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The Procesi bundle over the I'-fixed points of the
Hilbert scheme of points in C?
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May 30, 2024

Abstract

For T a finite subgroup of SL(C) and n > 1, we study the fibers of the Procesi bun-
dle over the I'-fixed points of the Hilbert scheme of n points in the plane. For each
irreducible component of this fixed point locus, our approach reduces the study of the
fibers of the Procesi bundle, as an (&, x I')-module, to the study of the fibers of the
Procesi bundle over an irreducible component of dimension zero in a smaller Hilbert
scheme. When I is of type A, our main result shows, as a corollary, that the fiber of
the Procesi bundle over the monomial ideal associated with a partition A is induced,
as an (S, x I')-module, from the fiber of the Procesi bundle over the monomial ideal
associated with the core of A. We give different proofs of this corollary in two edge
cases using only representation theory and symmetric functions.

1 Introduction

The Procesi bundle is an important vector bundle on the Hilbert scheme of points in
C?. Tt has played a key role in Hamain’s proof of the theorem n! [H01, Theorem 5.2.1].
Take n an integer greater or equal to 1. If &,, denotes the symmetric group on n letters,
then the fibers of the Procesi bundle %" are &,-modules, isomorphic to the regular
representation of &,,; thus the Procesi bundle has rank n!. Consider now the natural
action GL,(C) on C2. This action induces a GL,(C)-action on the Hilbert scheme H,,
of n points in C?. Let T be a finite subgroup of SL,(C). Over H], the fibers of %"
are (6, x I')-modules. The main result of this article shows that, for each irreducible
component C of HE and for each I € C, the fiber of 2" at I can be constructed, as an
(6, x I')-module, by induction of the fiber of Pk over an ideal Iy € ’H,l; forsomek <n
such that {Iy} is an irreducible component of . The integer k is explicit and depends
on C, I and n. The result is stated in section [I.2]below. But first we introduce the main
players and the notation used in the article.

1.1 The Hilbert scheme of points in the plane

Let H,, be the Hilbert scheme of 1 points in C2. As a set

Hy = {I C Clx,y]|Iis anideal and dim(C|x,y]/I) = n}.



Fogarty showed [Fo68, Proposition 2.2 & Theorem 2.9] that H, is a smooth connected

2n dimensional algebraic variety. Let the group &, act on (C2)" by permuting the n
copies of C? and denote by 0, the Hilbert-Chow morphism. It is defined as follows

Hy — (c?)"/s,
I = Yyevdim ((Clx,y]/1)p) [p]

where [p] denotes the orbit of p in (C?)" /&, for p € (C?)".

On:

1.2 The Procesi bundle

The Procesi vector bundle is a GL, (C)-equivariant vector bundle on the Hilbert scheme
of n points in C2. To construct the Procesi bundle, one first needs to introduce the
isospectral Hilbert scheme. The nth-isospectral Hilbert scheme, denoted by X}, is the
reduced fiber product of H, with (C?)" over (C?)"/&,:

n fn n
Hn X(cZ)”/Gn (CZ) E— (CZ)

pnl lm M)

Hn T (Cz)n/Gn
Here, the morphism 77, is the quotient map. The scheme X}, is an algebraic variety,
projective over (C?)". Crucially, Haiman [HO3, Theorem 5.2.1] has proven that p, is a
finite and flat morphism. This implies that the sheaf " := p,, Oy, is locally free and
thus defines a vector bundle on H,,. This vector bundle is the n"-Procesi bundle. Note
that, by construction, the fibers of 2" are &,-modules. The natural GL,(C)-action on
H, and the diagonal action on (C2?)" give a GL,(C)-action on X,, making %" into
a GL,(C)-equivariant vector bundle. Moreover, by letting &,, act trivially on #,, all
morphisms py,, 0y, 7, and f,, are (S, x GLy(C))-equivariant.

For I € H,, denote by 93)"} the fiber of the vector bundle associated with %" at I.

Note that when I € HI, the fiber P[] is an (6, x I')-module. Let C be an irreducible

component of H! of dimension 2r. Take (p1,...,pr) € ((€2)\ {(0,0)})" such that for
each (i,j) € [Lr]%i # j = TpiNTp; = @. Letq := (I'py,...,Tp;) € (([?z)ﬂ8 and
p:=(0,9) € (C?)". Let S, denote the stabilizer of p in &, x I'. Let gr := n — £r. Then
there exists a unique irreducible component {Iy} of the scheme ng such that a generic
point of C is of the form V(Iy) U V(g). This defines a bijection between the irreducible
components of Hrr of dimension zero and the 2r-dimensional components of 7. The
main result of this article is the following theorem.

Theorem. For each irreducible component C of HY, there exists an isomorphism of groups

F:5) = 6gp x I, making Q‘FIS into a Sy-module such that for each I € C,

n _ G, xI' 8r
[g}“] SuxI [Indsn (gbbﬂesnxr'
This theorem reduces the study of the fibers of the Procesi bundle over the I'-fixed
points to the study of the fibers of the Procesi bundle over the irreducible components

of the I'-fixed points of dimension zero. For this reason, we refer throughout to this
result as the reduction theorem.



1.3 Combinatorial consequences in type A

In the case where I is the cyclic subgroup y, (of order ¢, generated by wy) in the maxi-
mal diagonal torus of SL,(C) (type A), the reduction theorem interplays well with the
combinatorics of /-cores. Indeed, each irreducible component of the scheme !, con-
tains a fixed point under the maximal diagonal torus of SL,(C). These fixed points are
indexed by partitions of n. If A is a partition of n, let I, € H, denote the associated
fixed point and write %} for the fiber of the vector bundle associated with 2" at I,.

Denote by v, the ¢-core associated with A. The size of -y, is denoted g, and ry := %

Let 7/ be the character of y; such that 7;(wy) is equal to {y, a fixed primitive ¢t root of
unity, and by wy ,, € &, the product of the r, cycles of length £:

(gr+1,.,80+0)..(n—C+1,...,n).

Let Cy, be the cyclic subgroup of &, , generated by w, ,,. Consider also the subgroup

Wg” = B¢, x Cy,, of &,,. Denote by 6, the character of Cy,, such that 8,(w,,) = ;.
The followmg is a corollary of the main reduction theorem.

Corollary. For each partition A of n, one has the following decomposition of 2}

¢-10-1

Sy a4 —] '
e = 2 [Ind 4 (@%)@92 f)&rg]

i=0;=0 Suxpy

1.4 Notation

In this last subsection of the introduction we fix notation. Let G be a finite group. De-
note by R(G) the Grothendieck ring of the category of finite-dimensional CG-modules
and R&'(G) the Grothendieck ring of the category of Z-graded finite-dimensional CG-
modules. For V a given CG-module (resp. graded CG-module), let [V] (resp. [V]2),
or just [V] (resp. [V]8") denote the element in R(G) (resp. R8"(G) ) associated with V.

All schemes will be over C and we will also suppose that the structure morphism
is separated and of finite type over C. An algebraic variety will be an integral scheme.
If S is a scheme and s € S, denote by xg(s) the residue field of the local ring Og . Fix
an integer n > 1, and I' a finite subgroup of SL,(C). We denote the order of I' by /.

By a I''module, one means a finite-dimensional C[I']-module. Let Irrr be the set of
all characters of irreducible representations of I'. It is finite since I' is finite. Denote
by xo € Irrr the trivial character. Moreover, the group I' being a subgroup of SL,(C),
it has a natural 2-dimensional representation called the standard representation and
denoted pgq. It is irreducible whenever I’ is not a cyclic group. In the following, the
character of the standard representation will be denoted 4.

The article is organized as follows. In the first section, we recall results obtained
in [Pae] concerning the irreducible components of H!. In the second section, we state
and prove the main result (c.f. Theorem [3.4). In the third section, we dive into the
combinatorial consequences of the reduction theorem when I is a cyclic group and
prove Corollary Moreover, we prove Corollary 4.3/in two edge cases using only
representation theory and symmetric function theory, in particular avoiding Haiman’s
results on the isospectral Hilbert scheme. In the last section, we study the combina-
torics arising from Theorem .4 when I' is the binary dihedral group.
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2 Root systems and irreducible components of .

In this section, we introduce notation on root systems and recall the parameterization
of irreducible components of 7. These are also the connected components since
is smooth thanks to the fact that I' is a finite group.

Definition 2.1. Define the McKay undirected multigraph Gr associated with I' the fol-
lowing way. The set of vertices is Ir := Irrr and there is an edge between a pair of
irreducible characters (x, x’) if and only if (xxsa|x’) # 0, with multiplicity (xxsalx’)-
Let Ar denote the adjacency matrix of Gr.

Remark 2.2. Note that Gr is indeed undirected because I' is a subgroup of SL,(C).

Thanks to the McKay correspondence, one can associate to I a realization (f,IT,IT")
of the generalized Cartan matrix 2Id — Ar. Let W denote the Weyl group associated
with (b, I, I1V). For each x € I, the simple root, respectively coroot, associated with
x is denoted by a, € TI, respectively ay € T1". For each x € I, let Ay € h* (resp.
A} € b) be the fundamental weight (resp. fundamental coweight) associated with a;
(resp. ay). Let Q (resp. QV) denote the root (resp. coroot) lattice of (b, IT,IT"). Write

M= Y dim(X)ay € O, of == Y dim(X,)ay € QY,
x€<lr XEIr

for the minimal positive imaginary root, resp. minimal positive imaginary coroot. De-
note by QF C Q the monoid generated by II. For d € Q, write |d|r and d,, for the
integers (d, o)) and (d, AY) respectively, where x € Ir.

Definition 2.3.~We define a W-actjon on Q. Denote by s, € W, for x € Ir, the standard
generators of W and choose d € Q:

(Cherrp—y D) — dyx it x =28 # xo
(SX.d)(: = (Zhe?r,h’:x dh//) — d?( + 1 lf X = é{ = X0
dg else.

Remark 2.4. This action corresponds to the one defined in [Nak03| Definition 2.3] in
the special case of double, one vertex framed quivers, and it is linked to the natural
action by reflections on h* (denoted *) in the following way. Thanks to the remark at
the end of [Nak03, Definition 2.3], one has

wx (Ag—a) =Ag—w.a, V(wa)eWxQ (2)
where Ay denotes A, .

Let Q (respectively W) denote the sublattice of Q (respectively the subgroup of W)

generated by {ay|x € Ir \ {xo}} (respectively by {sy|x € Ir\ {xo}}). Fora € Q,
denote by ¢, € W the image of a under the isomorphism W x Q = W.
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Lemma 2.5. For each (a,d) € Q x Q, there exists k € Z such that t,.d = d — a + kd".
Proof. Thanks to relation (2)) and [Kac, Formula 6.5.2], there exists k € Z such that

tod =d —a+ (d, &) +ké"
Since d € Q, (d,6Y) = 0 by definition of §Y. O

Lemma 2.6. For each d € Q, there exists a unique integer r such that d and ré' are in the
same W-orbit for the . action of Definition

Proof. Take d € Q. Thena := d — dod" € Q and thanks to Lemma t,.d is an
element of the desired form. Now suppose that there are two integers r1 and r, such
that 716" and 76" are in the same W-orbit. Since ¢! is in the kernel of the generalized
Cartan matrix 2Id — Ar, 6" is fixed under the action of W-action. This observation
reduces the W-orbit of ;6! to the Q-orbit. There must then exist # € Q such that
ty.r10F = 10t Using Lemma there exists k € Z such that f,.716F = r10 —a +ké',
one can conclude that 2 = 0 and that r; = 5. H

Definition 2.7. The weight wt(d) of d € Q is the unique integer r such that ré' and d
are in the same W-orbit.

Now that the weight of an element of Q has been defined, we can recall the parameter-
ization of connected components of the fixed point locus. Set

t = {a € Ql|a|r = n and wt(d) > 0}.

It is shown in [Pae, Corollary 3.3] that the set A} indexes the irreducible components
of HY. Indeed, if one denotes by /" := {I € H}|Tr(C[x,y]/I) = Lycr dyx}, then

r _ r,d
HE= T A
de Af

By [Pae, Proposition 3.11], the connected component #5* labelled by d € A} has di-

mension 2wt(d). The restriction of 2" to each connected component HI of H! defines
a vector bundle and the fibers of this vector bundle are (&, x I')-modules.

3 The Reduction Theorem

In this section, we state and prove the main result of the article. We begin with some
preliminary results. Fix d € A}. To improve readability, we set r; := wt(d). Consider

do = d —ry6" and note that, by construction, wt(dg) = 0. We fix gr := |do|r. The

connected component Hg’do - ng is zero-dimensional and we write I;, for the unique
ideal of C[x, y] belonging to ng“}do_

T

Lemma 3.1. The image of I, under g, is the point 0 € (C2)%" /&,
Proof. Consider the diagonal C*-action on C? given by
V(t, (x,y)) € C* x C2,t.(x,y) := (tx, ty).

This action induces a C*-action on Hg. which commutes with the I'-action and the
Hilbert-Chow morphism oy is C*-equivariant. The fact that C* is connected and the
irreducible component Hg’rdo equals {14, } implies that I; is a C*-fixed point. This ideal
must then be mapped by 0. to a C*-fixed point of (Cc?)8/ Sg,. Finally, we note that 0
is the only fixed point in (C2)" /G, O



Denote by U/ the following open subset of (C2)":
{(p1-- o pr)) € (CNLO,0 1) V(i) € [Lral’,i # j = TpiNTp; = O},
Let Dy, := {1y "2, I(Tp;) € Clx,yl| (p1, -, pry) € W}
Lemma 3.2. The set Dy, is a dense open subset of HIA,

Proof. In type A, this is [Gor08, Lemma 7.8.(i)]. Take I = I, N ﬂ;”’zl I(Tpj) € Dg,.
Lemmaimplies that V(I,) = 0. Therefore, forallj € [1,7;] wehave V(I;) NT'p; = @,
which gives an isomorphism of I'-modules

Tq

Clx,y)/T = Clx,y]/1ay & P Clx,yl/1(Tpy).
j=1
This isomorphism shows that I is of codimension gr + r4¢ = n in C[x, y| and that the
character of the I'-module C[x,y]/I is d. This means that Dy, C HIA. The associa-
tion (p1,...,pr,) — Clx,y]/I defines a vector bundle over U/ whose fibers are cyclic
C|x,y]-modules of dimension n. Thus, there is a (unique) morphism Uf — H,, such
that this vector bundle is the pull-back of the tautological bundle on #,,. The fibres of

this morphism are finite i.e. it is a quasi-finite morphism. Hence, by Zariski’s Main
Theorem [EGA 1V3} Théoréme 8.12.6], the image D, of U/ is a (connected) locally

closed subset of H;, of dimension 2r,. Since Dy, is contained in Hg’d and the latter also
has dimension 2r;, we deduce that Dy, is an open dense subset of Hg’d. O

Throughout the remainder of this section we fix (p1,...,pr d) e U/. Denote by ] the
ideal (V") I(Tp;) and set I := Iy, N ] € Hyy". Let q:= (Tpy,...,Tpy,) € (C3) and

p := (0,9), which is a point in 71;;* (¢ (I;)) C (C?)". Denote by S, the stabilizer of p in
G, xT.

Remark 3.3. By construction, | is an element of ’Hfd /-

By our choice of p € (C?)", S, is a subgroup of the product &y x &, x I. Let
V:T — S, be the morphism of groups making the following diagram of groups mor-
phisms commute

Ggr

/T\Gxe
\T

where * is the trivial group. Note that this diagram implies that V(I') is a subgroup of
(&,,¢ x T). Then we have a group isomorphism

Sy = Gg x T
(xll X2, ,Y) = (xll ’)/)
with inverse given by (o, v) — oV (7).
We can now state the main theorem of this article.
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gr
g,

n _ G, xT’ 8r
Pt = (a5 (98], .

The proof is postponed to the end of the section since we first require several interme-
diate results. To improve readability, set

Theorem 3.4. The isomorphism ¥, endows %

each I € HE'd,

with a Sp-module structure, such that for

o x0:=(Iy,0) € Xy,

o x1:=(],q) € Xy

o xP:=(lgp) € Xy

o 200 = ((14,0), (J,9)) € Xy X Xy

We fix affine open subsets U C H, and ut c Hgr, containing I; and I, respectively.
Since S, is a finite group and I, is fixed by S, we may assume that U? is S,-stable. Set
A4 = Oy (U?) and A% := O, (U%). The morphisms p,, and py, are finite and thus
affine. Therefore, we also fix B := Oy, (0, 1 (U?)) and B% := Ox,. (logr1 (U)).

If R is a commutative ring and M an R-module then we write Anng(M) for its
annihilator {r € R|Vm € M,r.m = 0} and Suppg(M) = {p € Spec(R)|M, # 0} for
the support of M.

Lemma 3.5. Let G be a finite group acting on an affine variety V over C. Let M be a finite
dimensional C[V] x G-module such that Suppe (M) is a G-orbit. Let q € Suppc(y(M)

and denote by Gy the stabilizer of q in G. Then there is an isomorphism of (C[V] x G)-modules

1 qCIVIxG
M =~ IndC[V]:Gq (Mg) -

Proof. Since the module M is finite-dimensional, [Eis95, Theorem 2.13] says that the
diagonal map ¢: M — @peSupqu]( M) Mp is an isomorphism of C[V]-modules. For

each ¢ € G, multiplication m +— g.m defines an isomorphism of C-vector spaces
My = Mg, Therefore, we may rewrite 43 as

¢: M == @ Mg -
3€G/Gy

Again using [Eis95, Theorem 2.13], we idenitify M, with the subspace of M consisting
of sections killed by some power of the maximal ideal m, defining g. Then there is a
canonical multiplication map

p: (C[V] % G) ®cyjug, Mg = M

of (C[V] x G)-modules given by f,¢ ® m +— fo.m. Since the composite

(CIV]* G) @cpving, Mg = Bgecrc, Mgq
feg@m — feg.m
is an isomorphism, 1 must also be an isomorphism. [

poy:



Lemma 3.6. Let R and S be local noetherian C-algebras. If f: R — S is an unramified
morphism of local rings and M is an S-module that is R-semisimple then M is S-semisimple.

Proof. Let x: R — C be the algebra morphism defined by the maximal ideal mp of R.
The module M being R-semisimple means that M = {m € M|Vr € R,r.m = x(r)m}.
The action of S on M factors though S/mgS. Since the morphism f is unramified, the
quotient S/mRgS equals the residue field S/mgS of S; see e.g. [Stacks, Tag 02GF]. The
ring S/mgS is thus a semisimple ring, which implies that M is S-semisimple. O

Write (Cz)r‘ﬂO = {(xl, o Xp ) € (Cz)rdﬂVi #j=x # x]-} for the complement to the

big diagonal. Restricting (1)) to (C2)rd£ gives a commutative diagram:

o _ (° ~ °
Xepi= fd (@) —— ()"

rd/
Pfdél gt
I} L -1 2 Tdfo ~ 2 Vdéo
0 =0 ((c ) ) = (@) /Sy
d

The Hilbert-Chow morphism o, 4 is a crepant resolution of singularities, which is an
isomorphism over the smooth locus of (Cz)r‘ié/ S, ¢ Therefore, the morphism 0y s
an isomorphism. This implies that f?, is also an isomorphism. Consider now the
morphism
i (€)' = (€)',

sending x to the orbit (0,x) of (0,x) € (C?)". The morphism % is finite since it is
the composition of the finite morphism (Cz)rdg — (C?)" with the (finite) quotient mor-
phism (C2)" — (C?)"/6&,. In particular, Im(%) is a closed subscheme of (C2)"/&,.

One can then consider h: (Cz)rdg — Im(h).

Lemma 3.7. The morphism h is étale when restricted to (Cz)rde .

Proof. The fact that the morphism 7 is finite implies that & is finite. Therefore, it is

enough to prove that & is smooth over (Cz)rdg .

Set Z;7 := {(k1,kp) € (Z=0)*|0 < k1 + ko < n}. For (k1,k) € Z;, let

n
Froa (X1 eer X, Y1, 00, Vo) = Y XFYR2 € C[(C?)"],
i=1

n
Pog = Y, ZOT2 € C[Zgi1,r Zu, Tgpi, oo Tal.
i=gr+1
Thanks to [Weyl, Chapter II, section 3], the set { f¢, t,|(k1,k2) € Z; '} is a set of gener-
ators of C[(C?)"]S". Moreover, the set {Py, x,|(k1,k2) € Z;} is a set of generators of

C [(Cz)rdé] 1t By definition,

. )" - ()™
fk1/k2 = Pklsz


https://stacks.math.columbia.edu/tag/02GF

This implies that C[Im(h)] = C[Zg 11, ..., Zu, Tgp 41, s T,]¥7 and in particular that

ng

Im(f) ~ (C2)* /&, C (C?)"/6.
This allows us to identify & with the morphism h: (Cz)rdg — (Cz)rdﬁ/ &, . It is then
clear that the restriction of & to (Cz)rdg is smooth. Indeed, & is finite and the &, -
action on (Cz)rdg is free, which implies that (Cz)rdg /&, ¢ is smooth.

O
The stalk of " at I € H, is denoted ?". The isospectral Hilbert scheme &), is an
algebraic variety over H,, x (C2)". This implies that the fiber Pl =Pl OOy, Kty (Iy)
of the Procesi bundle is a C[(C2?)"]-module. It is moreover an &, x [-module. This

endows ?}b"}d with a structure of (C[(Cz)n] X (&, x T'))-module. Recall that p is the

point (0, 4) of (C?)".
Lemma 3.8. There exists a surjective morphism of rings ®: Oy, v — (93)"}d) .
p

Proof. Let us construct ? locally around I;. Let m;, € Spec(A“) be the maximal ideal of
A“ corresponding to I; and m,» € Spec(B?) be the maximal ideal of BY corresponding
to x”. By definition, the stalk 2" equals B ® 41 AY, L Moreover, the fiber of the as-

sociated vector bundle @ﬁd

isomorphic to B?/m;,B?. The localization of (?}’Gd) at the maximal ideal associated

is isomorphic to " & 4a I (Ag,,ld /mi, Afnld>, which is then
d

with p in C[(C?)"] is isomorphic to B*/m ,B? @ BY, ~ B%, /m;,B%,. Finally, one has
Ox,x»r =~ B%,, which makes the construction of the desired morphism canonical. In-
deed, it is just the quotient map B%, — B%, /m g B,.

O

Let us denote by V the following open set of (C2)"

{(51, S, Tty o, Tty,) € (C)' V(i j,7) € [1,8r] x [L,7a] X T,5; # 7.t}

Applying the key factorization result [HO1, Lemma 3.3.1], one has

(o X fr) (V) = (V)
B “Lwr,u)) = (AT, (), )

which is an isomorphism of schemes over (C?)". Let a: f; 1(V) =5 (fgr X fr,0) "H(V)
be the inverse morphism to B. By construction, p € V. The isomorphism « induces an
isomorphism of local rings

# ~
[ S - .
xP OXgr Xeré,x(qu) OXn,xp

Denote g1 X — Xy x &, ¢ the morphism that, set theoretically, maps (I,u) € &g,
o ((Lu),(],q)) € Xg x X, ¢. The morphism ¢ is a closed immersion. On the level of

stalks, one has lioi O X x X, x00) (@) Xy 20 and we write K for the kernel. The fol-

lowing proposition is key to the main result since it allows us to identify the summand
(@Gd) of " with the fiber 25" of the Procesi bundle on Her-
p

1a 1a,



Proposition 3.9. There exists a surjective morphism B: O X (Q?Gd) such that the
’ p

following diagram commutes

K

I

~ P n
OX Xerf/x(O'q) aﬁp O'Xn/xp (@“d)p
x

ol /

@)
Xgp X0

Proof. Tt is enough to show that ‘P(ocip(K)) = 0. Since the point g is a collection of

r4-free and distinct I'-orbits, it belongs to (Cz)rdgo. One then has the following isomor-
phism of local rings

. b ~
(lngF X frdé)x(o’q) ) O'Xgp X(CZ)rdﬁo,(x()’q) = OXgF XerZ/X(O,q)

Note that (idx, X fy,¢) is a morphism over (C2)". To keep the notation concise, we

denote the preceding isomorphism by fﬁ(o,q)' This new piece of information gives

~

K y K
~ ~ q) n
OXgFX(Cz)rdéo,(xolq) fﬁ(oq)) OX XXd/L x(0.9) TJJ]) OXn,xp — > (g)“d)p (4)
l A/iO
OXgr'xO

Let X; and Y; for i € [1, 1] be the coordinates functions on (C2)". Then

K = <Xgr+1 - Xgr+1(q)/ Ygr+1 - Ygr-l-l(q)/ cees Xn - X” (Q),Yn - Yn (q)>

Let us denote X; — X;(g) by X; and Y; — Y;(q) by Y; so that the kernel K is equal to
(K1), Fly (Tarin)s o £ (R), £ (Vo))

Proving that ¢ (aip (K)) = 0 amounts to showing that for all i € [gr + 1, 7]

( (frdg( ))) = Xi(q)
P (a, (fF,(Y0))) = Yilg)

Let us focus on diagram (4). Zooming in on the left part gives
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rdﬂo

@) «—— C[(C?)

AN

ér’O
Kgr (€24 (20,9) lg

|
Ot +———— C[(C)"],

Tpﬁp b ”;ﬁ;\
* i
oy
O, 1, ———— C[(C)"]ym.

The upper square commutes because the isomorphism f,r is an isomorphism over
(C?)". Now zooming in on the right hand side of @) gives

pn

Oy, —— Ox,or — ()
K Id

The fact that the preceding diagram commutes is clear once one comes back to the
description in terms of rings of functions on affine open subsets:

p

Hn

ﬁ
/ Id xP

mI B
d \ /
/mld

The ring Oy, 1, then acts on (@ﬁd) via kg, (1) ~ / my, Ay, . In particular (2 "}d)
P p

is a semisimple C[(Cz)n]g"-module since the action of the ring C[(Cz) ]p is defined

using O'?d . Thanks to Lemma 3.7, one knows that the restriction of & to ((Cz)r"fO is étale,

which in particular implies that this morphism is unramified. Now Lemma 3.6| with

R =C[(C?)"]pand S = C[(Cz)rdgo]q implies that (2!

i )p is a C[(Cz)rdfo]q—semisimple

module. Finally, since (Q’ﬁ

) is a finite dimensional C[(C?)"]-module supported at p,
P

0, ) given by the action of (X; — X;(p)) and of (Y; — Y;(p))

are nilpotent for alli € [1, n]], see e.g. [BComAl II, §4, no. 4, Corollary 1]. In particular,

it follows that the endomorphisms of (Q?Gd) given by the action of < f,g(Xl) — X;( p))
P

the endomorphisms of (%

and ( f,g(Yl) - Yi(p)> are nilpotent for all i € [1,n]. Combining semisimplicity with
nilpotency gives the result. The morphism B is by construction surjective. O

Recall that ¥: S, = &g x I' is an isomorphism of groups.

Lemma 3.10. If S, acts on O Y through ¥, then the morphism 8: O Xy 0 (9"’}’1) is
4 4 p
Sp-equivariant.

Proof. Foreach (¢,7) € &g x I and for each point ((I,u), (I',u")) € Xy x X, 4, define
(0,7)-((Lu), (I'u")) == ((v.Loyu), (v.I', V(7)u'))

11



This endows the variety Xy x &, o with an (&g, x I')-action. The morphism L. is natu-
rally (&g x I')-equivariant since | € ’Hrrd ,and g is V(T')-invariant. By construction, the
open set V of (C2)" is S,-stable and hence S, acts on f;7 (V). Recall from (@) that 3 is
the morphism mapping ((I,u), (I',u")) € (fgr X fr,0) 1 (V) to (INT, (u,u')) € £, 1(V).
For (0,7) € &g x T, we check that

= (v.Iny.I', (eyu, V(y)u'))
= (y.(INT), (eyu, V(7))
= oV (7)6 ((Lu), (I'u"))

since
V(7)-(w,u") = (yu, V(7)u) for (u,u') € (C*)8 x (€)'« = (C*)".

Therefore, we deduce that a(g.x) = F(g).a(x) forx € f,1(V) and g € S,. This implies

that oci,, is Sy-equivariant. Finally, the fact that the affine open set U has been taken to
be Sp-stable and the fact that I; is (&, x I')-fixed, implies that ? is S,-equivariant. We
conclude that B: Oy, 0 — (?}’"}d)p is Sy-equivariant. O

Denote by m; 4 € Spec(A%) the maximal ideal corresponding to Ly,

Lemma 3.11. If (E’P)";d)pﬁgr is a 1-dimensional vector space, then the ideal My, O Xy 20 is

contained in the annihilator Anno ((Q’Gd)p).
8r*

Proof. Recall that A% := O, (U). To show that m; " O Xy 10 C Annp, ((@ﬁd)p),
8

it is enough to show that the ideal Ann 44, ((Q}’Gd)p) is maximal since the A%-module

(@ﬁd)p is supported at I;,. Denote by e € (9"%) p the identity element of this ring.

Since e is invariant under the action of G, our hypothesis forces (@l’} )pggr = Ce.
d

Moreover, (@Gd)pggr is an A%-submodule of (@ﬁd

on A%. One can check that Ann 4, ((Q’Gd)p) = Ann ,4,(C.e). Finally, this implies that

)p since the group &g, acts trivially

Ann 4, ((@"}d) p> is a maximal ideal since the annihilator of a simple module is always
maximal. O
Proof of Theorem The algebraic variety HLA being an irreducible component of the
scheme H1, on which &, x T acts trivially, it is enough to prove this equality for I = ;.
The support of @Gd asan Oy, -moduleis {(I;,x) € X, |7, (x) = 0u(17)} = p;; 1(11). Us-
ing [BComAL 11, §4, no. 4, Proposition 19], one has Supp 2y (9’|’}d> = fu (071(Ly)).
In particular, the support of @"}d asaC [(Cz)n]-module is an &,-orbit which is I'-stable,
thus it is an (&, x I')-orbit. Thanks to Lemma 3.5, one has

n . G, xT n
P = a5 (0),)]

12



It remains to show that {(@"}d) } [?}Z’%r } . We first note that repeating the above
Pls S

argument with &, rather than &,, x I shows that

[g’m {Indg;r <(@ﬁd)p) } ' ©)
(G

since the stablizer of p in &, is &g.. This implies that Indg; (@ﬁ
T

to the regular representation of &,. Combining Proposition 3.9/and Lemma one
has an §-equivariant surjective morphism 8: Oy 0 — (E’Y’Gd) such that the diagram
’ p

) ) is isomorphic

~ ¢ .
OX XXd(,( q) o OXn,x” ? (@“d)p
xP
il
onl /
OXgr'xo

is commutative. Since Ind$ g ((?}"} ) ) is isomorphic to the regular representation of

S
S, the space <(9‘2’|’}d)p> " must be one-dimensionnal. Therefore, Lemma (3.11 says

that m;, O Xy 10 C Ann@Xgr’XO <(9’|’}d)p) . Hence we can factor the morphism 8 as

— 8 5
OX xO

| /

(@) @)
Xgr'xo/ Lay ™~ Xgp x°

Ud

As shown in Lemma 0gr(Iz,) = 0 and hence the fiber (@ﬁr ) is supported at

0 € (C2)8r when considered as a C[(C?)®']-module. Since x = (I4,,0), this implies
that the localization map

@ﬁr (@ﬁr ) = OX xo/ OX X0
is an isomorphism. This identification is (&, x I')-equivariant. Making S, acts via

the isomorphism ¥, we may think of it as a S,-equivariant isomorphism. In particular,
the quotient Oy, 10/my, Oy, 0 has dimension gr!. Equation (5) implies that (@ﬁd)p

also has dimension gr!. We deduce that the surjection 8 is actually an isomorphism.

Finally, we conclude that 93)“? is isomorphic to (97)"}d)p as Sy-modules, provided S acts

on the former via ¥. O

Remark 3.12. The diagonal copy of Gn, in GL,(C) commutes with the action of T.
Therefore %" can be considered as a (&, x I' X Gy, )-equivariant vector bundle on H,
and on Hg'd. However, our methods do not allow for a reduction result that induces
the Gy -action. Indeed, the action of G, on Hg’d is non-trivial so one cannot expect a
reduction result to hold.
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4 Combinatorial consequences in type A

In this section, we explore the meaning of Theorem [3.4 when T is of type A. Fix an

integer / > 1. Recall that {, denotes the pr1m1t1ve /™ root of unity e 7', and that
wy € SLy(C) is the diagonal matrix diag(Z,, ¢, ). The cyclic subgroup of order ¢ in
SL,(C) is py = (wy). Assume, in this section, that T’ = .

Let us first fix notation concerning partitions. A partition A of n, denoted by A - n,
isatuple (A1 > Ap > ... > A, > 0) such that |A| := }}_; A; = n. Denote by P, the set of
all partitions of n and by P the set of all partitions of integers. For A = (Aq,..,A,) € P,
denote by Y (A) its associated Young diagram {(i, j) € Zili < Ajj < r}. The conju-
gate partition of a partition A of n, denoted by A*, is the partition associated with the

reflection of )(A) along the diagonal (which is again a Young diagram of a partition of
n). For example, consider A = (2,2,1). Its associated Young diagram is

and in that case A* = (3,2). A partition A will be called symmetric if it is equal to its
conjugate. The hook H; (1) in position (i, j) € Y(A) of a partition A is the set

{(a,b) e Y(A)Ja=iand b >jora>iandb = j}.

Define the length /; j (1) of a hook Hy; ;(A) to be its cardinal. In addition, let n(A)
denote the partition statistic Zl-):“l (i-1)A; of A.
Let /(A) be the ¢-core of the partition A € P, which is the partition obtained from A

by removing all hooks of length ¢. Denote by g;(A) := |y,(A)| and by r4(A) := %
the number of hooks of length ¢ that one needs to remove from A to obtain ,(A). If A
is clear from context, we shorten y(A), g¢(A) and ry(A) to 7y, g¢ and ry. Given gy and
ry such that n = g, + ryf, we associate the permutation

w%”n: (gr+1,...,80+0)...(n—L+1,...,n) € &y, (6)

which is a product of ry cycles of length ¢. Let Cy, be the cyclic subgroup of &,
generated by w - Consider also the subgroup ng = Gg, x Cy,, of &,,. Denote by 0,
the character of C ¢ » such that 6, (w ’n) (y. Letus also use the following notation. For
V a given ngi-module let

(-1
[V]Wf, =Y [Vﬁmf]wgé,
n ]:O
where V.g is an Gg,-module for each j € [0,/ - 1] and X denotes the external tensor
i the fiber of the nth-Procesi
bundle at the monomial ideal I generated by {x'y/|(i,j) € N2\ Y(A)}, to 1.

product Moreover, if A is a partition of n, let us shorten %!
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4.1 Corollary of the reduction theorem

To state the main result of this subsection, we need two lemmas. Denote by 7, the
character of y such that 7(w;) = 4.

Lemma 4.1. Let Cy and C; be two groups isomorphic to y,. Tnke c; € Cy and cp € C; gen-
erators of C1 and Cy. If one denotes respectively by 11, T» and T3 the characters of respectively
Cy, Coand ((c1,¢2)) < C1 x Cy that respectively map cq, ¢ and (c1,c3) to gy, then

N E T
ind( 3 () = L0 '8, ¥jeol-1].
i=0

Proof. Take (p,q) € [0, - 1]%. On the one hand, Frobenius reciprocity gives

<Tlp&72”7,lndclxcz (

ey (7)) = Res(i 3 (o B]) )

((c1,62)) (1
j

= (t P+‘7, T3>
- ‘%ﬂz
On the other hand
S P TS S S N S g
E)(q X1, 1 K5)= E)(S]_Z&q
=0,

]

Lemma 4.2. Let A be the cyclic subgroup of &,,¢ X p, generated by the element (wz owp). If
0, denotes the character of A such that 8, ((wg ,wy)) =y then

) £-1 . .
Ind,""" (8]) = L ind " (6] ) =7, ¥je[o -1,
i
Proof. One has Indfr‘éXW <éé> =1In dcwX Mm <I dCMXW (97>>. Using Lemma

In dcgf@:; ‘ (1 dsmr (91)) ZI dC;f”X " (eg‘i&rg)
i=0

Gt S0 j—i ]
=Y Indc (0)) @,
i=0

We can now state and prove the main result of this subsection.
Corollary 4.3. For each partition A of n, one has the following decomposition of P}
-1 1-1

Plew = L1 (a5, (@505 me ) me|
i=0 j=0 Su Xy
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Proof. With the notation established at the beginning of this section, the group S, in-
troduced in section [3]is equal to &g, x A. Thanks to Theorem 3.4} it is enough to show
that

(-1 ¢-1
Sy Xy " : Pz )
[Indg" ¥ ()| {Ind?vg/ (@5 =6, = Té]

Gn XVZ i=0j=0 Suxpy

One has

N

-1

Suxpiy g Suxp g\l g Al
[Indsp “(25) }anw = [Inde A ( Py, )i gefﬂenxw'
Moreover

Snxp g Al GuXuy 6 XGr (XM gL~ Al
ZI d6 xg ( gj’Y; 30 ) ZOI nglxérﬂxW (I dG TRt ' ((@’Yj)] 95))
] /

. . Suxpy g\l S, 1}y Al
_ 20 Indgr &, s ((@W%)j K Ind, " ((9())
fn 4

/-1 0-1
. Sy Xy g\ 0 Syt ([ pj—i i
_ Z(l) Z&)Indegzxéwxw ((@75)]‘ X Ind (94 ) @r;).
i=0j=

The last equality follows from Lemma By gathering terms, one has

(-1 ¢-1 ¢-1¢-1

S, . . . .
Y Y Indg e L, <(@§;)f Xindc" (6] ) r,f) -y ZIndG ( SIRe ) R

i=0;=0 i=0j=0

Finally, since every representation of &, is isomorphic to its dual, for each (i, j) € [0, £ - 1]?,
one has

Sy g\l j_i _ Sy g\l i_j
s, (070 = o (o),

O

Remark 4.4. If one takes A = 7, then r, = 0 and Wg/ = 6;. In that case, Corollary
is trivially true and does not provide any add1t1ona1 information. Note also that
Corollaryn1mphes [BLMO06, Theorem 4.6] when the complex reflection group is taken
tobe &, and I' is taken to be Cy ,,.

4.2 Independant proofs in two edge cases

The proof of Theorem 3.4relies heavily on the geometry of the punctual Hilbert scheme
and the deep result of Haiman on the isospectral Hilbert scheme. The goal of what
follows is to prove Corollary (4.3 directly in two special cases without using Theorem
To prove Corollary 4.3|in these two edge cases, we use the representation theory
of the symmetric group and symmetric functions. We will in particular use [BLMO6,
Theorem 4.6]. The irreducible representations of &, are parametrized by partitions of
n. Denote respectively by V) and x, the representation space and the character of the
irreducible representation of &, associated with A - n.
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Definition 4.5. Let R be any finitely generated Z-algebra. For a given integer k, define
the ring of symmetric polynomials over R as Ak := Rzy, ..., z|®*. Setting deg(z;) = 1
foralli € [1,k], AIZ‘{ = Dai>0 Al;z, ; 1s a graded ring. One has moreover a ring morphism

7k All‘fl — A by mapping zi,1 to 0. For each integer d, the morphism 7t* restricts to

a morphism 7t§ : All?;jl — A’le ; of R-modules. One can now define the graded R-algebra

of symmetric functions.
AR = @ @ Alfz, J
d=0

In the following, we will shorten Az to A. Let us recall the notation concerning sym-
metric functions. For u € P a given partition, denote by p, and s, respectively the
power symmetric function and the Schur function associated with p. We recall now
the plethystic substitution. One knows that A ®7 Q is generated as a free Q-algebra
by the family {px|k € Z>o}.

Definition 4.6. Take K a finitely generated field extension of Q. Take {s1,...,s} a set
of generators of Ki.e. K = Q(s1,...,5m). For A € Ax := A®z K, and k € Z> define
Pk [A} to be the symmetric function in the indeterminates s’{, . s],‘n, z]f, zé, ... .One can

now extend the plethystic substitution to the following endomorphism

Ax — Ag

fo= flAl

Remark 4.7. Mainly, we will do plethystic substitutions using Z := p; = } ;1 zx € A.
Note that for all k > 1, px[Z] = px and so for all f € Ak, f[Z] = f.

[A]:

For ([V], [W]) € R(Sk,) x R(Sy,) define the induced product

V].[W] := [Indgkﬁkz vew).

le X sz

This product endows R(S) := Pj>o R(Sk) and R (S) := Py R8'(Sk) with the
structure of graded rings. Let us denote by Fr: R(S) = A the Frobenius characteris-
tic map which is an isomorphism of graded rings. If A := @, 5)cz2 Ars is a bigraded

Sy-module, denote by Fr(A) the following element Y, ¢ cz2 Fr(Ays)q"t* of Alg*?, 1.

Remark 4.8. Graded &,-modules will be considered bigraded with trivial t-graduation.

Definition 4.9. Take (F,G) € A? and write [V] = Fr (F), [W] = Fr }(G). The Kro-
necker product of F and G is

F®G:=Fr([V]® [W])

If A is a partition of 1, the fiber %' is a bigraded &,-module. Haiman introduced the
transformed Macdonald symmetric functions H, (z; g, t) [H03| Definition 3.5.2]. The n!
theorem ([HO3, Theorem 4.1.5]) can be reformulated the following way.

Proposition 4.10. For each partition A of n, one has Fr([2}]) = H)(z; q,t).

Definition 4.11. Let V be a finite-dimensional complex vector space and G be a finite
subgroup of GL(V') generated by (pseudo-)reflections in V. The group G then acts on
the symmetric algebra S(V) of V, which is naturally graded S(V) = @;>( S' (V). Let M
be the graded maximal ideal of S(V)©. Define S(V)(C) := (V) /MS(V) the coinvari-
ant algebra of G, which is then also graded. Note that as a G-module it is isomorphic
to the regular representation of G by the Chevalley-Shephard-Todd Theorem.
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If V= @,cz V; is a graded vector space, then let dim® (V) := ¥, dim(V;)q' € Z[g*!]
be the graded dimension of V. In this section, let us denote by V" = C" the permuta-
tion representation of &,,.

Definition 4.12. For A - n, define
Fy(q) := dim ((S(V")(®) @ v;)©r)
the fake degree associated with the irreducible representation V) of &,,.

[T, (1*’1i)

- A
Lemma 4.13. If A - n, then the fake degree Fy(q) is equal to g"( )Hcey(/\) =z

Proof. To prove this equality one can use [St, Proposition 4.11] and [FS, Corollary 7.21.5].
O

Let us first study [?}] as a (&, x T1)-module, where T denotes the maximal diagonal
torus of SL(C). Using [HO3, Proposition 3.5.10], one has

3 [leey(y) (1—g"W Z
Ha(ziq,97") = qg()‘) >S/\ L_q}. (%)

Lemma 4.14. The following equality holds in Ag,):

z Fr (S(v")°(®) g v,)
o [1—q} - L (1—4q)

Proof. Let us start rewriting the plethysm

_ iFr (15'(v™)]) 4" @ Fr([Va))

o0 | 12| @Fr(va)

where the first and the last equalities come from [HO3, Proposition 3.3.1]. Proposition

for A = (n) gives
Hn(Z} q, t) = I:In(Z; q,q_l) = Fr ( [S(V")Co(en)]) )

Moreover using the equation (%), one has

Hy(zq,q7") = l]i (1 - qi)sn {&] .
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Summing it up, one gets

7 Fr ( |S(V™)co(Sn)
5 [i5) - q?l <1—qi>D P rrin)
we (s v))

e (1— qi)

Proposition 4.15. Take A € P,,. The following equality holds in R (S, )8":

T 1n\co 8"
B0) (2115, = [s(v)e® v,

n

If, by abuse of notation, one denotes by Ty the irreducible character x ) X T, (where x ) is the
trivial character of &,,), then

F/\(TZ) [gj)ﬂ@nxy[ = [S(V”)CO(GW) ® V/\]G XUy

in the Z-algebra R(S,) X R (uy).
Proof. Combining Lemma [4.14with (x) gives

n(A)
q S N [ Z }
H,(z;q, =8) | ——
Hcey()\) (1 _th(/\)) )\( q,49 ) A 1 —q
Fr ([S(vm)e(®) @ v )
- [T, (1—4)

Combining Lemma and Proposition gives
nigry _ nyco(Sy) 8t
Fu(q) Fr (241 = Fr ([s(v)©) @1, |7 ).

Taking the inverse Frobenius characteristic map gives the first equality.
Since graded modules are the same as Tj-modules, one can take the pullback by
T¢: ue — Ty of the first equality to get the second equality. O

In the next two subsections, we apply Proposition to understand the structure of
Pt asa (S, x uy)-module, and prove directly Corollary 4.3/in two particular cases.
4.21 When v, is very small

Denote by P}, , the set of all partitions of n with {-core either empty or equal to (1) I- 1.
We show that Corollary .3/ holds for all A € Py .

Lemma 4.16. For each divisor j of ¢, the j-core of A is equal to the j-core of the {-core of A.

Proof. One can use the link between partitions and abacuses [Ol, Proposition 3.2]. Con-
sider the j-abacus of A. Thanks to [Ol, Proposition 1.8], one knows that to obtain the
j-core of A, one needs to move, in each runner, all the beads as high as possible. Notice
now that with the j-abacus one can also obtain the ¢-core. Let ¢ = kj. Again using the
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result of [Ol, Proposition 1.8], let us describe a procedure to obtain the ¢-core out of the
j-abacus of A. If i € [0, - 1], then the level of a position in the j-abacus aj + i is defined
to be the integer a and the length of a movement of a bead from a position a;j +i to a
position ayj + i is defined to be a; — a;. Now the ¢-core of A is obtained by moving all
beads, in each runner, as high as possible only with movements of length k. One then
has that the j-core of A is equal to the j-core of the ¢-core of A. O

Lemma 4.17. Foreach A € Py, and each k € [0, ¢ - 1], F)\(gllf) # 0.

Proof. Take j a divisor of £ and denote by ®; the jth cyclotomic polynomial. It is then
enough to show that ve(Fy) = 0 where v, : Q(9) — Z is the ®j-valuation. From
Lemma 4.13} one has

ve,(Fr) = #{i € [1,n]|i = 0modj} —#{c € Y(A)||hc(A)] = 0 mod;}

Now, [Ol, Proposition 3.6] gives the result for j = . If j is a divisor of /, one can again
apply [Ol, Proposition 3.6], by using Lemma to the j-core of A which is just the
j-core of . O

Recall that 6, denotes the character of Cy ,, such that 0, (w? 7 ‘) =100
P Sn _ —1
roposition 4.18. If A € P}, then [ReSCM (VA)] = [F;\ (66 )]

Proof. Consider

_ (€0, 001,200, 2, 07 ) € VT ify, =0
Utn -1 -1 -1 noo :
0,25, ..., 20, 1,200, 2,107 1) €V iy = (1)

The stabilizer of v, , in &, is the trivial group. Moreover v, , is an eigenvector of w%’fn
with eigenvalue {y. One can now apply [Spr, Proposition 4.5] to obtain the result. [J

We can now prove Corollary #.3/forall A € Py .

Proposition 4.19. For each partition A € Py, ,,

(-1 o ‘ ‘

n 1 1

Meuxus ; ndZ (6}) @] o

Proof. Let us start with [MN, Theorem 8] which can be reformulated in the following
way

[S(Vn)co(Gn)}GnXW _ {@(I”Jenxw - g):z [Indg’; (92) & rg}

1= anyf.

Using the second equality of Proposition for A = (n) and Proposition one

obtains
/-1

F (Tg) g)/\]G X]ig =0 [Indgzn (02FA(9€_1)> & Té] anyg.

~.
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Let us decompose F) (6) = Zf:lo aj()é with a; € Z>¢ and rearrange the two sums

~
—_
N
>_x

F(t) (2}, xp, = [Ind6" (“]91 ]> fo]G y
i=0j=0 nXHe
(-1 0-1
_ Indg" (6}) ®a, "]
i=0j=0 e
1 .
=F\ (1) Z [Inde" ( >X|Tﬂ6 o
The proposition now follows from Lemma [4.17] O

4.2.2 When 1, is small and / is prime

Denote by P, the set of all partitions y of 1 such that the size g;(1) of the ¢-core of u
is less than /. Let us show that Corollary n 4.3|also holds for all partitions of P;¢ where
¢ a prime number.

Proposition 4.20. For each partition A of n, and each integer ¢ > 1, one has the following
equality of (&, X py)-modules

-1 ¢0-1

EVOSSRIED IS [Indg”g[ (( Vgg)m(%))f < 921') < rg}.

i=0j=0

Proof. This result is a special case of [BLMO06, Theorem 4.6]. Let v, = (v¢1, ..., o) F &
Take

v = (1 1,202ty b, (FH 1) b1, (470, (8 —|—7’g)> cvn

where 1 is repeated 1y, ; times, 2 is repeated -y, times and so on until t. The stabilizer
of v in &, is exactly &, and wffnv = (0. O

For A |- n, let us denote afl,j()\) <Re56’26() (W), VX 9]> where u - gy(A),j € [0,¢-1].

én

Proposition 4.21. For all partitions A of n

22%] PV )T, ej

pge j=0
Proof. Let us start this proof by showing that

0= 8 i (se)

~.

Using Proposition one has

/-1 ¢-1 V4 . .
= LY (Vi Vi 91, ((swge o)) i 9;—1) Vi
i=0 j=0 I
16141 , o co(@, )\ ETAN
“L L L L oWV indSy, (Ve (50v000) ) el )yl
i=0j=0k=0 utg, Wi ]
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One can now use Frobenius reciprocity theorem

l
M) =L T T alh) (Vg X6 (Vi (5050

Vaet s

+k N
= Z Y a(A) ! Vg Vu® (S(Vgé)co(eg[» )T
i=0j=0k=0 ut-g, ]

{-1 0 .
ST T T a0 Vig Voo (504)0) el

YA .
® (S(Vgé)co(gge)%)'cé’r[k

[
Q
B
=
¥ ag
<

-1
k
Z”k V() T,

]

For the remainder of this subsection, let us suppose that the fixed integer ¢ is prime.
Lemma 4.22. Foreach A € Pt and each k € [0, - 1]],13;\(@’2) # 0.

Proof. Since { is prime it is enough to show that v, (F)) = 0. Using the fact that g, < ¢,
one can use the same argument as in Lemma O

Lemma 4.23. Take A a partition of n. For all u € Pg, \ {v¢},
a,,j(A) = ayo(A), Vje[oe-1].
Proof. The Murnaghan-Nakayama recursive formula gives the following result

Ja€z,vie[l,0-1],Vx € &g, xa ( (w%‘n) ) = a),(x)

We deduce that: 1
ab (MT =0, Wpe Py \ {1}
=0
Indeed,
-1 (-1 (-1 i iy
LW = G B T (x(wh)) we, ™ ()
j:O W j=0i=0x€6g,
1 (¢ j (.8 SRS 8 i+ (.8
¢ l
= W > L xa®)xu(x)8, (wen) - 2. X <x<w€n> >Xﬂ(x)eé (w€n>
Ln j=0xe6g, j=0i=1x€6y,
101 , e .
= (Resg (o)) X 04 (wf) + W Y (0 (008, ()
j=0 tnl j=0i=1x€&g,
161 P R R S
= (Resg (7(,\),7(;0? 092 (w%) +a Wg " 3 195 ij ](w£n>
= j=0i=

The first term is equal to 0 since 6, ( ) ¢ and since p # 4, one has (x,, xu) = 0.

Thus Z ( wj(A) — ‘Zfl,o( )) ¢, = 0 which then gives the result since / is prime. [
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One is now able to prove Corollary [4.3]in this case.
Proposition 4.24. For each A € P, Corollaryholds.

Proof. For a given finite group G, let Reg(G) denote the regular representation of G.
We wish to show the following equality of (&, x py)-modules

(-1

/-1
731 = L ¥ [mnd5y, ()] me; )]
i=0j= N

Using Proposition the right-hand side of the second equality of Proposition [4.15]
can be rewritten as

0-1 ¢-1¢-1

Z Z Z Z aﬁl’k(/\) {Indsv%ﬁ ((Vy ® (S(Vgg)Co(Gg4)>

jFgy k=0 j=0i=0

L

) m;‘f“‘) &rg]. 7)

Let us fix € Py, \ {7¢} and consider the associated term in (7). Using Lemma
this term is equal to

]

o) X [1nas, (Voo (5070 ) mRe(Cr) ) maReg(re)|

J

Denote forall v - gy, F, (1) = Y, fuxT¥. Applying the second equality of Proposition

for y, gives us

(-1 ¢-1

Y4
o) T 1 fus [Ind, ()] ReB(Cr) H Res(u)|-
=0/= M

By construction of the Procesi bundle, Zf;lo [(@f‘”)f] = [Reg(S,,)] and by definition
of the fake degree 2]15;10 fux = dim(V,). Summing everything up leads to

(-1 ¢-1
4
o) T T fu [ndSs, (9F)]_, B Re (C1)) WReg() .
= ]: M

which is equal to
Ty0(A) dim(Vy) [Reg(& x jir)]

The last equality holds for the fiber of the Procesi bundle over I, for any partition p of
g¢. In particular, it holds for I,,. One gets that the term

V4 . .
Tuk(V) [Ind;“"v%f ((Vy ® (S(vg»w(%))j) = 6, f+'<) X Tg]

is equal to
£-1 ¢-1

afl,o()\) YN fuk {Indfv’;gé <(@§f)1€*k &Reg(cm)) &Reg(w)} ,
k=0 j=0 ke
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which can be rewritten as

a4 [Ind%ﬁ (@5);m (6, 7k (0,1) 6F) ) r;;}.

(-1 ¢-

H
?&
>_x

0

,T
|

0

~.

Finally, for u = v,
ShRhS ¢ S co(6g,) ¢ i—j+k ]
A,k (A) {Indw’gé ((Vw ® <S(Vgg) 8 )) X0, ) X Té:|
i=0j=0k=0 tn j
is equal to

Crenen o ' i O\ ;
;}Z&)Igﬂyé,k()\ [Ind 0 ((9”%)]- . (94 Ey, (ef >9£>> ®T£}
i=0j=0k=

In

By putting the pieces back together, and using Proposition one gets

0161
6n g ¢ i_j -1 1
nasy, (@5)78 (675 (0,1))) 27,
i=0j=0
is equal to
r Vv (1S 8\ 007 =
AT) 3 ) Indwf/ <(@w)]‘ 0, > X7,
i=0 j=0 Z
which completes the proof, after applying Lemma O

5 Combinatorial consequences in type D

In this last section, we consider the case where I is of type D. Let us fix an integer
¢ = 41 > 1 divisible by 4. Let s be an element of SL,(C) with integer coefficients
and diagonal coefficients equal to 0 and denote BD; the finite subgroup of SL,(C)
generated by wy; and s. The order of BDy is £. Recall that 1y is the character of yy; that

maps wy; to {p;. Fori € Z, consider y; : IndBZI‘ 7};. Note that x; is irreducible if and

only if 7 is not congruent to 0 or / modulo 2. If | is even, the character table of BD, is

order 1 1 2 [ [
classes <(1) (1)> (_01 _01) why(0<p<I)| s |swy

Xor 1 1 1 1] 1
Yo 1 1 1 T

X1+ 1 1 (-1)P 1] 1
Xi- 1 1 (—1)77 1 -1

k
0 <7$<"< ) 2 (-1)k2 2cos(-4*) 0| 0

If [ is odd, the character table of BD, is
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order 1 1 2 / [
classes <(1) (1)) <_01 _01) wh(0<p<I)| s |swy

Xo- 1 1 1 1] 1
Yoo 1 1 1 T 1
Xi+ 1 -1 (-1)? Ca | ~C4
Xi- 1 -1 (-1)7 04| C4

k
(© <X]f< . 2 (-1)k2 2cos(-I7) 0| 0

Thanks to [Pae, Theorem 5.25], the irreducible components of HE D¢ that contain a T-
tixed point are parametrized by symmetric 2/-cores of size less than or equal to n and
congruent to n modulo 2I. Moreover, the fixed points of #, under (T, BD,) are the
monomial ideals parametrized by symmetric partitions of n. When A is a symmetric
partition of n, the fiber of the Procesi bundle over I, is then an (&, x BDy)-module.
As such, it admits a decomposition

P emsp, = L |Dix(MEx]

s
XEIBDE GHXBD/

where Ipp, is the set of irreducible characters of BD,. The goal of this section is to

describe the &,,-modules Dﬁ/x(/\) for each x € Igp,. To do so, we will use Corollary
4.3]

Lemma 5.1. If A is a symmetric partition of n, then the number rp (M) := %ﬁlw is a

multiple of 2.

Proof. To prove this one can use [Ol, Lemma 2.2] and the link between abacuses and -
sets to see that the 2/-abacus of A* is equal to the horizontal reflection of the 2I-abacus
of A. When A is symmetric, the number rp, 5; of 2I-hooks that needs to be removed to
go from A to gp; is a multiple of 2. O

Lemma 5.2. The restrictions of the irreducible characters of BD, to py; are
. Resﬁ? (X0+) = 9 . ReS%?‘ (xi+) = 3
* Res, ' (x0) =9 * Res,,(x1-) = 1
e Vie[1,1-1], Rest?(xi) = 7, + 5

From there one can deduce the following information on the Dﬁ/x()\) modules.

Proposition 5.3. For each symmetric partition A of n, the following equalities hold in R(S,)
ao 21
(i) [Df . 1)+ Dl W] = [(@1)7]

(i) |Df,, (V) +Df, (W) = (@07

(i) | Dy, (M)] = [Dhy, ()]
(o) Vi € [1,1-1], | D (W] = [@0F] = [@1)3]
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Proof. Equality (i) and (ii) comes directly from Lemma 5.2} Concerning equality (iii),
note that BD, < BD,, and that w, acts nontrivially on Igp,. It swaps x;+ and x;- and
fixes all other irreducible characters of BD;. The &,-module %} being bigraded, it
follows that

We- [@;\l]anBng = [g))lfioanD% :
Now, applying the restriction from &,, X BDyy to &, X BDy, one has

Dl )] = [Pl )]
Moreover, by combining [H03, Proposition 3.5.11] with Lemma 5.2} it follows that

2Dl )] = [@0F + @] =2]@D?].
[

Lemma [5.1) implies that n — gy; is a multiple of ¢ = 4l. Recall from (6) that we can

associate to the integers 1, gy and ryy = (1 — gp;) /2l the permutation wgl”n € 6, of

order 2I. Moreover, one can choose sy; € &g, such that N, := (w%ln,szﬁ C Gygy is
abstractly isomorphic to BD,.

Example 5.4. When | = 2, A is a symmetric partition of 8, rp 4(A) = 2 then gp; = 0. In
that case wgl’n = (1234)(5678) € Gg and one can take sy; = (1836)(2745) € Gs.
Proposition 5.5. For each symmetric partition A of n and for eachi € [1,1-1],
D], =X [mdS L (@) 8x)]
nXi S, = S, X Ny T2/ § =)ls,
Moreover,

iDﬁ,xH()‘)]en - %jl_zs [Indggzlxm ((@52211)]2‘1 &leﬂon'

Proof. Fixi € [1,1-1]. Thanks to Proposition [5.3]and Corollary 4.3} one has

¢ [ e 821\ 2! g pi=i
[Dn/Xi(A)]Gn :]g) _Indwzgf,ﬁ ((97)721)]' b 6 >}
:212_1 ndS (a2 M (@) mey”)
=L nglXNg Wg% a1 7j 21 )
s gar\ 2/
= IndegleNg <(9b721)]‘ &Xi—j)}g :
j=0 " "
The same computation gives us the second formula for [Dﬁm N (A)} .’ Thanks to
Proposition it is equal to 3 [(9”}\1)121} o O

Remark 5.6. Note that Proposition [5.3] and Proposition [5.5| together allow one to ex-
820X

press all but two of the &,,-modules | D, X (A)} in terms of the &, -modules ( [De ()L)} ) L
’ x€lpp,

It is not clear how to express [Dﬁ,xo . (/\)} and [Dﬁ,XO_ (/\)} in this way since we do not

know how [(@}f) él} splits in two in Proposition i).
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