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Abstract

Short-range corrections to long-range selected configuration interaction calculations are

derived from perturbation theory considerations and applied to harmonium (with two to six

electrons for some low-lying states). No fitting to reference data is used, and the method is

applicable to ground and excited states. The formulas derived are rigorous when the physical

interaction is approached. In this regime, the second-order expression provides a lower bound

to the long-range full configuration interaction energy. A long-range/short-range separation of

the interaction between electrons at a distance of the order of one atomic unit provides total

energies within chemical accuracy, and, for the systems studied, provide better results than

short-range density functional approximations.
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1 Introduction

In this paper we perform selected configuration interaction (CI) calculations for Hamiltonians with

long-range interaction between electrons, and correct for the missing term exploiting the universal

behavior of the wave function at short range. This is motivated by the reduction of computational

effort: shorter CI expansions are needed when the interaction is weak. The method presented here

is related to previous work where the short range interaction was described by short-range density

functionals (see, e.g., 1–5). In a more recent development, we used an approach reminiscent

of the one used in generating (and motivating) density functional approximations, namely the

adiabatic connection. However, we do not construct any density functional, but only switch on

the short-range interaction (see, e.g., Refs. 6,7). This can be done for ground and excited states,

and does not require a self-consistent improvement of the wave function. There is no transfer

of information from other systems (like the uniform electron gas, as done in density functional

approximations) and there are no empirical parameters. Instead, the exact, universal behavior of

the wave function at very short inter-electronic distances is used in the regime when the physical

interaction is approached. The additional computational effort for the short-range correction is

negligible in comparison to that for the CI calculation with the long-range interaction operator.

In this paper, we continue in this vein. Here, we use a perturbational treatment to analyze the

terms showing up. Truncating at first order, we have the expectation value of the wave function.

This provides an upper bound. At second order, we obtain a lower bound to the energy. The

examples show that it is superior to the upper bound. At third order, we recover the adiabatic

connection result. In all examples studied, the errors are within chemical accuracy and better than

those obtained using short-range density functionals.
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2 Method

2.1 Perturbation approach

Instead of considering the Schrödinger equation for the electronic Hamiltonian, H, we consider an

electronic Hamiltonian, H(µ), and modify it by eliminating the short range interaction from it:

H(µ) = H−W(µ). (1)

where

W(µ) =
N−1

∑
i=1

N

∑
j=i

w(ri j,µ) (2)

and we choose

w(r,µ) =
erfc(µr)

r
. (3)

In these equations, ri j represents the distance between electrons i and j, and µ is a parameter that

characterizes the range of the interaction. It has the dimensions of an inverse length; the range

of w becomes smaller as µ increases. For µ = ∞, the correction vanishes: H(µ = ∞) = H. We

use a selected CI (very well approximating a full CI, FCI) calculation to estimate accurately the

eigenvalue of H(µ), E(µ) and its normalized eigenfunction, Ψ(µ). For µ = ∞, we obtain the

eigenvalue, E = E(∞), and eigenfunction, Ψ = Ψ(∞) of H.

Let us consider

H(λ ,µ) = H(µ)+λW(µ), (4)

that is, we consider W(µ) as a perturbation. We can obtain the energy from the adiabatic connec-

tion,

E = E(µ)+
∫ 1

0
dλ ∂λ E(λ ,µ) = E(µ)+

∫ 1

0
dλ ⟨Ψ(λ ,µ)|W(µ)|Ψ(λ ,µ)⟩, (5)

where E(λ ,µ) is the eigenvalue, and Ψ(λ ,µ) is the eigenfunction of H(λ ,µ). At large µ , it
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becomes exact at first order in λ (see appendix in Ref. 8),

Ψ(λ ,µ) = Ψ(µ)+λΨ
(1)(µ)+ . . . , for large µ. (6)

The higher orders in λ do not show up if we consider only the terms up to order 1/µ . Note that

Ψ(0,µ) = Ψ(µ), and Ψ(1,µ) = Ψ.

Instead of performing a standard perturbation theory, let us use Ψ(λ ,µ), eq. (6) into eq. (5). and

retain the terms of the |Ψ(λ ,µ)|2 up to a given power of λ , k. We get the approximations to order

n

E ≈ E(µ)+E(k) (7)

where

E(1) = ⟨Ψ(µ)|W(µ)|Ψ(µ)⟩ (8)

E(2) = E(1)+ ⟨Ψ(µ)|W(µ)|Ψ(1)(µ)⟩ (9)

E(3) = E(2)+
1
3
⟨Ψ(1)(µ)|W(µ)|Ψ(1)(µ)⟩ (10)

Using eq. (6) at λ = 1, Ψ ≈ Ψ(µ)+Ψ(1)(µ), we get the following approximations, for order k = 0

to 3.

E ≈ E(µ) (11)

E ≈ E(µ)+ ⟨Ψ(µ)|W(µ)|Ψ(µ)⟩ (12)

E ≈ E(µ)+ ⟨Ψ(µ)|W(µ)|Ψ⟩ (13)

E ≈ E(µ)+
1
3
(
⟨Ψ(µ)|W(µ)|Ψ(µ)⟩+ ⟨Ψ(µ)|W(µ)|Ψ⟩+ ⟨Ψ|W(µ)|Ψ⟩

)
(14)

The adiabatic connection using Ψ(λ ,µ) given by eq. (6) yields eq. (14), because Ψ(λ ,µ) is linear

in λ 2. Furthermore, we note that the correction to E(2) in eq. (9) is positive. Thus, staying with

the second order gives a lower bound to the result that would be obtained by adiabatic connection
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(see also eq. (48) of Ref. 6). We remind that these results are valid only for large µ , as we have

neglected the terms in 1/µ2. Eq. (12) provides an upper bound to the energy, because it is equal to

⟨Ψ(µ)|H|Ψ(µ)⟩.

Note the presence of Ψ in eqs. (13) and (14). The formulas seem useless. However, as Ψ appears

only in the integrals containing a short-range operator, we can exploit the universal short-range

behavior of Ψ to calculate these integrals.

2.2 Exploiting the short-range behavior of the wave function

The Kato cusp condition9–11 gives Ψ for r = |r12| → 0

Ψ(R,r) = ∑
ℓ,m

cℓ,m(R)φℓ(r)Yℓ,m(Ω) (15)

where,

φℓ(r) = rℓ
[

1+
1

2ℓ+2
r+ . . .

]
(16)

Yℓ,m are spherical harmonics, Ω the solid angle associated to r12, and R denotes all the coordinates

except r12. For small r, to first order in 1/µ , one can find similar expressions12 also for Ψ(µ), the

only change being that φℓ(r) is to replaced by φℓ(r,µ), given explictly, for example, in eq. (19) of

Ref. 8.

The rℓ factor in φℓ makes the wave function vanish for small r. Therefore, in Ref.,7 we explored

ignoring in eq. (15) the terms with ℓ > 1. As a result, the pair functions, needed to obtain the

expectation values showing up in the corrections to E(µ) are reduced to two components, one for

ℓ= 0, one for ℓ= 1. One obtains:7

⟨Ψ(µ1)|W(µ)|Ψ(µ2)⟩=N 2
s

∫
∞

0
dr r2

φ0(r,µ1)w(r)φ0(r,µ2)+N 2
t

∫
∞

1
dr r2

φ1(r,µ1)w(r)φ1(r,µ2).

(17)

N 2
s , and N 2

s appear through integration over R and Ω. N 2
s,t are determined by the exact wave
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function.6,12 Thus, they don’t depend on µ , and can be re-constructed from information obtained

for the model system,6

N 2
s =

⟨Ψ(µ)|W(µ)|Ψ(µ)⟩s∫
∞

0 dr r2 |φ0(r,µ)|2 w(r,µ)
(18)

N 2
t =

⟨Ψ(µ)|W(µ)|Ψ(µ)⟩t∫
∞

0 dr r2 |φ1(r,µ)|2 w(r,µ)
. (19)

The indices s, t indicate the singlet or triplet components (Eqs. (22) and (23) in Ref. 7).

The integrals over r appearing in eq. (17) have the form:

∫
∞

0
dr r2

φℓ(r,µ1)φℓ(r,µ2) w(r,µ) =

c2l+2(µ1,µ2)µ
−(2l+2)+ c2l+3(µ1,µ2)µ

−(2l+3)+ c2l+4(µ1,µ2)µ
−(2l+4) (20)

The values of µ1 and µ2 needed for E(k), k = 1,2,3 are µ and ∞ and ℓ = 0,1. The coefficients c

are given in tab. 1.

Table 1: Coefficients appearing in the integrals
∫

∞

0 dr r2 φ0(r,µ)φ0(r,µ2) w(r,µ), eq. (20).

µ1 µ2 ℓ c2l+2 c2l+3 c2l+4
µ µ 0 0.25 0.343860 0.121951
µ µ 1 0.1875 0.126527 0.022997
µ ∞ 0 0.25 0.265962 0.071039
µ ∞ 1 0.1875 0.119683 0.021075
∞ ∞ 0 0.25 0.188063 0.046875
∞ ∞ 1 0.1875 0.112838 0.019531

We can merge the terms containing the integrals of the type given in eq. (20), obtaining simple

expressions for E(k),k = 1,2, or 3:

E ≈ ⟨Ψ(µ)|H(µ)|Ψ(µ)⟩+α
(k)
s (µ)⟨Ψ(µ)|W(µ)|Ψ(µ)⟩s +α

(k)
t (µ)⟨Ψ(µ)|W(µ)|Ψ(µ)⟩t (21)

The expressions for αs,t as functions of µ are given in Table 2.
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Table 2: Functions α
(k)
s,t showing up in eq. (21).

k α
(k)
s (µ) α

(k)
t (µ)

0 0 0
1 1 1

2
µ

2 +1.06385µ +0.284155
µ

2 +1.37544µ +0.487806
µ

2 +0.638308µ +0.112402
µ

2 +0.674813µ +0.122652

3
µ

2 +1.06385µ +0.319820
µ

2 +1.37544µ +0.487806
µ

2 +0.638308µ +0.113074
µ

2 +0.674813µ +0.122652

For µ → ∞, α
(k)
s,t → 1, that is, E(µ → ∞)→ ⟨Ψ|H|Ψ⟩= E. When a finite basis set is used, E(µ →

∞) produces the energy of the system with physical interaction in this basis set. We see from the

expressions given in tab. 2 that α
(2)
s,t < α

(3)
s,t meaning that the lower bound property is satisfied.

Note that the α
(k)
s,t always remain finite, and monotonically increase with µ . This property was

derived for large µ . For small µ , it can be shown that αs,t should decrease with µ .7 As α
(k)
s,t (µ =

0) ∈ [0,1] there never is a divergence in E(k) that can be imputed to degeneracy in the zeroth order

of perturbation theory.

At this point we would like to remind that with density functional approximations there is a discus-

sion about using exchange and correlation together, or correlation only. The argument uses not only

the quality observed for the results with the different approximations. The argument for using only

correlation is based on the expectation that exchange is easily computed for molecules, and smaller

errors will appear when approximating a smaller part of the energy. An argument against it goes as

follows.13 Most density functional approximations use the properties of the uniform electron gas.

There one finds a compensation of long-range correlation by long-range exchange. Thus, no spuri-

ous long-range correlation shows up in molecules when one also includes long-range exchange in

the density functional. It has been noted that when using short-range density functionals the differ-

ence between using exchange-correlation and correlation-only density functional approximations

is not important.2 Because ⟨Ψ(µ)|W(µ)|Ψ(µ)⟩ = ⟨Ψ(µ)|W(µ)|Ψ(µ)⟩s + ⟨Ψ(µ)|W(µ)|Ψ(µ)⟩t ,

instead of correcting E(µ) one can correct ⟨Ψ(µ)|H|Ψ(µ)⟩. In the latter case, one has to replace

α
(k)
s,t (µ) by α

(k)
s,t (µ)− 1. Thus, in our approach, there is strictly no difference between correcting
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E(µ), or the expectation value of H,E(µ)+E(1).

Note that in our derivation we never assumed to treat the ground state. The formulas can be used

for excited states, too.

2.3 The system studied

In this paper we study N = 2, . . . ,6 electrons confined by a harmonic potential, v(r) = (1/2)ω2r2,

where ω = 1/2. Except for the ground state of the system with two electrons,14 no exact energies

are known. For the other systems, we compare with the best results we found in the literature,

obtained with explicitly correlated wave functions.15–19

We use the data from previous calculations presented in Ref. 7, where our objective was to achieve

the full configuration interaction (FCI) level of accuracy utilizing a 9s7p5d3f3g1h1i Gaussian

basis set, given in Table 1 of ref. 7. For N = 2, FCI calculations were performed for all µ values.

For larger systems, we employed the Configuration Interaction using a Perturbative Selection made

Iteratively (CIPSI) algorithm,20 aiming to attain the highest feasible approximation to FCI while

maintaining a minimized computational cost. As the FCI wave function can be expressed using

any set of orbitals, and as the wave functions are close to the FCI wave functions, the orbitals

and the set of selected determinants was kept constant as those obtained with µ = ∞, and the wave

function Ψ(µ) was obtained by diagonalizing H(µ) in the basis of selected determinants. All the

configuration interaction calculations were performed using the QUANTUM PACKAGE software.21

The results presented in tables were obtained with Mathematica.22

In the three-dimensional harmonic oscillator the ordering of orbital energy levels is ε1s < ε1p < ε2s

that is different from that in atoms where level ordering is ε1s < ε2s < ε2p. Thus, for example for

N = 6, we describe a system that resembles more to the valence shell of the oxygen atom, and not

to that of the carbon atom.
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3 Results

3.1 Energy errors

The approach we presented above has two limitations: i) it is valid only as the model interaction

approaches the physical interaction (for large µ), ii) the basis set limitations are more severe when

the interaction is stronger (the basis set errors are smaller when µ is small). In order to explore the

range of validity of our approximation we show in figs. 1 to 5 the errors made by our approxima-

tions. The curves present ∆E, the difference between the total energy computed at a given value of

µ and that of the FCI calculation. Also, a dot-dashed line indicates the difference between the best

estimate from literature, and our FCI calculation.

We aim for errors within chemical accuracy,23 that is within 1 kcal/mol of the best available en-

ergy.14–19 We see that in all plots we get a good accuracy for surprisingly large µ . However, as

we could expect, even our best approximation worsens dramatically for small µ . (In our examples,

the change occurs for µ between 0.5 and 1.0 bohr−1.)

The errors of the zeroth order approximation, E(µ) are large, and not shown. They can be found

in Ref. 7. Going to first order, ⟨Ψ(µ)|H|Ψ(µ)⟩ one finds an improvement. The second order

correction, eq. (13), improves significantly the results. With it we obtained a lower bound that

(for large µ) is closer to the exact result than the variational upper bound. The results are further

improved by making the third order correction, eq. (14).

At large µ , the method approaches by construction the full configuration interaction (FCI) result.

For N = 2, fig. 1, or N = 3, fig. 2, where the FCI result is very close to the exact result, the errors

stay close to zero, for large enough µ .

For N > 3, the basis set error starts to be clearly seen. As µ is reduced, the basis set quality is

improving. The best compromise between eliminating the basis set dependence and reducing µ is

found – in the systems studied – around µ = 1 bohr−1. We see that for some µ < 0.5 bohr−1 the

lower bound property of E(2) can be lost. Sometimes, it may seem that, the second-order correction
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Figure 1: Differences between our approximations and our FCI energy (in hartree) for harmonium
with N = 2 electrons, as a function of the model parameter µ (in bohr−1) for the 1S ground state, 3P
and 1P excited states. The model energies are corrected up to first order, (⟨Ψ(µ)|H|Ψ(µ)⟩, eq. (12),
black curves), second order (asymptotic lower bound (LB) eq. (13), blue curves), and third order
(adiabatic connection (AC), eq. (14), red curves). The black horizontal dashed lines mark the
domain within which the error with respect to the reference full configuration interaction (FCI)
calculation is within chemical accuracy. The horizontal red dot-dashed lines show the difference
between the best energy from the literature and the FCI energy.
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Figure 2: Differences between our approximations and our FCI energy for harmonium with N = 3
electrons for the 2P ground state, the 4P and 2D excited states. The color coding is the same as in
fig. 1.
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Figure 3: Differences between our approximations and our FCI energy for harmonium with N = 4
electrons for the 3P ground state, the 1D, 1S, and 4S excited states. The color coding is the same as
in fig. 1.

seems to work better, for example for N = 5, in the 2P state. This could be related to the failure of

the large µ expansion before reaching the point where there is no longer any basis set error.
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Figure 4: Differences between our approximations and our FCI energy for harmonium with N = 5
electrons for the 5S ground state, the 2D and 2P excited states. The color coding is the same as in
fig. 1.
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Figure 5: Differences between our approximations and our FCI energy for harmonium with N = 6
electrons for the 3P ground state, and the 1S excited state. The color coding is the same as in fig. 1.
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3.2 Error estimates
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Figure 6: Errors, at µ = 1 bohr−1, made by the third order correction (eq. (14), or adiabatic
connection) with respect to the best estimates found in the literature;14–19 the error bars are given
by the absolute value of the difference to the second order correction (eq. (13), or asymptotic lower
bounds).

Fig. 6 shows the errors after applying the third-order correction, that is, using the adiabatic con-

nection in the regime approaching the Coulomb interaction. This time, we use as reference (zero)

the best estimates available data in literature.14–19 Although the formulas were derived to become

exact for large values of the range-separation parameter, µ , we present the results at µ = 1, in

order to reduce the basis set errors. In all cases studied, the errors of the second- and third-order

correction (eqs. (13) and (14), respectively) are within chemical accuracy (using as reference the

best values found in literature). In addition to the values (already present in Ref. 7) we show error

estimates, based upon the difference between the second order estimate, that is the lower bound.

We also use this difference, with reversed sign, to define an upper bound. We notice that this error

estimate is reasonable. The rigorous upper bound, the first-order estimate (the expectation value

of the Hamiltonian) is not used in fig. 6 , because it gives often a too large error estimate. The

zero-order results (the uncorrected results) provide lower bounds. However, the errors are huge in

comparison with the estimate of the second-order correction, and not presented here. We notice
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that in most cases, the reference value lies within the error bounds. Notable exceptions to this rule

are found for the states having maximal spin multiplicity (N = 2,3P; N = 3,4P; N = 4,5S), where

the electrons are kept apart by the Pauli principle, and the corrections are small. Nevertheless, the

errors remain small in these cases.

3.3 Comparison with density functional corrections
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Figure 7: Errors, at µ = 1 bohr−1, with respect to the best values found in the literature14–19

made by the full configuration calculation with Coulomb interaction (purple bars), by the second
order correction (asymptotic lower bound, eq. (13) bars), by the third order correction (adiabatic
connection, eq. (14), red bars), by self-consistent calculations using a short-range density func-
tional correction3,24–27 (LDA, short-range local density approximation , green bars, or PBE, short
range Perdew-Burke-Ernzerhof approximation, gray bars). Also shown are the results using den-
sity functional corrections of the basis set errors (orange bars).7,28–31 The horizontal dotted lines
delimit the region of chemical accuracy (± 1 kcal/mol).

One may wonder if similar results could be obtained using short-range density functionals. In

fig. 7 we compare our results for ground states with those obtained in calculations combining

long-range configuration interaction with short-range density functional approximations (lr-CI/sr-

DFA) might be pertinent, as this is defined to cover all the domain of µ . For DFAs, we considered

the local density approximation, LDA, and that of Perdew, Burke, and Ernzerhof, PBE,24 both
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adapted for short-range.3,25–27 We see that in every case our second- and third-order approximation

outperforms the density functional approximations. At first, this is surprising. If the short-range

behavior at first order is system-independent, as suggested by eq. (15), why should a transfer

from the uniform electron gas (as provided by the use of short-range LDA) give less accurate

results? Our guess is that the DFA attempts also to improve the results at small values of µ ,

where our approximation is much worse. Doing this transition, it worsens the quality of results

in an uncontrolled way in the intermediate regime. This also warns us that trying to improve

the correction at smaller values of µ may hide some difficulties. Another possible explanation

is the treatment of open-shells (automatically present in the long-range configuration interaction

calculation, that is not clearly defined in the density functional context.

We did not compare with density functional calculations for the excited states. The errors of

density functional calculations become larger. This might be due to the use of ground-state density

functional approximations.

We further see in fig. 7 that the errors after the third-order correction are smaller than those of

the reference full configuration interaction (due to the basis set) that are sometimes larger than

1 kcal/mol. Using density functional basis set corrections7,28–31 brings errors comparable to those

with those of the third -order correction.7 This can be rationalized by the use of larger values for

the range-separation parameter (µ ≈ 2− 3 bohr−1): the density functional used contributes less,

and is in a regime closer to the physical, Coulomb interaction.

4 Summary and perspectives

We start by solving accurately the Schrödinger equation where we have replaced the Coulomb

interaction between electrons by a long-range interaction. Short-range corrections are derived

from perturbation theory, for the regime when the Coulomb interaction is approached. The method

is applied to some low-lying states of harmonium with two to six electrons.
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When the range separation parameter approaches infinity, we reach the FCI result. However, for

smaller values of µ , the basis set error (present in FCI) decreases. We notice that, for all systems

studied, when µ decreases to about one atomic unit, the results improve. We found in our examples

that the results degrade significantly for µ between 0 and 0.5 – 1 bohr−1. One explanation of this

effect can be found in Ref. 32.

The third order correction, eq. (14), turns out to be identical to an approximation obtained previ-

ously using the adiabatic connection (EL=1 in Ref. 7). It approaches the full configuration inter-

action, FCI, energy as the model system (with long-range interaction) gets closer to the physical

system (with Coulomb interaction). The second-order correction, eq. (13), provides a lower bound

to the third-order energy. Using a first order correction to the model energy, we obtain the expec-

tation value of H, and thus an upper bound to the energy. In all examples studied, we can see that

for intermediate values of the range-separation parameter, µ , we get better estimates of the third-

order estimate by using the lower bound (second-order) estimate than by using the upper bound

(first-order estimate).

The choice of µ = 1 bohr−1 is reasonable, but arbitrary. Furthermore, we may want to reduce

the computational effort by reducing µ . One strategy would be to improve the description at small

values of µ . For example, the local one-particle potential might be optimized. (We have not done it

in this paper, as we found that it is not relevant for large values of µ where the universal character

of the wave function is dominant, and the modification of the external potential does not affect

significantly the results in the region where the error is within chemical accuracy.33 However, it

is clear that it has an effect at small values of µ . Constructing a rational approximation satisfying

some expressions for small µ and large µ might be helpful.

Atoms and molecules can also be treated by the procedure described in this paper. They are

different due to the non-uniform character in these systems (shells in atoms, different atoms in

molecules). Should we keep the simple, global treatment as used here for harmonium, or should

prefer a local treatment? The problematic is similar to that of the use of plane waves (that extended

19



over the whole system) versus that of Gaussian basis sets (that are localized).

A further limitation of our approach is that the optimal value of µ shows some system-dependence.

This can become critical if one wants to improve both the efficiency and the accuracy of the

method. We believe that a local range-separation parameter might bring an improvement. This

could be done in the spirit of density-functional corrections34–36 in long-range configuration inter-

action combined with short-range density functional approximations, or of basis set corrections.28

The correction factors α
(k)
s,t showing up in eq. (21) and tab. 2 are independent of the basis set

used. However, the expectation values of H and W in eq. (21) are basis set dependent. In all our

derivation, we have assumed that the problem is accurately solved for the model system (at µ).

In practice, this is not the case. In our numerical examples, even using a large basis set, we have

seen that the FCI calculation may have errors larger than chemical accuracy. Although the basis

set error decreases at lower values of the range separation parameter µ , the role of the basis set

needs a separate, careful study.
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