(·)), allowing to provide nonlinear patterns (given here as a parabola) in the input space X

from linear patterns (given here as a plane) in the latent space H. A linear projection in the

latter is associated to a nonlinear one in the former (the two respective green arrows).

one. In other words, we aim to estimate x∗ whose image, with the mapping

function ϕ(·), is ψ, as illustrated in Figure 1. However, most elements of the

latent space do not lie in the image of the implicit embedding, namely ψ does

not have a valid pre-image in general. This issue can be easily illustrated using

the Gaussian kernel, since the representer theorem (1) becomes

ψ(·) =
n∑

i=1

αi exp
(
− 1

2σ2 ∥xi − · ∥2
)
,

which is a linear combination of Gaussians centered at the input data. However,

it is well known that a sum-of-Gaussians centered at different points cannot be

written as a single Gaussian exp
(
− 1

2σ2 ∥x∗ − · ∥2
)
for some x∗, namely, the

pre-image of ψ.

In order to circumvent this issue, one seeks an approximate solution, i.e.,

x∗ ∈ X whose embedding ϕ(x∗) is as close as possible to ψ, namely

ϕ(x∗) ≈ ψ. (3)

In the following, we consider the key fundamental pre-image problem to provide

deep analysis of the pre-image problem and its resolution. From (3), measuring

the similarity between ϕ(x∗) and ψ in the latent space H is done using the

6



ϕ(x∗
0)

ψ

- - Newton’s method

... Gradient descent method

⃝◦ Contours of the objective function

Figure 2: Illustration of the pre-image resolution in the latent space H. The shaded zone

corresponds to the image of the input space X for the function ϕ(·), namely any ϕ(x) belongs

to this zone. Any linear combination ψ, as defined by the representer theorem (1), does not

belong to this zone in general, and thus it does not have a valid pre-image. To estimate the

optimal x∗ such that ϕ(x∗) ≈ ψ, we seek to minimize the objective function in (4) (its contours

are shown in several colors). Two algorithms are illustrated, starting from a guess x∗
0: The

first-order optimization with a conventional gradient descent algorithm (dotted path), and the

second-order optimization with a Newton’s method (dashed path). The major contributions

of this paper are theoretical results on the fixed-point iteration technique for solving the

pre-image problem, as we demonstrate that it operates as a Newton’s method and it is an

Majorize-Minimization algorithm (as illustrated in Figure 5).

distance defined in that space, leading to the following optimization problem:

x∗ = arg min
x∈X

1

2

∥∥∥ n∑
i=1

αi ϕ(xi)− ϕ(x)
∥∥∥2
H
, (4)

namely,

x∗ = arg min
x∈X

1
2κ(x,x)−

n∑
i=1

αi κ(x,xi), (5)

where the term independent of x has been dropped. This optimization problem

is the most investigated one in the literature. Moreover, several variants were

also proposed, such as including a regularization that penalizes important vari-

ations, or considering local smoothing with neighborhood regularization. An

illustration of the optimization in the latent space is given in Figure 2.

The structure of the kernel functions provides useful insights to derive appro-

priate optimization techniques, as one can compute the gradient of the objective

function in (5), under the condition of differentiable kernels. For the sake of
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clarity, we restrict the presentation to the large class of the radial kernels, since

they are the most used in the literature. Appendix B extends these theoretical

results to the class of projective kernels, such as the polynomial kernels.

2.2. Radial kernels

In the following, we restrict the presentation to the large class of the radial

kernels. To this end, we shall borrow some elements from the literature of the

gradient of the density and the mean shift algorithm, such as the notions of

profile and shadow [12, 3].

The radial kernels are of the form

κ(xi,xj) = k(∥xi − xj∥2), (6)

where the function k(·) is called the profile of the kernel κ(·, ·). Let k′(u) be the

derivative of the profile function with respect to its argument u, assuming that

this derivative exists for all u, except for a finite set of points. Therefore,

∇xk(∥x− xi∥2) = 2(x− xi) k
′(∥x− xi∥2), (7)

where ∇x denotes the gradient operator with respect to x. In the same spirit

of [12, Theorem 1], we define the shadow of a kernel, as follows:

Definition 1 (Shadow of a kernel). A kernel κ(·, ·) is a shadow of a kernel

γ(·, ·) if and only if their profiles, respectively k(·) and g(·), satisfy

k′(r) = c g(r),

where c is a positive constant.

Let k(ℓ)(·) be the ℓ-th derivative of the function k(·) with respect to its

argument. The following proposition is from [14, Proposition 5] (see also [7,

Proposition 7.2]).

Proposition 2 (Radial kernels). A sufficient condition for a function of the

form κ(xi,xj) = k(∥xi − xj∥2) to be a positive definite kernel is its complete
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monotonicity, namely it is infinitely differentiable and all its ℓ derivatives satisfy

the following condition, for any u > 0,

(−1)ℓk(ℓ)(u) ≥ 0.

Since the second derivative is nonnegative, then the following lemma holds.

Lemma 3. The profile function of a radial kernel is convex.

Example 4 (Gaussian kernel). The most-used kernel is the Gaussian kernel,

κσ(xi,xj) = exp
(
− 1

2σ2 ∥xi − xj∥2
)
, (8)

for a given bandwidth parameter σ. Its profile function is kσ(u) = exp(− 1
2σ2u),

which satisfies Proposition 2, with

k(ℓ)σ (u) =
(
− 1

2σ2

)ℓ
kσ(u). (9)

Moreover, it turns out that the Gaussian kernel is the only kernel with a profile

that is also the profile of its derivatives, up to a multiplicative constant. This

is because, for any constant c, k′(u) = −c k(u) implies
∫

dk
k =

∫
−c du, namely

log k(u)− log k(0) = −c r, which implies k(u) = k(0) exp(−cu).

Example 5 (Inverse quadratic kernel). The inverse quadratic kernel defined by

κinvquad(xi,xj) =
(
c+ ∥xi − xj∥2

)−p
, (10)

for some parameters c > 0 and p > 0, is a valid radial kernel with the profile

function kinvquad(u) = (c+ u)−p.

Example 6 (Epanechnikov kernel). The Epanechnikov kernel is the truncated

negative distance kernel, defined as

κEp(xi,xj) =

 c− ∥xi − xj∥2 if ∥xi − xj∥2 ≤ ρ

0 otherwise
(11)

for some positive parameters ρ and c ≥ 0. It has the profile function

kEp(u) =

 c− u if |u| ≤ ρ

0 otherwise

9



and its derivatives are

k′Ep(u) =

 −1 if |u| ≤ ρ

0 otherwise

which is the profile of the uniform rectangular kernel on the support [−ρ, ρ].

Moreover, k′′Ep(u) = 0.

From Proposition 2, it is easy to see that a sufficient condition for this kernel

to be positive definite is c ≥ ρ. Otherwise, it is conditionally positive definite,

since
∑

i ξi = 0 implies
∑

i,j ξiξjκ(xi,xj) = c
∑

i,j ξiξj −
∑

i,j ξiξj∥xi −xj∥2 =

2
∑

i,j ξiξjx
⊤
i xj −

∑
i,j ξiξj∥xi∥2 −

∑
i,j ξiξj∥xj∥2 = 2∥

∑
i ξixi∥2 ≥ 0.

3. First-order Optimization

When considering radial kernels (6), κ(x,x) = k(0) is independent of x.

Thus, the pre-image is obtained by the minimization of the objective function

Ξ(x) = −
n∑

i=1

αi k(∥x− xi∥2). (12)

To this end, we shall examine its gradient, namely

∇xΞ(x) = 2

n∑
i=1

αi (xi − x) k′(∥x− xi∥2), (13)

where we have explored the structure of radial kernels with (7).

3.1. Fixed-point iteration technique

By factorizing the expression of the gradient (13) in the form

∇xΞ(x) = 2

(
−

n∑
i=1

αik
′(∥x− xi∥2)

)(
x−

∑n
i=1 αik

′(∥x− xi∥2)xi∑n
i=1 αik′(∥x− xi∥2)

)
, (14)

we can notice the following.

The first term is a scalar. It can be viewed as the pattern ψ evaluated at

x using the kernel γ(·, ·), namely the kernel whose shadow is κ(·, ·) (up to a
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multiplicative constant). When dealing with the Gaussian kernel, since this

kernel has the same expression as its shadow, then the first term becomes

1
2σ2

n∑
i=1

αiκ(x,xi) =
1

2σ2ψ(x).

We have integrated the “-” in the first term of (14) since, when dealing with

nonnegative αi’s, this term becomes nonnegative thanks to Proposition 2.

The second term is the vector x− µ(x), where

µ(x) =

∑n
i=1 αik

′(∥x− xi∥2)xi∑n
i=1 αik′(∥x− xi∥2)

is a weighted combination of the xi’s with the weights depending on the αi’s

and the kernel γ(·, ·). Since the first term of the expression of the gradient (14)

is a scalar, nonnegative when dealing with nonnegative coefficients αi’s, and the

second one a vector in X , then x−µ(x) and ∇xΞ(x) share the same direction,

which is the one that minimizes the objective function (12). The expression

x − µ(x) can be viewed as a weighted mean shift. Indeed, in the special case

of constant positive coefficients αi for all i = 1, 2, . . . , n, it boils down to the

so-called mean shift. In the following, we take advantage of the literature on

the mean shift algorithm and extend it to the case of a weighted mean shift in

order to provide a deep analysis on the pre-image problem and its resolution.

The fixed-point iteration technique can be derived by nullifying the gradient

of (12), namely the last term in (14). This leads to the fixed-point iteration that

updates a guess x∗
t at iteration t to the new estimate x∗

t+1 = µ(x∗
t ), namely

x∗
t+1 =

∑n
i=1 αik

′(∥x∗
t − xi∥2)xi∑n

i=1 αik′(∥x∗
t − xi∥2)

. (15)

If this sequence converges to some x∗
∞, then the last term in the gradient

expression (14) vanishes, so does the gradient at this point. In other words, if

convergence, then its limit is a critical point of the objective function (12).

Example 7 (Gaussian kernel). For the Gaussian kernel, the gradient in (13)

becomes

∇xΞ(x) = − 2

σ2

n∑
i=1

αi

(
xi − x

)
exp(− 1

2σ2 ∥x− xi∥2).
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Since this kernel has the same expression as its derivative, up to a multiplicative

factor, then the fixed-point iteration technique becomes, as in [27],

x∗
t+1 =

∑n
i=1 αi κσ(x

∗
t ,xi) xi∑n

i=1 αi κσ(x∗
t ,xi)

. (16)

3.2. Gradient descent

The gradient descent is one of the simplest optimization techniques. In its

simplest form, x∗
t is updated to x∗

t+1 by stepping in the opposite direction of

the gradient, namely

x∗
t+1 = x∗

t − ηt ∇xΞ(x
∗
t ),

with the gradient ∇xΞ(x) given in (14), where ηt is the stepsize parameter. The

following theorem shows that the norm of the gradient is bounded.

Theorem 8. When considering the Gaussian kernel, the norm of the gradient

is upper bounded as follows:

∥∇xΞ(x)∥ ≤ 2
σ
√
e
∥α∥1.

Proof. Let gi(x) = 2 k′(∥x− xi∥2) (xi − x) for i = 1, 2, . . . , n, then ∇xΞ(x) =∑n
i=1 αi gi(x) for any radial kernel. Thus, we have

∥∇xΞ(x)∥ =
∥∥∥ n∑

i=1

αigi(x)
∥∥∥ ≤

n∑
i=1

|αi| ∥gi(x)∥ , (17)

from the triangular inequality. In the following, we aim to provide an upper

bound on the norm of each gi(x), which is the gradient of k(∥x − xi∥2). The

maximum norm of the gradient lies at the inflexion point of this function.

When dealing with the Gaussian kernel, the inflexion points are obtained at

∥xi − x∥2 = σ2 (which is a straightforward generalization to higher dimensions

of the 1D case, where nullifying the second derivative implies |xi − x| = σ). At

the inflexion points, the norm of gi(x) becomes

∥gi(x)∥ =
∥∥∥− 2

σ2

(
xi − x

)
exp

(
− 1

2σ2 ∥x− xi∥2
) ∥∥∥ = 2

σ
√
e
.
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As this expression is independent of the xi’s, the upper bound on the gradient

norm (17) can be simplified to

∥∇xΞ(x)∥ ≤ 2
σ
√
e

n∑
i=1

|αi|.

By using norm inequalities, we can get an upper bound in terms of the ℓ2-

norm or ∞-norm of α, since ∥ ·∥1 ≤
√
n∥ ·∥2 and ∥ ·∥1 ≤ n∥ ·∥∞. This allows to

provide upper bounds for different ML methods, as most of them define some

constraints on the αi’s. This is the case of considering centroids, with αi = 1/n

which implies an upper bound of 2
σ
√
e
. The kernel PCA algorithm also imposes

some constraints, as given in the following example.

Example 9. For the kernel PCA, the most used normalization is the unit-norm

of the eigenvectors, which yields λk∥αk∥22 = 1, where λk denotes the Gram-

eigenvalue associated to the k-th principal axis. This leads to the following

bound on the gradient norm:

∥∇xΞ(x)∥2 ≤ 4n

σ2λke
.

Sometimes, a whitening normalization is recommended to have an equal variance

in each direction [35]. This is done using the normalization λk∥αk∥2 = 1, which

implies ∥∇xΞ(x)∥2 ≤ 4n
σ2λ2

ke
.

The gradient descent method has several drawbacks. The stepsize parameter

ηt needs to be determined; However, a line-search procedure is computationally

expensive. Moreover, the objective function (12) is inherently nonlinear and

clearly nonconvex. Thus, a gradient descent algorithm must be run many times

with different starting values, in hope that a feasible solution will be amongst

the local minima obtained over the runs. To overcome these difficulties of the

gradient descent and provide an adapted step size parameter, we shall investi-

gate in the following Newton’s method.
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4. Second-order Optimization

In this section, we examine the second-order optimization to solve the pre-

image problem, by considering Newton’s method with an update of the form

x∗
t+1 = x∗

t −
(
∇2

x∗
t
Ξ(x∗

t )
)−1

∇x∗
t
Ξ(x∗

t ), (18)

where one needs to inverse the Hessian matrix ∇2
xΞ(x) of the objective function

(12). The developments conducted in this section shall allow us to connect the

corresponding Newton’s method to the fixed-point iteration technique.

4.1. The Hessian matrix

The Hessian matrix of (12) is the Jacobian matrix of its gradient, namely

∇2
xΞ(x) = 2

n∑
i=1

αi ∇x

(
(xi − x) k′(∥x− xi∥2)

)
= −2

n∑
i=1

αi

(
k′(∥x− xi∥2)I + 2k′′(∥x− xi∥2)(xi − x)(xi − x)⊤

)
.

(19)

Example 10. For the Gaussian kernel, we get from (9) the expression of the

Hessian matrix

1
σ2

n∑
i=1

αi kσ(∥x− xi∥2)
(
I − 1

σ2 (xi − x)(xi − x)⊤
)
.

For the Epanechnikov kernel, the Hessian matrix can also be easily computed,

as k′′(u) vanishes from (19) while k′(u) is a simple rectangular function.

The Hessian measures the local curvature of the function Ξ(·) and provides

a viewpoint on its convexity. To show this, we rewrite this Hessian matrix as

−2

n∑
i=1

αi k
′(∥x− xi∥2)

(
I + 2

k′′(∥x− xi∥2)
k′(∥x− xi∥2)

(xi − x)(xi − x)⊤
)
. (20)

Since we have k′(·) ≤ 0 and k′′(·) ≥ 0 from Proposition 2, then the above

expression can be viewed as a linear combination of matrices of the form I−Qi,

where Qi = ηi(xi − x)(xi − x)⊤ with nonnegative ηi defined by

ηi = 2
k′′(∥x− xi∥2)
−k′(∥x− xi∥2)

.
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Moreover, the matrices Qi are positive definite, since we have for all u

u⊤Qiu = 2
k′′(∥x− xi∥2)
−k′(∥x− xi∥2)

∥∥u⊤(xi − x)
∥∥2 ≥ 0.

By writing the Hessian as (20), namely with the difference of two positive definite

matrices I and Qi, we get some insights on the underlying mechanism. Indeed,

the Hessian is not positive definite in general, as the difference of two positive

definite matrices is not positive definite in general.

Before providing some insights using linear algebra, we give the following

lemma that is due to the nonnegativity of k′(·).

Lemma 11. If the coefficients αi’s are nonnegative, then the Hessian matrix

is a difference of two positive definite matrices, the first one being the identity

matrix and the second one is the sum of rank-one matrices (up to some nonlinear

scaling).

While this result is restricted to nonnegative coefficients, we aim in the

following to consider the general case.

4.2. Conditions on the positive definiteness of the Hessian

In this section, we aim to provide a sufficient condition for the positive

definiteness of the Hessian, by providing a lower bound on its eigenvalues. To

this end, we first bring to mind Weyl’s interlacing theorem for the eigenvalues

of the sum of two matrices. We write it here for a rank-one update.

Lemma 12 (Weyl’s theorem). Consider a single rank-one update of the form

A± uu⊤. Weyl’s theorem for its smallest eigenvalue verifies the inequalities:

λmin(A) ≤ λmin(A+ uu⊤) ≤ λmin(A) + ∥u∥2

λmin(A)− ∥u∥2 ≤ λmin(A− uu⊤) ≤ λmin(A)

Proof. Weyl’s theorem is well-known for the sum of two arbitrary matrices, of

the form |λj(A+B)− λj(A)| ≤ ∥B∥ for any symmetric matrices A and B [20,
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Theorem 8.1.5 & Corollary 8.1.6]. Considering a rank-one matrix B = uu⊤,

which has λmin(B) = 0 and λmax(B) = ∥u∥2, we get

λmin(A) ≤ λmin(A+ uu⊤) ≤ λmin(A) + ∥u∥2.

Replacing A with A−u⊤u leads to the second pair of inequalities in Lemma 12.

The following Lemma extends Weyl’s theorem to multiple rank-one updates.

Lemma 13. For any matrix given as a linear combination of n rank-one up-

dates, of the form H = H0 −
∑n

i=1 νi rir
⊤
i for an arbitrary matrix H0, vectors

r1, . . . , rn, and scalars ν1, . . . , νn, we have

λmin(H0)−
n∑

i=1
νi>0

νi ∥ri∥2 ≤ λmin(H) ≤ λmin(H0)−
n∑

i=1
νi<0

νi ∥ri∥2. (21)

Proof. Let 11ν>0 be the indicator function, namely 11ν>0 = 1 if ν > 0 and

0 otherwise. Then, the left-hand-side dual inequalities in Lemma 12 can be

summarized in the single expression

λmin(A) ≤ λmin(A− ν uu⊤) + 11ν>0 ν ∥u∥2,

for any scalar ν, where ν = −1 leads to A+uu⊤ and ν = +1 leads to A = −uu⊤.

Now, we apply this inequality in a chain rule to H = H0 − ν1 r1r
⊤
1 −

ν2 r2r
⊤
2 . . .− νn rnr

⊤
n . Thus, we get

λmin(H0) ≤ λmin(H0 − ν1r1r
⊤
1 ) + 11ν1>0 ν1 ∥r1∥2

≤ λmin(H0 − ν1r1r
⊤
1 − ν2r2r

⊤
2 ) + 11ν1>0 ν1 ∥r1∥2 + 11ν2>0 ν2 ∥r2∥2

· · · ≤ λmin(H) +

n∑
i=1

11νi>0 νi ∥ri∥2,

which concludes the proof for the left-hand-side of (21). The right-hand-side can

be obtained by considering the right-hand-side dual inequalities in Lemma 12,

namely λmin(A−ν uu⊤) ≤ λmin(A)−11ν<0 ν ∥u∥2 for any scalar ν. By applying

this inequality n times for each rank-one update, we get

λmin(H) ≤ λmin(H0)−
n∑

i=1

11νi<0 νi ∥ri∥2,
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which concludes the proof.

Back to our problem, we use these results to provide a condition for the

Hessian to be not positive definite, and a condition for being positive definite.

Theorem 14. A sufficient condition to not have a positive definite Hessian is

−
n∑

i=1

αi k
′(∥x− xi∥2) < 2

n∑
i=1
αi<0

αi k
′′(∥x− xi∥2) ∥xi − x∥2,

thus the pre-image is a saddle point of (12).

Proof. We rewrite the Hessian matrix (19) as follows ∇2
xΞ(x) = ν0 I −∑n

i=1 αi rir
⊤
i , with ri = 2

√
k′′(∥x− xi∥2) (xi−x) and ν0 = −2

∑n
i=1 αi k

′(∥x−

xi∥2), where we have used the nonnegativity of k′′(∥x− xi∥2) (Proposition 2).

From Lemma 13, the right-hand-side of (21) becomes

λmin(∇2
xΞ(x)) ≤ λmin(ν0I)−

n∑
i=1
αi<0

αi ∥ri∥2.

Therefore, a sufficient condition for having at least one negative eigenvalue is

obtained by setting the upper bound below zero, which concludes the proof.

One can see that this sufficient condition is not verified when dealing with

constant nonnegative coefficients αi’s, since k
′(·) ≤ 0 for any radial kernel. The

following theorem provides a sufficient condition on the positive definiteness of

the Hessian, by considering an upper bound on its smallest eigenvalues.

Theorem 15. A sufficient condition for the Hessian to be positive definite is

2

n∑
i=1
αi>0

αi k
′′(∥x− xi∥2) ∥xi − x∥2 < −

n∑
i=1

αi k
′(∥x− xi∥2).

Proof. The proof follows the same outline as in the proof of the previous theo-

rem. Considering the left-hand-side of (21), Lemma 13 implies

λmin(ν0I)−
n∑

i=1
αi>0

αi ∥ri∥2 ≤ λmin(∇2
xΞ(x)).

Therefore, we get a sufficient condition for positive eigenvalues of the Hessian

by imposing the positivity of the left-hand-side.
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It is easy to understand this theorem through some special cases. For in-

stance, if all coefficients are negative, this condition is not satisfied. Moreover,

when dealing with the Gaussian kernel and constant nonnegative coefficients

αi’s, the sufficient condition in Theorem 15 boils down to

n∑
i=1

k(∥x− xi∥2)
∥∥ 1
σ (xi − x)

∥∥2 < n∑
i=1

k(∥x− xi∥2). (22)

This result can be related to Theorem D.4 in [8], where the author studied the

estimation of the modes of a finite mixture of M normal distributions. In this

case, the derived sufficient condition for the positive definiteness of the asso-

ciated Hessian matrix is
∑M

m=1 p(m|x) ∥(xi − x)/σ∥2 < 1, where the value 1

of the right-hand-side is due to the unitarity axiom of the probability distri-

butions. Therefore, one can provide an analogy between this result and (22).

Nevertheless, Theorem 15 provides a more general result for any radial kernel

and for any set of weighting coefficients αi’s.

5. Connections to Optimization Methods

In this section, we provide further insights on the pre-image resolution.

First, we provide the equivalence between the fixed-point iteration and New-

ton’s method. Moreover, we show that the former is an MM algorithm.

5.1. The fixed-point iteration as a Newton step

Applying Newton’s method to solve the pre-image problem leads to the

update rule (18), where one needs to inverse the Hessian matrix given in (19).

The following theorem on the pre-image problem allows to show the equivalence

between Newton’s method and the fixed-point iteration technique.

Theorem 16. If the profile k(·) has a piecewise-constant derivative k′(·), then

the fixed-point iteration (15) is equivalent to a Newton update (18).

Proof. If k′(·) is piecewise constant, then k′′(u) = 0 for all u ∈ IR and the

second term in (19) vanishes. By introducing the remaining term in (18) and
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the multiplicative expression of the gradient in (14), we get

x∗
t+1 = x∗

t −
(
∇2

x∗
t
Ξ(x∗

t )
)−1

∇x∗
t
Ξ(x∗

t )

= x∗
t +

(∑n
i=1 αik

′(∥x∗
t − xi∥2)xi∑n

i=1 αik′(∥x∗
t − xi∥2)

− x∗
t

)
,

which corresponds to a step in the fixed-point method.

This theorem shows that the direction and stepsize in the fixed-point itera-

tion technique are exactly the direction and stepsize of the Newton’s method,

when dealing with a kernel that has a piecewise constant profile, such as the

Epanechnikov kernel or other kernels proposed in [5].

Theorem 16 is restricted to kernels with a profile k(·) that is a shadow of a

piecewise-constant profile k′(·). In the following, we generalize this result to any

kernel. The following theorem examines the optimization mechanism operated

by the fixed-point iteration. See Figure 5 in Section 6 for an illustration.

Theorem 17. The fixed-point iteration (15) at a guess x∗
t seeks the optimum

of the quadratic function

q(x) = −
n∑

i=1

αi k
′(∥x∗

t − xi∥2) ∥x− xi∥2 − C(x∗
t ),

with C(x∗
t ) =

∑n
i=1 αi

(
k(∥x∗

t − xi∥2)− k′(∥x∗
t − xi∥2)∥x∗

t − xi∥2
)

indepen-

dent of x. Furthermore, the quadratic function q(·) is tangent to Ξ(·) at x∗
t .

Proof. First of all, it is easy to see that Ξ(x∗
t ) = q(x∗

t ). Now, taking the first

derivative of q(x) with respect to its argument, we have

∇xq(x) = 2

n∑
i=1

αi k
′(∥x∗

t − xi∥2)(xi − x), (23)

which is exactly the gradient∇xΞ(x
∗
t ) given in (13). Therefore, q(·) is tangent to

Ξ(·) at x∗
t . Finally, the optimum of the quadratic form is obtained when its gra-

dient (23) is nullified, which yields the fixed-point iteration at x∗
t . Furthermore,

since q(x) is quadratic, then Newton’s method finds its exact optimum.

Besides the relations given in this theorem between q(·) and Ξ(·), we provide

next other connections. For instance, besides the fact that both functions share
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the same tangent at a given point x∗
t , they also share the same local curvature

when k′′(·) = 0. Indeed, the Hessian of q(x) with respect to its argument is

∇2
xq(x

∗
t ) = −2

n∑
i=1

αi k
′(∥x∗

t − xi∥2)I. (24)

This is also the first term of ∇2
xΞ(x) at x∗

t , as given in (19), when k′′(·) = 0,

namely the profile k(·) is linear in its argument. By examining this Hessian,

the positivity (resp. negativity) of −2
∑n

i=1 αi k
′(∥x∗

t − xi∥2) determines the

minimization (resp.maximization) of the quadratic function in Theorem 17.

When dealing with nonnegative coefficients αi’s, this yields a positive definite

Hessian and thus a minimization problem, since k′(·) ≤ 0 from (7).

5.2. The fixed-point iteration as an MM algorithm

Next, we take advantage of the convexity of the profile function for radial

kernels (Lemma 3). The following theorem proves that the fixed-point iteration

technique is a Majorize-Minimization (MM) algorithm, by showing that it is a

bounded optimization with q(x) being an upper bound on Ξ(x). See Figure 5.

Theorem 18. For nonnegative coefficients αi’s, the fixed-point iterative tech-

nique is an MM algorithm, where the quadratic function q(·) defined in Theo-

rem 17 is the surrogate function that majorizes the objective function (12).

Proof. First of all, it is easy to see that at any guess x∗
t , we have Ξ(x

∗
t ) = q(x∗

t ).

Next, we show that Ξ(x) ≤ q(x) for any x ∈ X . Since the profile function k(·)

is convex from Lemma 3, then k(u) ≥ k(v) + k′(v)(u − v). By substituting u

with ∥x− xi∥2 and v with ∥x∗
t − xi∥2 for any x, x∗

t and xi, we get

k(∥x− xi∥2) ≥ k(∥x∗
t − xi∥2) + k′(∥x∗

t − xi∥2)(∥x− xi∥2 − ∥x∗
t − xi∥2).

Since this expression is valid for all xi, then the inequality holds also for any

combination with some nonnegative coefficients αi’s, namely

−
n∑

i=1

αik(∥x− xi∥2) ≤ −
n∑

i=1

αi

(
k′(∥x∗

t − xi∥2)(∥x− xi∥2)

+ k(∥x∗
t − xi∥2)− k′(∥x∗

t − xi∥2)(∥x∗
t − xi∥2)

)
,
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Figure 3: Illustrations of the pre-image resolution (red ·) of the centroid of the data for 4

datasets (blue ·), using the Gaussian, Inverse quadratic and Epanechnikov kernels.

which means that Ξ(x) ≤ q(x) for any x ∈ X . Finally, the optimal solution of

the surrogate function q(x) is obtained by nullifying its gradient (23), yielding

the fixed-point iteration. This concludes the proof.

6. Experiments

In this section, we illustrate the main theoretical results on some datasets.

6.1. Illustration on a simple ML problem

We consider the simple ML problem of estimating the centroid of a dataset,

where the representer theorem (1) boils down to ψ = 1
n

∑n
i=1 ϕ(xi). In order

to illustrate the resolution of the pre-image problem, we consider four datasets

in 2D. These datasets consist of 500 samples generated within the shape of a
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Figure 4: A zoom from the spiral results of Figure 3 that shows the 3 iterations are enough,

from a starting point (blue ·) to the 3 estimates (red ·) including the trajectory (solid line).

noisy parabola, frame, ring, and spiral. Figure 3 shows these datasets in its top

row, while the other rows present the pre-image results (red dots) obtained by

the fixed-point iteration (15) with only 3 iterations. The second row is obtained

using the Gaussian kernel, with its bandwidth set to σ = 0.2, the third row

using the inverse quadratic kernel (10) with c = 1 and p = 10, and the fourth

row using the Epanechnikov kernel (11) with c = 1 and ρ = 0.5. To the best

of our knowledge, this is the first time that the relevance of the pre-image is

demonstrated using a simple centroid method and the first time that the inverse

quadratic and Epanechnikov kernels are used. It is worth noting that the latter

is seldom used in kernel-based ML; However, we have proven its usefulness as

well as its positive definiteness as it verifies the sufficient condition of Example 6.

To provide more details on these results, Figure 4 shows a zoom from the

spiral results given in Figure 3, showing how the 3 iterations are enough to

converge to the underlying manifold. This figure also illustrates how the fixed-

point iteration technique is an adapted gradient descent / Newton update, as

discussed in detail in this paper (see Section 3 and also Theorem 16).
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Figure 5: Illustration in 1D of solving the pre-image as a quadratic optimization step. For any

guess solution x∗
t (•), the quadratic function q(·) (dashed parabola) is tangent to Ξ(·) (solid

line) at x∗
t , and its minimum (▼) corresponds to the fixed point iteration yielding x∗

t+1.

6.2. Connections to optimization methods

We illustrate the equivalence between the fixed-point iteration technique and

Newton’s method. More precisely, the following experimental results illustrate

and support Theorem 17, which proves that the fixed-point iteration technique

seeks the optimization of a quadratic function, and Theorem 27, which proves

that it is an MM algorithm. To this end, we use a dataset of 20 samples

uniformly generated in 1D, with the corresponding coefficients α′
is uniformly

generated between 0 and 1 with the sum-to-one constraint and using the Gaus-

sian kernel. Figure 5 illustrates the results. We can see that, starting from any

guess solution x∗
t , the quadratic function q(·) defined in Theorem 17 is tangent

to the pre-image objective function Ξ(·) (12) at that starting solution, and its

minimum corresponds to the fixed point iteration yielding the resulting solution.

Moreover, q(·) is the surrogate function that majorizes the objective function,

as demonstrated in Theorem 27.

7. Conclusion and Future Work

In this paper, we provided theoretical insights on the resolution of the pre-

image problem in ML. These results were on the gradient descent optimization,
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the fixed-point iteration technique and Newton’s method. Connections to other

optimization procedures were also proposed, such as demonstrating that the

fixed-point iteration is an MM algorithm. These theoretical results were inspired

by recent advances on the mean shift algorithm for mode seeking within the

framework of gradient density estimation.

Nevertheless, the pre-image problem (arbitrary weights, including nonnega-

tive ones, as well as different kernel definitions) is quite more complex and more

challenging than the mode seeking problem (dealing exclusively with probability

density functions). It turns out that the resolution of the former boils down to

the mean shift algorithm in very specific cases (Gaussian kernel with coefficients

αi’s corresponding to a probability distribution), which allows to validate the

derived results. For instance, Theorems 15 and 24 (on a sufficient condition for

the convexity of the pre-image problem) boil down to Theorem D.4 in [8] (on

the convexity of the mode seeking problem) when considering as a special case

the Gaussian kernel with normal distributions and constant nonnegative coeffi-

cients. In the same sense, Theorems 18 and 27 are more general than Theorem

4 in [18].

As a future work, the convergence of the resolution of the pre-image problem

is of great interest. While the derivations carried out in this paper provide

insights to the convergence of the fixed-point iteration algorithm, we did not

provide a rigorous proof of the convergence. Indeed, the convergence of the

mean shift algorithm for mode estimation of probability density functions is still

an open question, even though it was introduced almost 50 years ago [19]. This

problem has attracted the interest of many researchers recently, with several

attempts have been made to prove its convergence. It turns out that the most

well-known proofs are incorrect. This is the case of the proof in [13], which relies

on the incorrect assumption that the mode estimate sequence generated by the

mean shift algorithm is a Cauchy sequence and hence converges; However, this

claim is not correct, as pointed out in [26]. Another convergence proof was

claimed in [9], where the mean shift with the Gaussian kernel is shown to be

an expectation-maximization (EM) algorithm, and hence converges; However,
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as pointed out in [2], the EM algorithm may not converge without additional

conditions. The more recent proof in [4] also suffers from the flaws of the proof

in [13], as pointed out in [38]. A proof for one-dimensional space was provided

in [2] under mild conditions. See [38, 39] for a review of proof attempts and

their flaws, as well as recent proofs under some mild conditions.
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Appendix A. Gradient Density vs. Pre-image Problem in ML

This appendix presents the gradient density estimation problem and provides

connections between solving it and the resolution of the pre-image while pointing

out the difficulties to carry out such analogy.

Kernel density estimation, also known as the Parzen window estimator in

statistics, has been largely investigated in the literature. For a set of available

samples x1,x2, . . . ,xn ∈ X , it is defined by

p̂(x) =

n∑
i=1

αk(∥x− xi∥2), (A.1)

where k(·) is a smoothing kernel, written here in the profile notation defined in

(6), and α is a positive normalizing factor that makes the kernel integrate to

one. A fundamental property of a density function is its modes, which are the

values at which it has local maxima, namely the values that are most likely to

be sampled from the underlying probability density. Since these maxima are

located at the nullification of the gradient of the density, researchers studied

in [19] the estimation of the density gradient, by taking the derivative of the

density function estimate (A.1) with respect to x, namely

∇xp̂(x) =

n∑
i=1

α∇xk(∥x− xi∥2).
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By setting it to zero, the mean shift algorithm was obtained to seek these modes.

The guarantees of asymptotic unbiasedness, consistency, and uniform consis-

tency of this estimate were also studied in [19].

We can view the kernel density estimation as a special case of the pre-image

objective function, as the latter is more general with arbitrary coefficients αi’s;

Thus, estimating the modes in the former can be related to estimating the pre-

image in the latter. However, such analogy needs to be handled with care, as

described next due to two major issues.

On one hand, a major issue is that not all kernels used in kernel density

estimate are valid positive definite kernels and, vice versa, not all positive def-

inite kernels are valid for kernel density estimate. This is due to the definition

of the kernels in each domain. In kernel density estimation, a smoothing ker-

nel is a nonnegative real-valued integrable function that integrates to one, is

symmetric about the origin, and may also have other properties such as finite

second moment. In kernel-based ML, kernels should verify to be positive defi-

nite (Mercer theorem). While the Gaussian kernel (Example 4) is a valid kernel

for both kernel-based machines and kernel density estimation (up to a normal-

izing factor), this is not the case of most other kernels. Of particular interest in

kernel density estimation is the Epanechnikov kernel, which is the positive part

of a parabola. While this kernel is optimal in the asymptotic mean integrated

squared error sense (under some conditions), it is indefinite (i.e., non-positive

definite kernel) [28]. Moreover, not all positive definite kernels are valid for

kernel density estimation, such as projective kernels in general.

On the other hand, the coefficients αi’s in ML are arbitrary, while they are

constant in kernel density estimation with a positive value1 . Consequently, the

derivations conducted in this paper and the theoretical analysis are more difficult

to carry out than in the domain of gradient density estimation. For instance,

1A generalization of the density function was considered in [11] for arbitrary coefficients

αi’s, leading to a generalized mode estimation, with the analysis conducted under several

assumptions, such as the coefficients are uniformly bounded random variables.
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Theorem 15 gives a sufficient condition for the Hessian to be positive definite, for

any radial kernel and without any condition on the values of the coefficients αi’s.

It turns out that this result boils down to Theorem D.4 in [8] when considering

as a special case the Gaussian kernel associated to a normal distribution, under

the unitarity axiom of the probability distributions, and constant nonnegative

coefficients. In the same sense, Theorem 18 is more difficult to establish than

Theorem 4 in [18]; however, our proof is straightforward using only conventional

function calculus, as opposed to their proof that investigated dimensionality

decomposition, change of variable and reparameterization, as well as geometry.

Appendix B. Theoretical Results for Projective Kernels

Projective kernels, also called inner-product kernels, are based on the inner

product between samples in the input space. All these kernels are of the form

κ(xi,xj) = f(⟨xi,xj⟩), (B.1)

for some real function f(·) defined on real values. By analogy with the definitions

carried out for the radial kernels, we shall call f(·) the profile of the kernel. Well-

known nonlinear projective kernels with their expressions are given next.

Example 19 (Projective kernels). The most used projective kernels are the

polynomial kernels defined as

κp(xi,xj) = ( 1σ ⟨xi,xj⟩+ c)p, (B.2)

for σ > 0, p ∈ IN+ and c ≥ 0 (also called homogeneous polynomial kernel when

c = 0), and the exponential kernel defined as

κ(xi,xj) = exp( 1σ ⟨xi,xj⟩), (B.3)

for some positive bandwidth parameter σ. Other valid kernels are the Vovk’s

real polynomial, of the form
1−⟨xi,xj⟩p
1−⟨xi,xj⟩ , as well as the Vovk’s infinite polynomial

(1 − ⟨xi,xj⟩)−1. The Sigmoid kernel κ(xi,xj) = tanh( 1σ ⟨xi,xj⟩ + c) is not a

valid kernel in general (depending on the parameters (σ, c)).
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The following result is given in [7, Proposition 7.1].

Proposition 20 (Projective kernels [7]). Three necessary conditions for a func-

tion κ(xi,xj) = f(⟨xi,xj⟩) to be a positive definite kernel are, for any nonneg-

ative u (namely u = ∥x∥2 for all x ∈ X ):

f(u) ≥ 0, f ′(u) ≥ 0, f ′(u) + uf ′′(u) ≥ 0.

In contrast with radial kernels, which have convex profiles as stated in

Lemma 3, this is not the general case of projective kernels. However, there

are many situations where the projective kernels have a convex profile as stated

next, where the proof is straightforward by considering the nonnegativity of the

second derivative of their profiles.

Proposition 21 (Projective kernels with convex profiles). The following pro-

jective kernels have a convex profile:

• The exponential kernel (B.3).

• The polynomial kernel (B.2) for any even power p ≥ 2.

• The polynomial kernel (B.2) for any odd power p ≥ 3 with ⟨xi,xj⟩ ≥ −cσ,

such as X is in the positive orthant.

The objective function of the pre-image problem (4) becomes

ΞP(x) =
1

2
f(⟨x,x⟩)−

n∑
i=1

αi f(⟨x,xi⟩). (B.4)

Its gradient in terms of f(·) and its derivative f ′(·) is

∇xΞP(x) = f ′(⟨x,x⟩)x−
n∑

i=1

αi f
′(⟨x,xi⟩)xi.

From this, we can provide the following fixed-point iterative technique:

x∗
t+1 =

∑n
i=1 αi f

′(⟨x∗
t ,xi⟩) xi

f ′(⟨x∗
t ,x

∗
t ⟩)

. (B.5)

To the best of our knowledge, this general fixed-point iterative method is novel.

The following special case was given in [25].
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Example 22. For the polynomial kernel, the fixed-point iterative method is

x∗
t+1 =

∑n
i=1 αi κp−1(xi,x

∗
t )xi

κp−1(x∗
t ,x

∗
t )

.

Besides first-order optimization using the gradient descent scheme or a fixed-

point iterative technique as given in (B.5), we can also investigate second order

optimization, by analogy with Section 4. To this end, we compute the Hessian

matrix of the objective function (B.4), namely

∇2
xΞP(x) = f ′(⟨x,x⟩)I + 2f ′′(⟨x,x⟩)xx⊤ −

n∑
i=1

αif
′′(⟨x,xi⟩)xix

⊤
i . (B.6)

The following two theorems for projective kernels are equivalent to Theo-

rems 14 and 15, with the proofs following a similar outline.

Theorem 23. For projective kernels with a convex profile, a sufficient condition

for the Hessian to be not positive definite is

f ′(⟨x,x⟩) + 2f ′′(⟨x,x⟩) ∥x∥2 −
n∑

i=1
αi<0

αi f
′′(⟨x,xi⟩) ∥xi∥2 < 0.

Proof. Since the profile of the kernel is convex, then its second derivative f ′′(u)

is nonnegative. Thus, we can rewrite the Hessian matrix (B.6) as

∇2
xΞP(x) = ν0 I + 2f ′′(⟨x,x⟩)xx⊤ −

n∑
i=1

αi rir
⊤
i , (B.7)

with ν0 = f ′(⟨x,x⟩) and ri =
√
f ′′(⟨x,xi⟩) xi, as well as the second term identi-

fied also as a rank-one update with the vector
√
2f ′′(⟨x,x⟩)x. Lemma 13 leads

to λmin(∇2
xΞP(x)) ≤ λmin(ν0I) + 2f ′′(⟨x,x⟩)∥x∥2 −

∑n
i=1
αi<0

αi ∥ri∥2. Thus, by

setting the right-hand-side to be strictly negative, we get the sufficient condition

for having at least one negative eigenvalue.

Theorem 24. For projective kernels with a convex profile, a sufficient condition

for the Hessian to be positive definite is

n∑
i=1
αi>0

αi f
′′(⟨x,xi⟩) ∥xi∥2 < f ′(⟨x,x⟩).
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Proof. By following the proof of the previous theorem, applying Lemma 13 to

the Hessian matrix (B.7) yields λmin(ν0I)−
∑n

i=1
αi>0

αi ∥ri∥2 ≤ λmin(∇2
xΞP(x)).

Thus, a sufficient condition for positive eigenvalues of the Hessian is obtained

by imposing the positivity of the left-hand-side.

While Theorem 24 is restricted to projective kernels with a convex profile f(·)

on X , it turns out that this condition is often satisfied as given in Proposition 21.

For example, when dealing with the quadratic homogeneous kernel, the sufficient

condition boils down to
∑n

i=1
αi>0

αi ∥xi∥2 < ∥x∥2.

By analogy with Theorem 16, we can provide an equivalence between New-

ton’s method and the fixed-point iteration technique under some conditions.

Theorem 25. For projective kernels, if f(·) has a piecewise-constant derivative,

then the fixed-point iteration (B.5) is equivalent to a Newton update (18).

Proof. For piecewise-constant f ′(·), f ′′(·) vanishes from the expression of the

Hessian, yielding ∇2
xΞP(x) = f ′(⟨x,x⟩)I. Thus, the Newton update becomes

x∗
t+1 = x∗

t − (f ′(⟨x∗
t ,x

∗
t ⟩)I)

−1 ∇x∗
t
ΞP(x

∗
t ) =

∑n
i=1 αi f

′(⟨x∗
t ,xi⟩) xi

f ′(⟨x∗
t ,x

∗
t ⟩)

,

which corresponds to a step in the fixed-point method (B.5).

Theorem 17 can be recast for projective kernels as follows, following the

same outlines of the proof of the former, as well as the resulting discussions.

Theorem 26. For projective kernels, the fixed-point iteration (B.5) at a guess

x∗
t seeks the optimum of the quadratic function

q(x) = 1
2f

′(⟨x∗
t ,x

∗
t ⟩)∥x∥2 −

n∑
i=1

αi f
′(⟨x∗

t ,xi⟩)⟨x,xi⟩ − C(x∗
t ),

where C(x∗
t ) = − 1

2f(⟨x
∗
t ,x

∗
t ⟩) +

∑n
i=1 αi f(⟨x∗

t ,xj⟩) + f ′(⟨x∗
t ,x

∗
t ⟩)∥x∗

t ∥2 −∑n
i=1 αi f

′(⟨x∗
t ,xi⟩)⟨x∗

t ,xi⟩ is independent of x. Furthermore, the quadratic

function q(·) is tangent to ΞP(·) at x∗
t .

Finally, we recast Theorem 18 for the projective kernels, by showing that

the fixed-point iteration technique is an MM algorithm.
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Theorem 27. For nonnegative coefficients αi’s and projective kernels with con-

vex profile, the fixed-point iterative technique is an MM algorithm, where the

quadratic function q(·) defined in Theorem 26 is the surrogate function that

majorizes the objective function (B.4).

Proof. The proof follows the same guidelines as the proof of Theorem 18. For

any guess x∗
t , ΞP(x

∗
t ) = q(x∗

t ), and ΞP(x) ≤ q(x) for any x ∈ X . Since f(·) is

convex, we use f(u) ≥ f(v)+f ′(v)(u−v). On one hand, we get by substituting

u with ⟨x∗
t ,x

∗
t ⟩ and v with ⟨x,x⟩ the following inequality:

f(⟨x,x⟩) ≤ f(⟨x∗
t ,x

∗
t ⟩)− f ′(⟨x∗

t ,x
∗
t ⟩)(⟨x,x⟩ − ⟨x∗

t ,x
∗
t ⟩).

On the other hand, substituting u with ⟨x,xi⟩ and v with ⟨x∗
t ,xi⟩ for any x,

x∗
t and xi, we get

f(⟨x,xi⟩) ≥ f(⟨x∗
t ,xi⟩) + f ′(⟨x∗

t ,xi⟩)(⟨x,xi⟩ − ⟨x∗
t ,xi⟩).

By combining this inequality for all i = 1, 2 . . . , n, with some nonnegative co-

efficients αi’s, with the previous inequality, then the inequality holds also for

any combination, we get ΞP(x) ≤ q(x) for all x ∈ X . Finally, the optimal solu-

tion of the surrogate function q(x) is obtained by nullifying its gradient, which

corresponds to the fixed-point iteration. This concludes the proof.
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