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Abstract. Plane arrangements are a useful tool for surface and volume
modelling. However, their main drawback is poor scalability. We intro-
duce two key novelties that enable the construction of plane arrange-
ments for complex objects and entire scenes: (i) an ordering scheme
for the plane insertion and (ii) the direct use of input points during
arrangement construction. Both ingredients reduce the number of un-
wanted splits, resulting in improved scalability of the construction mech-
anism by up to two orders of magnitude compared to existing algo-
rithms. We further introduce a remeshing and simpli�cation technique
that allows us to extract low-polygon surface meshes and lightweight
convex decompositions of volumes from the arrangement. We show that
our approach leads to state-of-the-art results for the aforementioned
tasks by comparing it to learning-based and traditional approaches on
various di�erent datasets. Our implementation is available at https:

//github.com/raphaelsulzer/compod.

Keywords: plane arrangement · low-poly · reconstruction

1 Introduction

Explicit 3D mesh representations such as tetrahedralisations or triangle sur-
face meshes allow for a good approximation of freeform geometry using atomic
parts of surface and volume. However, for storing, analysing or manipulating 3D
data, these dense representations introduce a computational burden by describ-
ing even simple shapes with many redundant elements. Lightweight polygon
surface meshes composed of few polygons or volume meshes composed of few
convex polyhedra can facilitate the handling of the underlying 3D data. How-
ever, the reconstruction of such low-poly meshes from raw data measurements
is still a challenging task. To this end, we present a scalable plane arrangement
method for low-poly surface and volume modelling from point clouds.

Plane arrangement methods [3, 5, 22] use planar shapes detected from data
measurements and arrange them to form a polyhedral decomposition, i.e. a
partition of a 3D domain by polyhedra. Subsequently, a concise mesh can be
extracted from the partition by selecting a subset of the polygonal facets or
polyhedral cells. This strategy is particularly interesting as (i) it can be used for
both surface and volume modelling, (ii) it o�ers a good robustness to imperfect
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Fig. 1: Our representation of the Meeting Room [18] as a watertight and intersection-
free surface mesh with 90k polygonal facets (center) or as a simpli�ed volume mesh with
2500 convex polyhedra (right). Our method inputs 40k planes (middle left) detected
from a LiDAR scan of the scene (top left). For comparison, a Screened Poisson [17]
reconstruction consists of over 6M triangles (bottom left).

data and (iii) it comes with desirable geometric guarantees such as watertight-
ness and orientability of the surface and convexity of the polyhedral cells. The
main shortcoming of plane arrangement methods is their poor scalability. The
exhaustive plane arrangement iteratively slices the 3D domain with detected
planes which leads to a time complexity of O(n3), with n being the number of
input planes [12]. The adaptive arrangement uses convex planar polygons [21]
or axis-aligned bounding boxes [7] instead of in�nite planes, which drastically
reduces the number of intersection computations and the complexity of the re-
sulting arrangement. However, in practice, none of the existing mechanisms can
process more than 1000 planar primitives without parallelisation schemes.

The key contribution of our work is an e�cient mechanism for construct-
ing more concise arrangements in less time than existing methods. We directly
exploit input points to avoid unnecessary splitting operations and replace in-
tersection tests between polyhedral cells and polygons with simply point-plane
orientation tests. We then carefully order the plane insertion operations to fur-
ther lower the computational complexity of the algorithm. We also introduce
a remeshing and simpli�cation strategy that reduces the number of extracted
polygonal surface facets or the number of extracted convex polyhedra from the
arrangement. The combination of these ingredients allows us to produce concise
representations of complex objects and entire scenes from several thousand input
planar shapes (cf. Fig. 1). We empirically demonstrate the e�ectiveness of our
algorithm by comparing to previous plane arrangement, mesh simpli�cation and
mesh decomposition methods on various datasets.



Concise Plane Arrangements for Low-Poly Surface and Volume Modelling 3

2 Related Work

Our review of related work covers algorithms for concise surface reconstruction,
convex decomposition of 3D shapes and construction of plane arrangements.

Concise Surface Reconstruction. One common way for reconstructing a
concise surface mesh from data measurements consists in generating a dense
triangle mesh from point clouds or multiview stereo images before reducing its
number of triangle facets. While the �rst step relies upon a vast literature [27] and
recent advances on NeRF, mesh simpli�cation is mainly based on a few geometry
processing algorithms that iteratively collapse edges [8, 14, 26] or group triangle
facets into planar clusters before remeshing [10]. These algorithms are fast and
scalable, but deliver triangle meshes that usually fail to preserve the structure
of objects. In contrast, plane assembly methods detect planar shapes from point
clouds [16] and assemble them to form a polygonal surface mesh. Assembling
can be done by considering the dual of an adjacency graph between planar
shapes. However, the construction of such a graph is unlikely to be consistent and
requires to be interactively completed [1, 28]. More robust assembly approaches
rather decompose the 3D space into polyhedral cells with splitting operations
induced by the planar shapes. The polygonal surface mesh is then extracted by
a binary labelling of cells [3, 5, 20] or facets [4, 13, 22] from the decomposition.
The construction of such plane arrangements has a high algorithmic complexity
and no existing mechanism can process more than 1000 planar shapes without
block decomposition schemes that introduce border artefacts. Our work follows
an arrangement approach, but with an e�cient construction mechanism which
is able to handle up to two orders of magnitude more planar shapes.

Plane Arrangement. The trivial way to construct a plane arrangement is to
iteratively slice the 3D domain with the supporting plane of each detected planar
shape [12]. Such an exhaustive plane arrangement mechanism typically produces
dense plane arrangements as even supporting planes of spatially distant poly-
gons are likely to intersect. The exhaustive construction becomes intractable with
only a few hundred shapes [22]. To improve on complexity and performance, the
slicing operations can be restricted to the polyhedral cells that include the asso-
ciated planar shape only [21]. This condition can be relaxed by initially dilating
the polygon enclosing the shape [5] or by testing inclusion from the bounding
box of cells [7]. In such an adaptive plane arrangement, the ordering in which
input shapes are processed impacts both the quality of the output decomposition
and the performance of its construction. However, ordering schemes proposed in
the literature remain simple and application-driven, e.g . large [21] or vertical [7]
shapes �rst. The kinetic mechanism KSR [3] does not perform slicing operations
on polyhedral cells in an iterative manner. Instead, it grows 2D polygons at a
constant speed until they collide and form polyhedral cells. KSR produces a
concise decomposition without proximity rules, but the collisions are costly to
simulate. Our method follows an adaptive plane arrangement construction but
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with an e�cient ordering scheme and the exploitation of raw measurements to
signi�cantly gain in performance and compactness.

Volumetric Decomposition of 3D shapes. Exact convex decompositions
of 3D shapes typically produce a prohibitively large number of convex cells (in
short, convexes) [2,6,15], while approximate convex decompositions o�er a trade-
o� between the �delity to the input shape and the number of convexes from the
decomposition [19,29]. Traditionally, axis-aligned split planes are used to parti-
tion the input shape into convex, or nearly convex parts [19,29]. The decomposi-
tions are re�ned and simpli�ed by moving cutting planes and grouping cells [29].
In our approach, we use cutting planes detected on the object surface instead,
to achieve a high �delity to the input shape. Furthermore, we e�ciently group
cells of our plane arrangement to produce a decomposition with low complexity.

Some recent neural network based methods also produce decompositions from
other types of primitives such as cubes and cylinders [25,30] or permit convexes
of the decomposition to overlap [9, 11]. However, non-convex and overlapping
decompositions are not desirable for applications such as collision detection or
point localisation [29]. Moreover, most neural network based methods can only
process small objects with simple geometries. In contrast, our method produces
convex decompositions from complex objects and scenes.

3 Algorithm

Our approach takes a point cloud representing a 3D object or scene as input
(Fig. 2a) and returns either a concise, watertight and intersection-free polygon
surface mesh (Fig. 2d) or a concise volume mesh composed of convex polyhedra
(Fig. 2e). First, we detect planar primitives de�ned as the association of sup-
porting planes P and a subset of input points, called inliers, to which supporting
planes are �tted (Fig. 2b). We can use any standard plane detection method for
this step [23, 31]. We then construct a concise polyhedral decomposition from
the planes and their corresponding inlier points (Fig. 2c). Finally, we extract
the outer boundaries of the observed object by labelling each polyhedral cell
of the decomposition as inside or outside the surface. For this step, we can use
a proxy surface, e.g . from a Screened Poisson [17] reconstruction of the input
point cloud, a normal-based approach [3] or a deep occupancy �eld [7]. We then
apply a remeshing and simpli�cation strategy to group facets (Fig. 2f) and cells
(Fig. 2g) into larger components. In the following, we explain the adaptive plane
arrangement, on which our algorithm is based, and present our key contributions.

3.1 Background on Adaptive Plane Arrangement

The adaptive construction mechanism �rst introduced by Murali & Funkhouser
[21] converts a set of unoriented and disconnected polygons into a polyhedral
decomposition, composed of a set of polyhedral cells C and a set of polygonal
facets F . The input polygons are typically computed as the 2D convex hulls of
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(a) Point cloud

(c) Compact plane arrangement

(d) Surface mesh (f) remeshed

(b) Planes (e) Volume mesh (g) simpli�ed

Fig. 2: Pipeline. Our method processes a set of planes with their corresponding inlier
points (b) detected from a point cloud (a) into a compact plane arrangement (c).
From this arrangement we extract either a watertight and intersection-free surface
mesh (d) or a volume mesh with intersection-free convexes (e). The surface mesh can
optionally be remeshed to represent each planar region with only one facet, and with
Delaunay triangles for regions with holes (f). The remeshed surface is still watertight
and intersection-free. The volume mesh can be simpli�ed by merging groups of convex
volumes and potentially allowing them to intersect (g).

inlier points projected onto their associated supporting planes. The algorithm
starts by initializing the polyhedral decomposition to the 3D domain, i.e. to a
padded bounding box of the input polygons. Then, it performs a series of splitting
operations on the polyhedral decomposition, in which the polyhedral cells con-
taining a polygon, or a part of it, are cut by the supporting plane of the polygon.
The order in which polygons are processed is determined a priori and stored in a
priority queue. In the inset below, the commonly used order, i.e. larger polygons
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�rst, split the domain by the blue-then-green-
then-orange polygon (represented by the line seg-
ments), leading to a decomposition with �ve poly-
hedral cells at the end. A tree structure, typically
a binary space partitioning (BSP)-tree, is used to
track the splitting operations during the process. In such a tree (denoted by T ),
the root node T0 corresponds to the 3D domain. The path from the root to a
tree node Ti stores the splitting operations required to form the polyhedral cell
ci. At the end of the process, the leaves of the tree correspond to the polyhedral
cells of the output decomposition. An undirected graph G, updated in tandem
to the tree, is also used to store the adjacency between polyhedral cells.

3.2 Our Concise and Scalable Plane Arrangement

Ordering of Splitting Operations. In the various versions of the adaptive
plane arrangement [5,7,21], the priority queue is computed at initialization using
considerations on the area or orientation of the input polygons. Unfortunately,
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such an ordering scheme is too simple to produce polyhedral partitions in a stable
and e�cient manner. We tackle this problem with a dynamic ordering scheme
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that seeks a decomposition with a low number of
polyhedra, or equivalently a BSP-tree with a low
number of leaves. Instead of a priority queue that
sorts the input polygons, we use a function that
selects the next splitting operation, i.e. a pair of
one plane and one polyhedral cell, to be processed given the current state of the
partition. It relies upon two key ideas:

i. a splitting operation that creates a polyhedral cell that cannot be split any-
more, must take priority,

ii. splitting operations that create two cells containing each an as high and
identical as possible number of polygons must be favored over other splits.

The intuition behind (i) is that turning nodes into leaves in the BSP-tree as
soon as possible reduces the growth of the tree, whereas (ii) aims to reduce the
number of intersection computations and balances the number of polygons in
the cells of the decomposition to reduce the algorithmic complexity over the 3D
domain. In the inset, continuing with the same polygon layout as in the previous
example, we �rst split the domain along the orange polygon, i.e. the only one
respecting condition (i) at initialisation, then by the blue, then green polygon,
also validating this condition. The BSP-tree is simpler and the decomposition
has only four cells at the end.

Fast Intersection Tests with Inlier Points. Frequent intersection tests be-
tween polyhedra and planar primitives are necessary to identify the cells to split.
These tests constitute a computational bottleneck in the various versions of the
mechanism, even with approximation by bounding boxes [7]. We address this is-
sue by replacing intersection tests by a simple distribution of the inlier points in
the BSP-tree. The idea is that the assignment of inlier points to the nodes of the
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ing to the cutting planes. We rely on a hierarchi-
cal clustering of the inlier points based on sim-
ple point-plane orientation tests for reassigning
the inlier points after a splitting operation. This
strategy leads to a strong reduction of the com-
putational burden and directly exploits the preci-
sion of input points. This is particularly bene�cial
when planar shapes are concave or contain holes,
as illustrated in the top decomposition of the inset. An arrangement strategy
using only planes [12] or convex polygons [7,21] cannot avoid the creation of the
meaningless center cell in the bottom decomposition.

Practical Description. We start by initialising the root node of a BSP-tree
with a dilated bounding box of all inlier points. The root node is then associated
with all inlier points and their corresponding supporting planes. We now iterate
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over the leaves of the tree and check if all inlier points associated with the current
node can be located on the same side of a supporting plane inside the cell. If
we �nd such a plane, we split the cell along it. Otherwise, for each supporting
plane p we compute the sets of inlier groups Lp and Rp that lie fully left and
right of p. We then select the split that maximizes the product |Lp||Rp|, i.e.
we cut the current cell with the supporting plane that splits the inlier sets as
equally as possible, while intersecting as few other polygons as possible. Finally,
we reassign the inlier points and their associated supporting planes to the two
new child nodes. When there are no more polyhedra containing points, i.e. no
points associated with the leaves of the tree, the splitting operations stop.

3.3 Remeshing and Simpli�cation

Aggregation of Convex Facets. For surface modelling, we extract a water-
tight and intersection-free mesh with convex polygonal facets from the decom-
position (Fig. 2d). We then collect clusters of coplanar facets and extract the
boundary edges, i.e. the edges that only occur once per cluster. For each cluster,
we �nd all cycles in the set of boundary edges [24]. In case of multiple cycles for
which one cycle is contained in another, i.e. a facet with holes, we apply a 2D
Delaunay triangulation constrained by the boundary edges (Fig. 2f).

Aggregation of Convex Cells. For volume modelling, the convex cells of the
reconstructed mesh can be merged into fewer, larger convex cells. In the inset,
the orange and green cell can be merged, to produce a more con-
cise decomposition with the same geometry. While our ordering
strategy aims to reduce such unwanted splits, they cannot fully
be avoided due to multiple interactions of planes for complex ge-
ometries. We can exploit the properties of the BSP-tree in which
each parent node corresponds to the union of its two children. Starting from the
leave nodes, we recursively replace two siblings by their parent cell if they lie
on the same side of the surface. This allows us to reduce the number of cells in
the decomposition by around 25% without any geometrical computations. Once
all same-sided siblings are processed, the decomposition can still include pairs
of same-sided adjacent cells a, b whose union is equivalent to the convex hull of
their union conv(a∪b). We recursively test this condition for all pairs of adjacent
cells of the mesh, given by the adjacency graph G, by comparing the sum of the
volumes of the two cells with the volume of the convex hull of their union [19].
We replace adjacent cells a and b with their convex hull conv(a ∪ b), if

|Va + Vb − Vconv(a∪b)| < τ, (1)

where Vx is the volume of cell x and τ a positive parameter. τ determines how
much we allow the volume of the new cell conv(a∪b) to di�er from the combined
volumes of a and b. If τ = 0 the geometry stays unaltered and the decomposition
is guaranteed to be intersection free (Fig. 2e). Relaxing τ allows to alter the
geometry and the cells in the decomposition to potentially overlap (Fig. 2g).
In the inset, we could then simplify further by replacing the orange, green and

yellow cell with the convex hull of their union.
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4 Experiments

In this section, we �rst compare the e�cacy and e�ciency of our plane arrange-
ment against existing construction mechanisms and conduct an ablation study.
We then evaluate the competitiveness of our general pipeline on surface and vol-
ume modelling tasks. We compare to the state-of-the-art for each task and use
the experimental protocol provided by the authors of the corresponding methods.

4.1 Evaluation on Plane Arrangement Construction

Experimental Setup. We compare our plane arrangement against several
baselines on the Thingi10k [32] dataset.

Baselines. (i) We compare to an exhaustive arrangement which we implement
by intersecting all detected input planes. (ii) We compare to an adaptive ar-
rangement, which we implement following ideas of the building reconstruction
pipeline P2P [7]. See the supplementary material for a detailed comparison of
our implementation to the one of P2P. (iii) We compare to a kinetic plane ar-
rangement (KSR) for which we use the implementation provided by the authors.
We construct arrangements with the four di�erent mechanisms, occupancy-label
the cells of the arrangement with the normal-based method of KSR and extract
polygonal surface meshes from the interface of adjacet inside/outside cells.

Dataset. We use 1000 non-degenerate models randomly chosen from Thingi10k.
We sample 200k points on each model and detect planar shapes [23, 31] using
a �tting tolerance parameter �xed to 0.8% of the models' bounding box diag-
onal. We input the same plane con�gurations to all four di�erent construction
mechanisms. Because the construction mechanisms do not scale equally, we split
the dataset into three groups: simple, for models approximated by less than 100
planar shapes, moderate, if between 100 and 250, and complex for models with
more than 250 detected planes.

Metrics. We evaluate (i) the complexity of the arrangement with the number
of polyhedral cells |C| and the complexity of the surface with the number of
polygonal surface facets |FS |, (ii) the accuracy of the extracted surface with
the symmetric Chamfer (CD) and Hausdor� (HD) distances between ground
truth and reconstructed surface and (iii) the performance of mechanisms with
the construction time and memory peak.

Comparison. Table 1 presents the quantitative results. For simple models,
our algorithm o�ers the best complexity with more than two times less cells
compared to the second best and one order magnitude less on complex ones.
Fig. 3 illustrates this complexity gap on a simple model. The signi�cant gain
in complexity is not done at the expense of the quality of the reconstructed
meshes as both the Hausdor� and Chamfer distances remain competitive with
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Table 1: Quantitative Comparison with Plane Arrangements. The exhaustive
method is only tested on the simple group of models S to not exceed reasonable pro-
cessing time (> 300h). |C| refers to the average number of cells in the decompositions.
|FS |, CD and HD are the average number of facets of the reconstructed mesh and
Chamfer and Hausdor� distances between ground truth and reconstructed mesh.

Complexity Accuracy Performance

|C| |FS | CD HD Time
(×102) (×102) (s)

S

Exhaustive [12] 5690 890 0.190 1.05 8.03
Adaptive [21] 324 70 0.196 1.32 9.99
KSR [3] 161 202 0.196 1.22 4.08
Ours 73 53 0.193 1.15 3.06

M

Adaptive [21] 1760 267 0.247 2.36 97.4
KSR [3] 757 660 0.266 2.34 139
Ours 256 167 0.254 2.32 16.3

L

Adaptive [21] 6150 1020 0.227 2.82 504
KSR [3] 2077 2313 0.231 2.79 1699
Ours 705 478 0.224 2.78 68.1

Point cloud

PC & planes Exhaustive [12] Adaptive [21] KSR [3] Ours

Fig. 3: Comparison with Plane Arrangements. Our algoritm builds a more con-
cise plane arrangement than existing mechanisms (top row), leading to a polyon mesh
with fewer facets (bottom row).

a lower number of polygonal facets. The exhaustive method, which performs
on simple models only, o�ers the best accuracy, but produces overly complex
meshes. KSR and Adaptive exhibit a similar accuracy to our method, but with
a higher number of polygonal facets. Our method is also faster, especially on
complex models. Both performance and complexity gains originate from the
combination of our ordering scheme, the use of the inlier points that accurately
describe the input data, and our remeshing strategy.

Scalability. We further evaluated the scalability of plane arrangements by gen-
erating con�gurations of planar shapes at six levels of complexity, ranging from
40 to 10k planar shapes, from six di�erent real-world scans. Graphs presented in
Fig. 4 compare processing time and peak memory as a function of the number
of input planar shapes for the di�erent construction mechanisms. Our algorithm
o�ers the best performances and the best stability at the di�erent levels of com-
plexity. The gap is particularly large for con�gurations with a high number of
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Fig. 4: Scalability. Average runtime (left) and memory peak (right) in function of the
number of input planar shapes for di�erent construction mechanisms. The transparent
band around each curve indicates the minimal and maximal values measured on various
models. Our algorithm o�ers the best performance and can process 10k planar shapes in
around 30 minutes without exceeding the memory consumption of a standard computer.
It also exhibits a better stability than other methods whose variation bands are thicker.

planes. Only the kinetic algorithm exhibits a lower memory peak for con�gura-
tions with no more than 250 planes.

Ablation Study. Table 2 shows the impact of our design choices on the vari-
ous evaluation metrics. We �rst examine the impact of our ordering scheme. The
basic area-based sorting scheme leads to a much more complex decomposition, a
less accurate surface and almost 2× longer runtime. Removing the priority condi-
tion (i) leads to a decomposition with more cells. The cells of the decomposition
have less facets on average, which leads to a slightly faster runtime. However,
condition (i) also seeks to better recover the general shape of an object by �rst
inserting all planes that lie on the convex hull. Consequently, removing condi-
tion (i) leads to a worse Hausdor� distance. Table 2 also shows the bene�ts of
using inliers points for the intersection tests. We can reduce the complexity and
construction time of the decomposition, but strongly degrade the quality of the
reconstructed mesh by using only the vertices of 2D convex hulls of inlier points
projected onto their supporting plane. A relevant alternative is to use 1M points
uniformly sampled on the convex polygons, but this produces a more complex
decomposition than our vanilla implementation. Finally, the surface remeshing
only impacts the complexity of the reconstructed mesh. Removing the cell sim-
pli�cation (with τ = 0) impacts the complexity of the decomposition and leads
to a higher runtime due to a longer surface extraction.

4.2 Surface Mesh Simpli�cation

Experimental Setup. Besides the reconstruction of low-poly meshes directly
from point clouds, another relevant application of our pipeline is the simpli�ca-
tion of dense, high-poly surfaces into low-poly ones. We compare our method to
Robust Low-Poly Meshing (RLPM) [8]. RLMP simpli�es dense surface meshes
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Table 2: Ablation Study. Alternative schemes to the use of inlier points and for the
sorting of splitting operations, as well as the deactivation of the remeshing step are
evaluated from the complex group of the Thingi10k models.

Complexity Accuracy Performance

|C| |FS | CD HD Time
(×102) (×102) (s)

Ours 705 478 0.224 2.78 68.1

Insertion order

Convex hull area (high to low) 1010 549 0.231 3.10 125
argmaxp(|Lp||Rp|) only 920 491 0.225 2.87 57.4

Use of inlier points

Convex hull vertices only 653 539 0.302 5.25 58.9
Points sampled on convex hull 839 478 0.226 2.73 66.1

Remeshing and simpli�cation

Without facet aggregation 705 557 0.224 2.78 68.5
Without cell aggregation 846 478 0.224 2.78 73.5

by computing an o�set surface of the input and iteratively simplifying this o�-
set. The method establishes itself as state-of-the-art in low-poly mesh generation
by comparing to over ten other low-poly meshing algorithms. We compare our
method to RLMP on the dataset provided by the authors, i.e. a subset of 100
models from Thingi10k [32]. We exclude 45 models that have a non-orientable
surface, because orientability is a requirement for the inside/outside labelling in
the surface extraction step of our pipeline. We sample 2M points per model and
use the same plane detection parameters as in the previous experiment. Because
RLPM produces triangle meshes and our method produces polygon meshes we
triangulate our output and perform edge collapse based on QEM [14] to produce
models with the same number of triangles as the ones of RLPM. We call this
variant OursTri. Note that, the authors of RLPM also experiment with replacing
parts of their pipeline with QEM in their paper, which leads to worse results.

Results. Fig. 5 shows quantitative and qualitative results of the output meshes.
Our method produces polygon meshes with a similar number of polygons (Ours)
and triangles (OursTri) than RLMP, but with a much better accuracy while
also exhibiting a shorter runtime. The remeshing and decimation operations of
RLPM progressively degrade the accuracy on small details. In contrast, planar
shapes that capture such details allow a more precise, yet concise approximation
of the local geometry and facilitate the preservation of details.

4.3 Volume Decomposition with Intersection-Free Convexes

Experimental Setup. Another relevant application of our pipeline is the de-
composition of volumes into a low number of intersection-free convexes. We
compare our pipeline with the specialized method CoACD [29] on 50 challeng-
ing objects and scenes from Thingiverse. We use the implementation provided by
the authors. CoACD cuts an input solid mesh with equally spaced axis-alligned
planes to produce a polyhedral cell decomposition. The cells are then merged
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Perform. Complexity

Time |VS | |FS |
(s)

RLPM [8] 503 899 1969
Ours 410 2051 2045
OursTri 411 879 1936

Accuracy

CD ↓ HD ↓ NC ↑
(×102) (×102)

0.269 2.48 0.923
0.218 2.10 0.941
0.244 2.32 0.924

(a) Quantitative

Input RLPM [8] Ours OursTri

(b) Qualitative

Fig. 5: Surface Mesh Simpli�cation.We compare RLPM and our pipeline on mod-
els from Thingi10k. We triangulate our output and perform edge collapse based on
QEM s.t. OursTri and RLPM have the same number of triangles. (a) The runtimes of
the methods, number of vertices |VS | and facets |FS | of the surface meshes (i.e. trian-
gles for RLPM and OursTri, and polygons for Ours), and Chamfer (CD) and Hausdor�
distance (HD) and normal consistency (NC) between ground truth and reconstruction.
(b) The reconstructions of the Tower of Pi from the dataset. Note how both, our
polygon and our triangle mesh is much more detailed compare to the one of RLPM.

into larger cells using a multi-step tree search. Cells that border the exterior
are replaced by their convex hull. CoACD [29] also provides a way to tune the
�delity and complexity of the decomposition. To compare our volume decompo-
sitions with the ones of CoACD we sample the input mesh with 2M points and
produce plane con�gurations with di�erent complexities by varying the �tting
tolerance and the minimal number of inliers per plane.

Results. We show complexity / accuracy curves for our and CoACD's decom-
positions in Fig. 6. To produce decompositions with a small number of cells
(|CV | < 400) our pipeline relies on a low number of input planes which are
sometimes not su�cient to approximate the input well. CoACD directly relies
on the input mesh and thus exhibits a higher volumetric intersection over union.
However, this comes at the cost of a much higher number of convex cell facets (see
Fig. 6b). For more complex and less approximate decompositions (|CV | > 500)
our method is both more accurate and more concise. This is also exempli�ed in
Fig. 6c, where the top row shows two decompositions with di�erent complexity
of the Droid model and the bottom row a decomposition of the Temple model.
Because our method uses cutting planes that are detected on the surface of the
input, the cells of our decomposition represent the geometry much better. See
for example the gun of the Droid or the stairs in the close up of the Temple.

4.4 Volume Decomposition with Overlapping Convexes

Experimental Setup. A variant of the convex decomposition problem is to
relax the non-overlapping constraint between convexes. To address this task, we
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(a) Cells

Input CoACD [29] Ours

(c) Qualitative(b) Facets

Fig. 6: Volume Decomposition with Non-Overlapping Convexes. We plot the
volumetric IoU in function of the number of cells |CV | (a) and facets |FV | (b). Our
algorithm o�ers a trade-o� between IoU and number of convexes similar to the one
of CoACD [29], but with convexes with fewer facets. In (c), the top row shows two
decompositions for both methods of the Droid with di�erent levels of complexity. The
bottom row shows a decomposition of the Temple. For a similar number of convexes
(colored cells), our algorithm captures the geometry better (see stairs on the bottom
close-up), with fewer facets (see edges on the top close up).

set the merge threshold τ of Eq. 1 to a strictly positive number, which allows us
to merge neighboring cells, and extract a decomposition at any desired number
of convexes. We compare our method to BSP-Net [9] on the test sets of all 13
categories of ShapeNet, i.e. 8762 models in total, provided by the authors of
BSP-Net. BSP-Net is a neural network based approach that learns to �t planes
to input observations and assemble the planes into a set of overlapping convex
polytopes. We use the auto-encoder variant of the network with weights trained
(provided by the authors) on all 13 categories of ShapeNet. The network in-
puts a voxel-grid of 643 occupancy values per model, while we run our method
on 100k points sampled on the models' surface. To �nd the best trade-o� be-
tween complexity and accuracy of the produced models we operate a small grid
search on the ShapeNet train set to determine the merge threshold τ and the
two parameters of the planar shape detection. Alternatively, we could also merge
neighboring cells until our models have the same number of convexes as the mod-
els produced by BSP-Net. However, we �nd that BSP-Net often does not output
a suitable number of convexes to accurately describe a models geometry. We
use the evaluation pipeline provided by the authors of BSP-Net to compute the
squared Chamfer distance (CD2) and normal consistency (NC). Note that, the
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pipeline computes these metrics only for surface points by using the occupancy
of input voxels to determine whether a point lies inside a shape or on its surface.

Complexity

|CV | |FV |

BSP-Net [9] 60.9 1646
Ours 41.7 773

Accuracy

CD2 ↓ NC ↑
(×103)

0.771 0.817
0.385 0.919

(a) Quantitative

Input BSP-Net [9] Ours

(b) Qualitative

Fig. 7: Comparison on Volume Decomposition with Intersecting Convexes.
BSP-Net produces highly overlapping convexes (see the z-�ghting) and exhibits general-
isation issues (see right armrest of the sofa). Our approach produces weakly overlapping
convexes that more accurately capture the �ne components of the models. Note, how
each pillow is described by a single convex.

Results. Fig. 7 shows that our method o�ers both better accuracy and com-
plexity than BSP-Net. The two visual results illustrate this quality di�erence
with convexes capturing more details and more meaningful components of the
models. Our method manages to capture thin components with single convexes
whereas BSP-Net tends to regroup them into large convexes that strongly over-
lap. Note that the same set of parameters found by grid searching generalises
well to various shapes with di�erent feature sizes.

5 Conclusion

We propose a scalable method for converting point clouds into concise plane
arrangements. We construct our plane arrangement using (i) a speci�c ordering
of splitting operations, (ii) input points for fast intersection queries and (iii) BSP-
tree properties for simplifying the arrangement. These steps signi�cantly reduce
the computational complexity of the construction algorithm while producing
concise and meaningful arrangements. We also introduce methods to extract
lightweight polygonal surface and volume meshes composed of a low number of
convexes from plane arrangements. We demonstrated the e�ciency, scalability
and competitiveness of our algorithm on di�erent low-poly mesh reconstruction
problems against the best methods in the �eld. In future work, we will investigate
how to jointly detect and arrange planes from 3D data measurements.
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