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This supplementary material provides a description of (i) the evaluation met-
rics (Section 1) and of (ii) the regularization operator for orthographic projection
images (Section 2), (iii) a presentation of the RoofSat dataset (Section 3), and
(iv) additional results and comparisons (Section 4).

1 Details on evaluation metrics

Accuracy metrics. Our grid-based accuracy metrics include the popular Average
Precision, Average Recall and Average F-score computed in a strict way, i.e.
without di�usion or thresholding. This explains why
scores given in Table 1 are relatively low on the two
datasets. As illustrated in the inset, we simply operate
an 8-connexity dilation on the pixels crossed by the de-
tected line segments (blue line) and the Ground Truth
line segments (red line) for discretization. The resulting
occupancy areas (True Positive in purple, False Positive in blue and False Nega-
tive in red) allows us to compute Precision, Recall and F-Score by the traditional
formulas.

Regularization metrics. The Degree of Freedom score (DoF) is de�ned as the
ratio of the degree of freedom kx of a con�guration of line segments x to twice
the number of line segments |x| in the con�guration, multiply by a factor 100 to
be expressed in percent:

DoF(x) = 100× kx
2|x|

(1)

Having a DoF score of 100 means that all line segments of the con�guration are
independent and not subject to regularity constraints. Note that a DoF score of
0 is not possible as, even in the case where all the line segments were mutually
co -linear, at least one of the line-segment must be described by two parameters.
In such a case, the minimal score would be 1/|x|.

The degree of freedom kx is computed via the counting of the number of line-
segments in the di�erent regularized groups. For orthographic projection images
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(i.e. with parallelism, orthogonality and co-linearity as regularities), the degree
of freedom is given by

kx = 2|x| −
K∥,⊥∑
i=1

(k
∥,⊥
i + 1)−

K∥∑
i=1

(k
∥
i + 1)−

K−−∑
i=1

(k−−
i + 1) (2)

whereK∥,⊥,K∥ andK−− correspond to the number of parallel groups which are
also mutually orthogonal, the number of parallel groups which are not orthogonal
to other groups, and the number of co-linear sub-groups inside all the parallel

groups respectively. k
∥,⊥
i is the number of line segments in the ith group of K∥,⊥,

k
∥
i the number of line segments in the ith group of K∥, and k−−

i the number of
line segments in the ith group of K−−.

For perspective projection images (i.e. with concurrence to vanishing points
and co-linearity as regularities), the degree of freedom is computed as

kx = 2|x| −
K⋆∑
i=1

(k⋆i + 1)−
K−−∑
i=1

(k−−
i + 1) (3)

where K⋆ and K−− corresponds to the number of concurrent groups (which
cannot be higher than the number of vanishing points) and to the number of
co-linear sub-groups inside all the concurrent groups. k⋆i (respectively k−−

i ) is
the number of line segments in the ith group of K⋆ (of K−− respectively).

In practice, the computation of kx is performed under two tolerance thresh-
olds for orthographic projection images, one in orientation set to 10−2 degree
and one in distance also set to 10−2 pixel to absorb precision issues of the exact
geometric intersection tests. For perspective projection images, we also introduce
a tolerance threshold representing the maximal orthogonal distance between the
supporting line and the vanishing point. We consider the supporting line passes
through the vanishing point if the orthogonal distance is less than 0.05 pixels.
This threshold is a bit higher than the distance threshold for orthographic pro-
jection to also absorb the imprecision of the positioning of the vanishing points.
The use of these tolerance thresholds explains why the DoF scores of methods
without regularization in Table 1 is not necessarily 100.

2 Regularity operator for orthographic projection images

For orthographic projection images, the global regularity operator enforces paral-
lelism, orthogonality and co-linearity between the line segments of the con�gura-
tion. We �rst group near parallel line segments by Mean-Shift on the supporting
line orientations using a kernel width �xed to 5 degrees. We then connect these
clusters into sub-graphs if they are near-orthogonal, i.e. if the orientation of the
cluster centroids di�ers by 90 ± 5 degrees. Each sub-graph is constrained by a
unique orientation. The latter is found by projecting inlier points of each cluster
by the translation and rotation that send its center of mass to the origin and
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Fig. 1: RoofSat dataset. A sample of 35 images and their associated Ground Truth
line segments are shown on di�erent urban landscapes. The two top rows correspond
to original satellite images; the �ve bottom ones incorporate geometric and radiometric
transformations.

�tting the best weighted least square line on these projected inliers. The optimal
supporting line is then projected back on each cluster centroid by the reverse
transformation. Finally, near-colinear line segments are grouped by performing a
Mean-Shift on the distance to the origin of the supporting lines in each parallel
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cluster with a kernel width �xed to ϵ/2, before re-positioning the supporting
lines to their centroid.

3 Details on the RoofSat dataset

The RoofSat dataset is composed of 550 images of 550× 550 pixels representing
urban scenes at nadir. They originate from 11 PleiadesNeo satellite images at
30cm resolution, from which we perform data augmentation with rotation, scal-
ing, translation, noise, blurring and contrast variation. Figure 1 shows a sample
of 35 images and their associated Ground Truth line segments on various types of
urban scenes, i.e. residential, dense downtown or industrial. Line-like structures
in these images correspond to both contours and roof skeletons of buildings.
Ground Truth capturing these line-like structures have been annotated by a re-
mote sensing expert and are provided as a list of �oating-precision line segments.
This dataset is availabla at https://project.inria.fr/roofsat/.

4 Additional results and comparisons

We present here additional results on line segment detection and on application
to object polygonalization.

Figures 2, 3 and 4 show some visual comparisons on images representing
either purely organic shapes or man-made objects mixing curved shapes and
line-like structures. In these two scenarios, our point-to-line �tting formulation
is particularly competitive as it allows us to both accurately locate line segments
on line-like structures and approximate curved shapes by chains of line segments.
Note that LSD [3] scores are not included in the quantitative comparisons of
Table 1 of the paper for space reasons. Its scores are similar to those of ELSED
[9]. More speci�cally, AP, AR and AF scores of LSD are respectively 49.9, 36.7
and 41.8 on YorkUrban and 44.7, 32.4 and 33.3 on RoofSat.

Figure 5 shows the impact of various image gradient maps on the output
line segment con�guration. The gradient maps tested in this experiment include
the basic one computed by �nite di�erences, the surrogate gradient maps from
the architectures DeepLSD [7] and Dexined [8], a gradient map generated using
the popular segmentation method SAM [4], and, as a reference, the gradient
map computed from the contours annotated by hand which are provided in the
Berkeley segmentation dataset [6]. The basic gradient map and the DeepLSD-
based one are computed in the same way than in the paper. For Dexined [8] and
SAM [4], we threshold their contour probability maps at 0.5 to select our set of
input points. For the Ground Truth annotation, we simply associate an input
point to each contour pixel. DeepLSD-based gradient map is a good choice for
a general description of the object whereas SAM-based gradient is particularly
e�cient on the silhouette of the object. However the quality of these gradient
maps remain perfectible in comparison with the ground truth gradient map. Our
result from the latter suggests than our �tting algorithm will bene�t from the
rapid progress in the �eld for generating more and more accurate gradient maps.

https://project.inria.fr/roofsat/
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Figure 6 shows object polygonalization results at di�erent levels of complex-
ity. These levels are produced by connecting line segments detected at various
approximation levels, ie with various parameter pairs (ϵ,σ). Figure 7 shows vi-
sual comparison of our method with PolyFormer [1] and Poly-RNN++ [5] on an
organic (curved) object at di�erent levels of complexity. Note that in all our ex-
periments with PolyFormer and Poly-RNN++, we carefully set their additional
inputs so that the returned polygons capture the objects of interest with almost
no situation of under- or over-detection. More precisely, we performed for each
image (i) a trial-and-error selection of the bounding-box or the query string to
capture the objects of interest, (ii) a polygon accumulation with multiple runs
in case of several disjoint objects, and (iii) no manual post-modi�cations of the
polygons.

Figures 8, 9, 10 and 11 show visual results of object polygonalization on the
BSDS500 dataset when using our line segment detector with ϵ = 3 and σ = 5.
This setting is a good compromise between accuracy and complexity to capture
both curved objects and line-like structures.
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Fig. 2: Visual comparisons on organic objects. Our approach exhibits both a higher
precision and a better completeness for approximating organic shapes by line segments.
Learning-based methods LETR, HAWP, and, to a lesser extent, DeepLSD do not gen-
eralize well on such images. The traditional mechanisms LSD and ELSED generalize
better but produce sparse con�gurations with frequent line segment overlapping (see
close-ups). By setting the �tting tolerance parameter to a few pixels, our algorithm
can absorb the noise around the contours of these organic shapes. This allows us to
achieve simpler and more complete description of these objects. The images originate
from the Berkeley segmentation dataset BSDS500 [2].
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Fig. 3: Visual comparisons on man-made objects with curved shapes and line-like
structures (part 1/2). Our algorithm performs best when images contain objects with
both curved and line-like shapes. Our point-to-line �tting formulation allows us to accu-
rately locate line segments on line-like structures while approximating curved shapes by
chains of line segments. In particular, only our algorithm produces a �ne and complete
description of the jet �ghter fuselage (left) or the mixed curved and piecewise-planar
roof of the castle (3rd column).



8 M. Boyer et al.

L
S
D
[3
]

E
L
S
E
D
[9
]

H
A
W
P
[1
1
]

L
E
T
R
[1
0
]

D
ee
p
L
S
D
[7
]

O
u
rs

Fig. 4: Visual comparisons on man-made objects with curved shapes and line-like
structures (part 2/2).
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Basic DeepLSD [7] Dexined [8] SAM [4] Annotations [6]

Fig. 5: Visual results from di�erent image gradient maps. Using a basic gradient map
computed by �nite di�erences typically gives a sparse con�guration of globally-accurate
line segments (�rst column). Computing the image gradient map with DeepLSD [7] or
Dexined [8] improves the quality of the con�guration with more meaningful segments
(second and third columns). Using the popular segmentation method SAM [4] to gen-
erate a gradient map gives good results to describe the silhouette of object but does not
allow us to capture well the inside ornament details (fourth column). These di�erent
results can be compared to the con�guration obtained when using a Ground Truth
gradient map, i.e. a gradient map computed from the contours annotated by hand of
the Berkeley segmentation dataset BSDS500 [2]. The latter con�guration is complete
and accurate both on silhouette and inside details (last column).

117 edges 72 edges 43 edges 31 edges

Fig. 6: Object polygonalization at di�erent level of complexity. Detecting line segments
at various approximation levels allows us to produce polygons with di�erent number
of edges. At high complexity (left), the curved objects, ie the camel and the person,
are �nely approximated while the line-like structure, ie the pyramid, is well captured
despite a few extra vertices. At low complexity (right), the polygons roughly capture
the curved objects but describe the line-like structure in a very compact manner.
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Fig. 7: Visual comparison with neural polygonizers. The result of PolyFormer (A1)
and of Poly-RNN++ (B1) are simpli�ed at di�erent levels of complexity by Douglas-
Peucker (A2-A3 and B2-B3 respectively). Precision, IoU and number of edges of the
di�erent results are given in the bottom graphs. At high and medium complexity,
our method provides a more accurate approximation of the coyote (C1 and C2). For
instance, only our method captures well the back of the animal or its two back legs.
At low complexity, PolyRNN++ combined with Douglas-Peucker simpli�cation have
a better IoU, even if the precision of our method remains better.
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Fig. 8: Visual results of object polygonalization (1/4). The ability of our line segments
to capture both line-like structures and freeform shapes allows us to reconstruct low-
complexity polygons with single edges on straight parts, e.g. on the racing cars, and
nice smooth sequences of edges on curved parts, e.g. on the snake. Images from the
BSDS500 dataset.
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Fig. 9: Visual results of object polygonalization (2/4).
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Fig. 10: Visual results of object polygonalization (3/4).
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Fig. 11: Visual results of object polygonalization (4/4). Note that the output poly-
gons delivered by our method can be nested, ie with polygonal holes inside the main
polygons. This is the case for instance with the handles of the amphora or in between
the legs of the soldier.
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