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1 Introduction
In industrial applications, the simulation of compressible flows often requires the use of complex Equations of State
(EOS). From a computational point of view, the calls to the thermodynamic properties - which are mandatory in the
algorithms - can become very costly in terms of CPU time. Algorithms that reduce the need to compute thermo-
dynamic quantities through EOS are thus interesting for keeping the industrial simulations affordable. Moreover,
several numerical schemes perform very well with simple analytical EOS but may have robustness issues when
considering real EOS.

We focus here on simulations based on the Euler model, but the ideas developed remain quite general. When
considering the Euler model, many relaxation procedures or methods have been proposed in the literature, see for
instance [15, 7, 17, 2, 3]. All these schemes share the same principle, so let us briefly and roughly recall the idea of
the Jin-Xin relaxation as proposed in [15] (it will be detailed in the paper). It should be noted that this scheme can
be understood as an alternative way of writing the well-known Lax-Friedrichs scheme. In the Jin-Xin relaxation
approach, a homogeneous non-linear system of conservation laws is approximated by a family of systems with a
linear convection part and complemented by non-linear source terms which are parameterized by a small param-
eter ε . As ε goes to zero, the solutions of the relaxed system tend towards the solution of the non-linear system.
From a numerical point of view, this parameter ε is not used and it is formally set to zero. Thanks to the form of
the convective part of the relaxed system, the difficulties that could arise from the non-linearity of the convective
part of the original system of equations are thus avoided. The convective part of the Jin-Xin relaxed model is then
very easy to discretize since it relies on linear advection. More recent relaxation methods have been proposed
[7, 17, 2, 3], for which fewer relaxed variables are used in order to limit numerical diffusion.

In the present work, a proposition is made in order to improve the accuracy of the Jin-Xin relaxation scheme.
This scheme is composed of two steps: a first step in which scalar quantities corresponding to relaxed variables
are advected, and a second step associated with a relaxation procedure that allows retrieving the original variables.
Both steps introduce some numerical diffusion, but we focus here on the first one. The idea is to test the GRU
projection step which has recently been proposed in [14, 11]. This algorithm is very simple and has interesting
anti-diffusive properties. It is based on a random choice and is directly inspired from Glimm’s ideas [12, 6] and
from [9]. This first-order scheme is very well-suited for the advection of scalar quantities with discontinuities and
can be applied to unstructured meshes. Several numerical tests [14, 11] have exhibited an effective convergence
rate between 0.8 and 0.9 when considering problems of scalar advection with discontinuous profiles. Such profiles
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are typically encountered in the first step of the Jin-Xin relaxation scheme.

The paper contains two sections. The first one describes the Jin-Xin relaxation scheme and the modifications
for integrating the GRU step, while the second one presents some numerical comparisons and analysis based on
three Riemann problems: a pure contact problem, a pure 3-shock problem, and the SOD test case. The results
obtained with the Jin-Xin relaxation scheme with and without the GRU step are compared to the approximated
solutions computed using the VRoe-ncv scheme using variables (U,P,s). All tests were performed on a 1D com-
putational domain and with perfect gas EOS, but the effect on efficiency of using real EOS is investigated.

2 Modifying the Jin-Xin relaxation scheme

2.1 The Jin-Xin relaxation approach
The Jin-Xin relaxation approach can be applied for a large class of systems of conservation laws. We focus here
on its application to the Euler model:

∂t (W )+∂x (F(W )) = 0, with W = (ρ,ρU,ρE), F(W ) = (ρU,ρU2 +P,U(ρE +P)), (1)

where ρ stands for the density, U for the velocity, E = e+U2/2 for the specific total energy, e for the specific
internal energy, and P = P(ρ,e) for the pressure law for which an EOS has to be given. The Jin-Xin relaxed model
for system (1) reads:

∂t (W )+∂x (Y ) = 0, (2)

∂t (Y )+Λ ∂x (W ) =
F(W )−Y

ε
, (3)

where Y =(y1,y2,3 ) is the vector of the relaxed variables, ε > 0 is the relaxation parameter, and Λ= diag(λ 2
1 ,λ

2
2 ,λ

2
3 )

is a 3×3 diagonal matrix with λi ∈ R. We insist here on the fact that the relaxation parameter ε is only used
for the sake of building a Chapmann-Enskog expansion with respect to ε for regular solutions of system
(2)-(3). The parameter ε is not used in a practical point of view and it is formally set to zero in the numerical
scheme, see section 2.2 for details.

The Chapmann-Enskog expansion of system (2)-(3) with respect to ε leads to:

∂t (W )+∂x (F(W )) = ε∂x
((

Λ−F(W )′2
)

∂x (W )
)
. (4)

This permits to highlight a stability constraint for system (2)-(3) which is a subcharacteristic condition. When Λ is
such that:

∀W,
(
Λ−F(W )′2

)
> 0,

the operator on the right hand side of equation (4) corresponds to a diffusion operator that ensures the stability of
the system.

It is an important point to be noted that the values λi do not depend on W nor Y , so that the convective system
associated with (2)-(3) is linear. It can thus easily be recast in a diagonal form:

∂t
(
Z+
)
+A∂x

(
Z+
)
= G+, (5)

∂t
(
Z−
)
−A∂x

(
Z−
)
= G−, (6)

where A = diag(λ1,λ2,λ3), and where for all i we have:

Wi = Z+
i +Z−i , Yi = λi(Z+

i −Z−i ), and G±i =
1
ε

(
1
2

(
Fi(W )

λi
±W

)
−Z±i

)
.

In system (5)-(6) the convective part of the equations are linear and decoupled. This system is the used for com-
puting approximated solutions of system (1).

2.2 The Jin-Xin relaxation scheme
Let us now describe the numerical strategy retained for computing approximate solution of system (1) through
Jin-Xin relaxed system (5)-(6). It relies on a first-order Lie-Trotter splitting that successively:

• handles the convection part using a first-order finite-volume scheme,

• and account for the stiff relaxation of the source terms for ε → 0.
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It should be noted that more complex strategies have been proposed, based on high order splitting and schemes, as
for instance in [8, 1]. The strategy followed here differs since we intend to be able to apply easily the method to
2D/3D configurations with non structured meshes.

Let us assume that the approximated solution is known at time tn on a regular mesh with a size ∆x. The ap-
proximated value of Wi, Yi and Z±i in cell j at time tn is denoted respectively by W n

i, j, Y n
i, j and (Z±i, j)

n. The time-step
at iteration n is ∆tn and it is chosen according to a CFL constraint arising in the convection step (see below).

Convection step: tn→ t∗ .
We choose here to discretize the convective part of the system by using the basic Upwind scheme which simply
reads here:

(Z+
i, j)
∗ = (Z+

i, j)
n−λ

n ∆tn

∆x

(
(Z+

i, j)
n− (Z+

i, j−1)
n
)
, (7)

(Z−i, j)
∗ = (Z−i, j)

n +λ
n ∆tn

∆x

(
(Z−i, j+1)

n− (Z−i, j)
n
)
. (8)

The value λ n is computed at each time-step and it reads:

λ
n = a×max

j

(∣∣Un
j
∣∣+ cn

j
)
,

where a > 1 and where cn
j is the sound speed computed in cell j at iteration n. Since the parameter a is directly

involved in the diffusion coefficient on the right hand side of equation (4), the numerical diffusion of the scheme
increases when a increases. The classical CFL constraint for the time-step ∆t with Upwind scheme is:

∆tn ≤ ∆x
λ n . (9)

With this constraint, the convection scheme is monotonicity preserving for the relaxed variables Z±i . This is an
important feature for the modification proposed in this work.

Relaxation step: t∗→ tn+1 .
This step accounts for the relaxation term source G± in system (5)-(6). Since it is a cell-wise update, cell subscript
are omitted here. The set of equations used here are thus:

∂t
(
Z+
)
= G+, (10)

∂t
(
Z−
)
= G−, (11)

with initial condition Z+(t = 0) = (Z+)∗ and Z−(t = 0) = (Z−)∗. We impose here an instantaneous relaxation
which corresponds to setting ε → 0 in (10)-(11) and to solve the non-linear problem:

1
2

(
Fi(W )

λi
±W

)
−Z±i = 0.

In these equations, the terms depending on W are computed explicitly with (Z±)∗ and the last term on the left hand
side is set to (Z±i )n+1:

(Z±i )n+1 =
1
2

(
Fi(W ∗)

λ n
i
±W ∗

)
.

For the Euler model, the update procedure for this relaxation step then reads:

(i) Computation of the conservative variables W ∗i :

ρ
∗ = (Z+

1 )∗+(Z−1 )∗, (12)
(ρU)∗ = (Z+

2 )∗+(Z−2 )∗, (13)
(ρE)∗ = (Z+

3 )∗+(Z−3 )∗. (14)
(15)

(ii) Computation of the fluxes F∗i = Fi(W ∗):

U∗ = (ρU)∗/ρ
∗, (16)

P∗ = P
(
ρ
∗,(ρE)∗/ρ

∗− (U∗)2/2
)
, (17)

F∗1 = (ρU)∗, (18)
F∗2 = (ρU)∗U∗+P∗, (19)

F∗3 =U∗ ((ρE)∗+P∗) . (20)
(21)
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(ii) Computation of the updated relaxed variable (Z±i )n+1:

(Z−1 )n+1 = (−F∗1 /λ
n
1 +ρ

∗)/2, (22)

(Z+
1 )n+1 = (F∗1 /λ

n
1 +ρ

∗)/2, (23)

(Z−2 )n+1 = (−F∗2 /λ
n
2 +(ρU)∗)/2, (24)

(Z+
2 )n+1 = (F∗2 /λ

n
2 +(ρU)∗)/2, (25)

(Z−3 )n+1 = (−F∗3 /λ
n
3 +(ρE)∗)/2, (26)

(Z+
3 )n+1 = (F∗3 /λ

n
3 +(ρE)∗)/2. (27)

(28)

It should be remarked that, per time-step and per cell, only 2 calls to thermodynamical functions are required for
the whole algorithm. One is nedeed for computing the pressure and one for computing the sound speed. This is
less than most of the approximate Godunov solvers. This low number of thermodynamical calls is a key point for
explaining the efficiency of this scheme in terms of CPU-time. It should be noted that the Jin-Xin scheme can be
seen as an alternative way of writing the Lax-Friedrichs scheme.

2.3 The GRU scheme for scalar advection
It has been seen in section 2.2 that the convective step of the scheme is based on linear scalar advection. Recently,
an efficient stochastic scheme for scalar advection has been proposed in [11]. It is nicknalmed GRU and it relies on
the same kind of idea than the Glimm’s scheme [12]. Unlike the latter, the GRU scheme [11] can be applied to 2D
or 3D configurations including unstructured meshes, but it is restricted to scalar advection (linear and non-linear).
In this section, the GRU scheme for linear advection is presented.

We assume here that the quantity φ(t,x) is advected with velocity V , which is positive and which does not
depend on space and time:

∂t (φ)+V ∂x (φ) = 0. (29)

For computing approximated solutions of this equation, a fractional step approach is used. The first step is a
convection step, which can be seen as a prediction step. It is assumed that the approximated solutions are com-
puted thanks to the Upwind scheme. The approximated values in cell i obtained from the sequence (φ n

i )i of the
approximated solution at iteration n through the Upwind scheme are:

φ
n,∗
i = (1−β

n
i )φ

n
i +β

n
i φ

n
i−1.

The parameter β n
i = V ∆tn/∆xi has to be smaller than 1 in order to ensure the stability of the Upwind scheme.

Then the GRU step is applied in each cell on the basis of the predicted value φ
n,∗
i . For that purpose, we consider a

random number ωn that follows a uniform distribution in [0,1]. The GRU step simply reads:

φ
n+1
i =

{
φ n

i,m, if φ
n,∗
i < ωn

i ,

φ n
i,M, otherwise; (30)

where φ n
i,m and φ n

i,M are respectively the local minimum and the local maximum of the cell values at time tn

when considering the set of the upwind cells with respect to the mass fluxes. Since we have here V > 0, we get:
φ n

i,m = min
(
φ n

i−1,φ
n
i
)

and φ n
i,M = max

(
φ n

i−1,φ
n
i
)
. The number ωn

i is a renormalization of the number ωn over
[φ n

i,m,φ
n
i,M]:

ω
n
i = φ

n
i,m +ω

n(φ n
i,M−φ

n
i,m), (31)

so that ωn
i follows the uniform distribution on [φ n

i,m,φ
n
i,M]. An important point to be quoted here is that the same

ωn is used for all the cells. This is a cornerstone of such algorithms, as noticed in [4, 5] for the Glimm’s scheme.
In a practical point of view, ωn is chosen in low-discrepancy sequences with values in [0,1]. They are well-suited
for the Glimm’s scheme [4, 16, 6] as well as for the GRU step [14, 11].

Despite its simplicity, this scheme has very interesting properties for approximating weak solutions of (29)
[14, 11]. Discontinuities are maintained perfectly sharp and no intermediate values are created by the scheme.
The scheme is not conservative and the approximated discontinuities may not be located at the exact position.
Nevertheless, for a simple configuration, it has been proved that the approximated solutions computed with the
Upwind scheme and the GRU step converge with order 1 in probability [10] ( convergence almost surely can also
be proved). In a practical point of view, using low-discrepancy sequences as pseudo-random generators, effective
convergence rates between 0.8 and 0.9 have been obtained for a wide range of problems involving discontinuities
in 1D and 2D with unstructured meshes. For all these test cases, the GRU step largely improved the accuracy of
the Upwind scheme.
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2.4 The modified Jin-Xin scheme
The idea proposed in this work is to test the GRU step of section 2.3 for the advection step (5)-(6) in the Jin-Xin
relaxation scheme. The scheme denoted by Jin-Xin-GRU in this work is thus the 3-step scheme defined by the
following steps:

1 - the convection step of the Jin-Xin relaxation scheme described in section 2.2;

2 - the GRU projection step of section 2.3 applied to the relaxed variables (Z±i )∗ and defined by (30);

3 - the relaxation step of the Jin-Xin relaxation scheme described in section 2.2.

The main idea here is to get rid of the numerical diffusion in the advection step of the Xin-Jin scheme and to gain
accuracy on the approximated solutions computed by the whole scheme. Some numerical tests are thus carried
out in the next section in order to assess whether the improvement is significant or not. It should be noticed that
even if the GRU step limits the numerical diffusion in the advection of the relaxed variables, the computation of
the conservative variables in the Jin-Xin relaxation step (12)-(14) causes some numerical diffusion.

3 Numerical assessment of the modified scheme for Euler model
In this section, different numerical tests are performed on the basis of several exact solutions of Riemann problems
for system of equations (1): a pure contact case (see section 3.2), a pure shock case (see section 3.3) and the SOD
test case (see section 3.4). All these test cases are defined for x ∈ [0,1] and the initial discontinuity in the definition
of the Riemann problems is located at x = 1/2. The left state (resp. right state), denoted by L (resp. R), defines the
initial condition for x < 1/2 (resp. for x > 1/2).

We focus on the perfect gas pressure law: P(ρ,e) = (γ−1)ρe with γ = 1.4 and we restrict to 1D domain with
regular meshes. The approximated solutions will be computed with three different schemes: the Jin-Xin relaxation
of section 2.2, the Jin-Xin-GRU 3-step scheme defined in section 2.4, and the VFRoe-cv scheme using the vari-
able (U,P,s) (for entropy-velocity-pressure) CITE. The latter is an accurate approximate Godunov solver whose
numerical fluxes are computed using the exact solution of a Riemann problem based on a linearized Euler system.

For the Jin-Xin and Jin-Xin-GRU relaxation schemes, the parameter a defined in section 2.2 - and related to
the convection step - is set to 1.0001 and we define:

∆tn
lim =

∆x
λ n . (32)

The CFL constraint (9) then reads: ∆tn≤∆tn
lim. The time-step at iteration n can be written: ∆tn =Cc f l ∆tn

lim with the
CFL parameter Cc f l in [0,1]. A sufficient condition for the VFRoe-ncv scheme to provide stable approximations
is to have a CFL parameter lower than 0.5. It should be noted that CFL numbers between 0.5 and 1 can usually be
used, but approximate solutions may become unstable for some severe test cases. In order to perform comparisons
between the three schemes, we consider in sections 3.2, 3.3 and 3.4 the CFL parameter Cc f l = 0.45. Since a is very
close to 1, the numerical diffusion in the Jin-Xin convection step is low and strongly depends on Cc f l . It should be
noted that approximated solutions obtained with the Jin-Xin and Jin-Xin-GRU schemes for higher CFL parameters
will be examined in section 3.5.

Some convergence curves will be discussed for the test cases with the help of the L1-relative error:

err1 ((ψ
n
i )i) =

∑i |ψn
i −ψex(tn,xi)|

∑i |ψex(tn,xi)|
,

where ψ denotes the density, the velocity or the pressure; and where (ψn
i )i is the approximated solution computed

at iteration n and ψex(tn,xi) is the value of the exact solution a time tn and at the center xi of cell i.

At last, the uniform law in the GRU step is replaced by a low-discrepancy sequence. If several choices are
possible and have been tested for the GRU step in [14, 11], we restrict here to a sole sequence generated thanks to
the linear congruential generator defined by:

ω
k+1 = rem

(
ω

k +

√
5−1
2

,1

)
,

with the initial value ω0 = 0.05, and where rem(x,y) is the remainder of the division of x by y.
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3.1 Comparison of computational efficiency
As mentioned in section 2.3, the expected computational time per iteration and per cell is expected to be less
for the Xin-Jin and Xin-Jin-GRU relaxation schemes than for the VFRoe-ncv scheme. Let us define for each
scheme S the function ∆x→ CPUS (∆x) that represents the computational time needed for a given simulation
(for given initial conditions, given CFL parameter, given final time, and given EOS parameter) with a mesh size
∆x. The three schemes are respectively denoted by S = {v f , jx, jxg} for the VFRoe-ncv scheme, for the Jin-Xin
relaxation scheme and for the Jin-Xin-GRU relaxation scheme. As usual for first-order finite-volumes scheme, we
have for all schemes S and for all α > 0:

CPUS (α∆x) =
(

1
α

)2

CPUS (∆x). (33)

This law has been checked for our three schemes. Moreover, the following relations have been obtained:

CPUv f (∆x)∼ 3×CPU jx(∆x), (34)
CPUv f (∆x)∼ 2×CPU jxg(∆x). (35)

In other words, for a given simulation, VFRoe-ncv scheme costs 3 times more than the Jin-Xin scheme and 2 times
more than the Jin-Xin-GRU scheme. Let us assume that a simulation is performed with the VFRoe-ncv scheme
for a given mesh size ∆x. For the same configuration, the mesh size α∆x to be used with the Jin-Xin relaxation
scheme in order to get the same CPU time is then obtained thanks to relations (33)-(34):

CPU jx(α∆x) = CPUv f (∆x)
⇐⇒

eq. (33)

( 1
α

)2
CPU jx(∆x) = CPUv f (∆x)

⇐⇒
eq. (34)

( 1
α

)2 1
3 CPUv f (∆x) = CPUv f (∆x)

⇐⇒ α =
√

1
3

We thus get α ∼ 0.58. The same computation can be done for the Jin-Xin-GRU scheme and it gives:

α =
√

1/2∼ 0.71.

These two quantities are useful since they allow to modify a convergence curve giving the error with respect to the
mesh size into a curve that allows to compare the error with respect to the CPU time, which is also a very important
information for practical applications. This will be used in the following sections.

We conclude this section by adding few remarks on the memory consumption for the different numerical
schemes. The VFRoe-ncv scheme and the Xin-Jin relaxation schemes (with or without GRU step) are different
in term of memory managment. Indeed, the two relaxation schemes require 2 times more memory storage for
the relaxed variables (the conservative variable is not stored), but there is no interfacial flux to be stored. On the
contrary, for the VFRoe-ncv scheme memory is nedeed for the set of conservative variables and for the interfacial
fluxes. The three schemes then require the same amount of memory. It should be noted that it is possible not
to store the interfacial fluxes for the VFRoe-ncv scheme. But in this case, each one will be computed twice,
which roughly multiply the CPU time by two. In fact, the three schemes are not significantly different in terms of
memory storage and the choice between relaxation scheme and VFRoe-ncv should be made based on the computer
architecture (GPU, CPU, ...), on the amount of memory available and on the latency in memory access.

3.2 A pure contact-wave
For this test case, the initial conditions of the Riemann problem are given in figure 1. The exact solution is such
that the pressure and the velocity are constant and uniform: P(t,x) = 105 and U(t,x) = 50; and the initial density
profile is advected with velocity U , that is: ρ(t,x) = ρ(0,x−50 t). The two GNL waves are ghost waves.

With the three schemes P and U are maintained uniform and constant without any spurious oscillations as in
many first-order explicit schemes. On the contrary, the density profile strongly differs. The amount of numerical
diffusion on the contact wave is clearly highlighted by this test case. The three density profiles are plotted in
figure 2 at time t = 6 10−4 s for a mesh with 1024 cells. For a given mesh size, it clearly appears that the two
relaxation schemes lead to more numerical diffusion than the VFRoe-ncv scheme. The GRU step slightly lowers
the numerical diffusion for the Jin-Xin scheme. Convergence curves are plotted in figure 3 with respect to the mesh
size and with respect to the CPU time, according to relations of section 3.1 (curves have been shifted by log(1/α)
on the x-axis). It can clearly be observed that the VFRoe-ncv scheme gives better approximations for the density.
For the pressure and velocity profiles all the schemes provide the same error for a given mesh size. Therefore, for
a given CPU-time the relaxation schemes have a small advantage.
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L R
ρ (kg/m3) 1 0.125
U (m/s) 50 50
P (Pa) 105 105

Figure 1: Initial conditions for the Riemann problem consisting in a pure contact wave.

0 0,2 0,4 0,6 0,8 1
X

0,2

0,4

0,6

0,8

1

d
en

si
ty

VFRoe-ncv - 1024 cells
Jin-Xin - 1024 cells
Jin-Xin-GRU - 1024 cells

Pure contact case - density

Figure 2: Pure contact wave test case: approximated density profiles for a mesh with 1024 cells.
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Figure 3: Pure contact wave test case: convergence curves for the three schemes with respect to the mesh size (left
figure) and to the CPU-time (right figure). Meshes contain from 128 up to 16384 cells.
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L R
ρ (kg/m3) 1 0.5
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Figure 4: Initial conditions for the Riemann problem consisting in a pure contact wave.
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Figure 5: Pure 3-shock wave test case: approximated profiles for the Riemann problem consisting in a pure 3-shock
wave, the mesh contains 1024 cells. On the left the whole domain, on the right zoom on the pressure and density
profiles.

3.3 A pure 3-shock wave
We consider here a Riemann problem that generates a single 3-shock wave. Left and right states are given in figure
4 and the 3-shock travels to the right with a speed σ ∼ 252 m/s. The contact wave and the 1-wave are ghost
waves. It should be noted that the contact wave is steady since the intermediate velocity in the associated Riemann
problem is equal to zero (i.e. the velocity between the the GNL waves is uniform and constant equal to zero).

The approximated solutions computed with the three schemes have been plotted in figure 5 at time t = 6 10−4 s
for a mesh with 1024 cells: on the left the density, pressure and velocity have been plotted on the whole domain,
while a zoom is proposed in the figure on the right. In the latter, both density and pressure have been plotted. The
zoom on the density profile highlights that undershoots appear in the approximated solutions around the contact
wave position (x = 0) and around the location of the 1-wave (x∼ 0.27). These undershoots tend to vanish when the
mesh is refined. Moreover, the zoom on the pressure profile allows to appreciate the stiffness of the approximated
shock. In particular, one can observe that the GRU step permits to recover a shock profile which is as stiff as the
shock profile computed by the VFRoe-ncv scheme. It can also be remarked that the location of the approximated
shock seems to be different for the Jin-Xin-GRU scheme. This is due to the GRU step and to the random choice. In
fact, for the Jin-Xin-GRU scheme, the approximated shock is not located at the correct location even if it converges
to the exact position when the mesh is refined. This can be seen on the convergence curves in figure 6. All the
variables converge with order 1, which means that the undershoots located at the contact location on the density
profiles tends to vanish with order 1. This would probably be different for a more complex EOS (see CITE contact).
The most important remarks for this test case are the following.

• For a given mesh, the VFRoe-ncv scheme is more accurate than the two relaxation schemes for all the
variables. The GRU step seems to slightly improve the accuracy for the velocity and the pressure. In
particular, the shock profile is more accurate despite it is not exactly at the good location. Moreover, the
undershoots at the ghost wave locations are reduced by using the GRU step. Nevertheless, the random
choice involved in the GRU step introduces some small oscillations in the profiles.

• For a given CPU-time, the three schemes give very close results, with a tiny advantage for the Jin-Xin scheme
without GRU step.

3.4 The SOD Riemann problem
The classical SOD Riemann problem is considered here, the initial conditions of which are recalled in figure 7.
The solution of SOD problem involves a 1-rarefaction wave that travels to the left, a right going contact wave, and
a 3-shock wave that propagates to the right of the domain. It should be noted that the right side of the fan of the
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Figure 6: Pure 3-choc wave test case: convergence curves for the three schemes with respect to the mesh size (left
figure) and to the CPU-time (right figure). Meshes contain from 128 up to 16384 cells.

L R
ρ (kg/m3) 1 0.125
U (m/s) 0 0
P (Pa) 105 104

Figure 7: Initial conditions for the SOD Riemann problem.

1-rarefaction travels very slowly to the left with respect to the speed of the other waves.

The three approximated solutions obtained with the three schemes for a mesh with 1024 cells are plotted in
figure 8. The left part in figure 8 corresponds to a view over the whole domain, whereas the right one gathers: a
zoom on the contact wave for the density profile, a zoom on the pressure intermediate state (between the right part
of the fan of the 1-rarefaction and the 3-shock), and a zoom on the shock for the velocity profile. As for the test
case 3.2 and 3.3, the GRU step improves the accuracy of the contact and the stiffness of the shock profile. These
improvements are a little bit more important because of the time-step (32) which is optimal for the shock here.
Indeed, in SOD test case the time-step is computed on the basis of the speed of the shock wave which is the fastest
wave. In the problem of section 3.3 the fastest wave is the 1-rarefaction wave, even if it is a ghost wave. The
time-step is thus not optimal for the 3-shock in the problem of section 3.3. Moreover, the contact wave has a speed
which is important more important in SOD problem than in the problem of section 3.2. Therefore, the time-step
chosen with respect to the shock wave leads here to more accuracy for the contact wave. The zoom on the pressure
profiles clearly exhibits oscillations that directly arise from the random choice in the GRU step. The GRU step
combined to the convection step make the profiles of the relaxed variables jump to the left or the right depending
on the random number. When the conservative variables are built from these relaxed variables in the relaxation
step, oscillations appear.

The convergence curves are plotted in figure 9. For this test case, the improvement of the GRU step is more
important than for the two previous ones. For a given mesh size, the accuracy is improved with respect to the
Jin-Xin relaxation scheme; and for a give CPU-time the Jin-Xin-GRU scheme is as accurate as the VFRoe-ncv
scheme. In fact, for the present test case, the time-step is optimal for the shock and there is only two or three points
in the shock profile computed by the Jin-Xin-GRU scheme whatever the mesh size is, see figure 10. Nevertheless,
as for the test case of section 3.3 the approximated shock is not located at the location of the exact shock, even
if it tends towards the exact ones when mesh is refined. With respect to the VFRoe-ncv scheme, the error in the
computation of the approximated solution with the Jin-Xin-GRU scheme arises from the location of the shock and
in the oscillations introduced in the intermediate states (between the rarefaction wave and the shock wave).

3.5 Extended results for the SOD test case with different CFL numbers
Up to now we focused on regular meshes and a CFL number of 0.45. In the present section, some comparisons are
proposed on the basis of the SOD test case of section 3.4. As it has been mentioned in the introduction of section
3, CFL numbers between 0.5 and 1.0 can be used for many test cases and the limitation to CFL numbers less than
0.5 is mandatory only for some severe test cases. For instance, the VFRoe-ncv scheme can be applied up to a CFL
number of 0.95 with the SOD test case of section 3.4. So that, using a CFL number of 0.45 is in general a matter
of caution for VFRoe-ncv scheme. Hence, even if more accurate approximations could be obtained here with the
VFRoe-ncv scheme by using higher CFL numbers, the results for CFL = 0.45 are considered as the references.
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Figure 8: SOD test case: approximated profiles for the SOD Riemann problem, the mesh contains 1024 cells. On
the left the whole domain, on the right zoom on the pressure and density profiles.
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Figure 9: SOD test case: convergence curves for the three schemes with respect to the mesh size (left figure) and
to the CPU-time (right figure). Meshes contain from 128 up to 16384 cells.
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We focus here on the fact that the two relaxation schemes allow to reach a CFL number close to 1.0 whatever
the test cases. In terms of CPU-time this is a important feature since for a given test case with a given final
time, the CPU-time is linear with respect to the CFL number. In other words, the computations require 2 time
less iterations at CFL 1.0 than at CFL 0.5. The CPU time is thus 2 times less, increasing the advantage of the
relaxation scheme over the VFRoe-ncv scheme for the SOD test case when considering the error versus the CPU-
time. For the VFRoe-ncv scheme Cc f l = 0.475 is chosen and for the Jin-Xin relaxation schemes we set the CFL
to: Cc f l = 2× 0.475 = 0.95. With these choices, relations (34) and (35) which where proposed for equal CFL
numbers become here:

CPUv f (∆x)∼ 2×3×CPU jx(∆x), (36)
CPUv f (∆x)∼ 2×2×CPU jxg(∆x). (37)

We first compare the approximated solutions computed by the sole relaxation schemes for a mesh with 1024
cells and for different CFL number Cc f l = {0.15,0.3,0.45,0.60,0.75,0.9}. The error with respect to the CFL
number is plotted in figure 11. The error with respect to the CFL number is a decreasing function of the CFL
number for the Jin-Xin scheme. With the GRU step, the error is constant for Cc f l < 1/2 and an increasing func-
tion for Cc f l > 1/2. Both errors become almost equal for the higher CFL numbers. The same behavior has been
observed with Halton-Van der Corput low-discrepancy sequences. Approximated solutions for the density have
been plotted in figure 12 for a CFL number of 0.9 and 0.15. From figure 12, it can be observed that the rar-
efaction wave and the contact wave are not improved by increasing the CFL number with the GRU step, whereas
they are improved without. The accuracy on the shock wave is better for large CFL numbers without the GRU step.

Since the GRU step increases the CPU-time of the Jin-Xin relaxation scheme by 50%, the results above tend to
show that the GRU step does not improve the Jin-Xin relaxation scheme on uniform meshes, at least when consid-
ering CFL number close to 1.0. Nevertheless, for non-uniform meshes, the time-step ∆tn is chosen accordingly to
the most penalizing cell. For the other cells, this time step can be associated with a (very) low local CFL number.
Therefore, the improvement of the GRU step for the small CFL number, i.e. roughly speaking for the larger cells,
could be interesting. Let us compare the approximated solutions computed using the Jin-Xin relaxation schemes
and the VFRoe-ncv scheme for the SOD test case and non-uniform meshes. We use here a mesh whose cell size
is given by a sinusoidal function with a period of 0.2 m and a ratio of 10 between largest and smallest cell sizes.
Convergence curves are plotted in figure 13 with the modified L1-relative error:

err1 ((ψ
n
i )i) =

∑i (∆xi|ψn
i −ψex(tn,xi)|)

∑i (∆xi|ψex(tn,xi)|)
,

where ∆xi is the size of cell i. In figure 13 the reference mesh size for plotting the error versus mesh size is the
minimum of the size of the cells:

∆
m
x = min

j
(∆x j).

The time-step limit (32) now reads:

∆tn
lim =

∆m
x

λ n . (38)

The CFL numbers 0.475 and 0.95 used here are defined here with respect to the time-step limit (38). The ap-
proximated density profiles obtained for three meshes are compared in figure 14. It clearly appears in this figure
that for this test case the GRU step improves the accuracy of the Jin-Xin relaxation scheme for the three waves
(1-rarefaction, contact and 3-shock). The gain in terms of accuracy when using the GRU step is large enough to
compensate for the 50% higher CPU time induced by the GRU step at a given mesh size. The improvement seems
particularly important for the shock. Moreover, in terms of CPU efficiency, the Jin-Xin-GRU scheme has clearly a
small advantage over the VFRoe-ncv scheme.

Remark. For CFL numbers above 1, the Jin-Xin relaxation scheme and the VFRoe-ncv scheme are unstable
whereas the Jin-Xin-GRU scheme remains stable. This is due to the fact that the instabilities arising in the con-
vection step are filtered by the GRU step (projection step). Nevertheless, it should be noted that even if it remains
stable, the Jin-Xin-GRU is no more consistent for Cc f l > 1. This is due to the statistical consistency of the GRU
step that requires a convection step which preserves monotonicity (otherwise statistical bias are introduced and
consistency is lost), see [14, 10, 11]. Density profiles for different CFL numbers greater than 1 have been plotted
in figure 15.
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wave (bottom) profiles.
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3.6 Discussion on CPU efficiency for real EOS
The results of the previous sections have been obtained by using perfect gas EOS. For this EOS, the calls to ther-
modynamical properties are affordable in terms of CPU-time. When using real EOS the cost of thermodynamical
functions may be much higher, and it should be recalled that with approximate Riemann solvers these calls are
needed at each interface and each time-step. All the schemes do not require the same amount of thermodynamical
calls. For instance the VFRoe-ncv scheme using variable (U,P,s) requires 7 thermodynamical calls per interface
and per time-step, while the Jin-Xin relaxation schemes with or without GRU step only require 2 thermodynamical
calls. This means a ratio of 3.5 between VFRoe-ncv (U,P,s) scheme and Jin-Xin relaxation schemes.

In an asymptotic manner, when the thermodynamical calls are very costly, this ratio should be recovered
in terms of the CPU-time for performing the same computation with VFRoe-ncv (U,P,s) scheme and Jin-Xin
relaxation schemes. This has been checked by adding the following simple “idle” loop to every thermodynamical
functions:

for i = 1..Neos, tmp =
√

Neos.

The sole goal of this loop is to artificially increase the cost of thermodynamical calls while keeping perfect gas
EOS that allows to compute easily the analytical solutions of the Riemann problems: the greater Neos, the more
expensive the thermodynamical calls.

With this modification, approximate solutions of the SOD problem of section 3.4 have been computed with
Neos = {25,50,100}. The case Neos = 0 obviously corresponds to the results of section 3.1, for which (34) and (35)
hold. For the case Neos = 25 the increase of the CPU-time with respect to Neos = 0 is equal to a factor ∼ 7 which is
typically the factor obtained by comparing perfect gas EOS and tabulated EOS (see [13] for instance). The results
for Neos = {25,50,100} are given here following the notations of section 3.1:

for Neos = 25, CPUv f (∆x)∼ 3.35×CPU jx(∆x) and CPUv f (∆x)∼ 3.14×CPU jxg(∆x),

for Neos = 50, CPUv f (∆x)∼ 3.48×CPU jx(∆x) and CPUv f (∆x)∼ 3.23×CPU jxg(∆x),

for Neos = 100, CPUv f (∆x)∼ 3.49×CPU jx(∆x) and CPUv f (∆x)∼ 3.31×CPU jxg(∆x).

These results clearly show that the theoretical ratio 3.5 is almost recovered. The right plot in figure 9 is reproduced
here by using the ratio for “real EOS”:

CPUv f (∆x)∼ 3.31×CPU jxg(∆x) = CPU jx(∆x),

which gives α ∼ 0.55. The left plot in figure 9 obtained for perfect gas EOS is reproduced in figure 16 (left plot)
together with the results obtained with α ∼ 0.55 (right plot).

It can be observed that for this test case, the Jin-Xin-GRU scheme has a little advantage over the VFRoe-ncv
scheme in terms of efficiency (i.e. error with respect to CPU-time), while the VFRoe-ncv scheme remains more
efficient than the Jin-Xin relaxation scheme without GRU step. Indeed, The two relaxation schemes have the same
number of thermodynamical calls but the GRU step add a little cost to the Jin-Xin relaxation scheme, which ex-
plains that CPU jxg(∆x)∼ 1.5×CPU jx(∆x) for Neos = 0 (see section 3.1). When Neos is increased, this difference
becomes negligible and the two relaxation schemes tend to the same computational cost. Since the GRU step
largely improves the accuracy of the Jin-Xin relaxation scheme, it follows that it provides a large improvement in
terms of efficiency.

Aside these considerations regarding the computational efficiency, it should be recalled that we only consider
here EOS (in fact perfect gas EOS) for which all schemes are robust. With realistic complex EOS, which are
usually highly non-linear, many schemes may have robustness issues. This is typically the case for VFRoe-ncv
schemes while relaxation schemes are known to be more robust with respect to EOS non-linearities or complexity,
see [13] for instance.
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Figure 16: SOD test case: convergence curves for the three schemes with respect to the CPU-time. Perfect gas
EOS results are on the left and “real EOS” results are on the right with α ∼ 0.55 for both relaxation schemes.
Meshes contain from 128 up to 16384 cells.
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4 Conclusion
The GRU step globally improves the accuracy of the Jin-Xin relaxation scheme. This is particularly the case for
non-uniform meshes which are of prime interest for industrial applications. For the test cases with perfect gas
EOS, the VFRoe-ncv scheme remains the best option regarding the Jin-Xin relaxation scheme with or without the
GRU step. It is slightly different with a real EOS as shown in section 3.6. This behavior arises from two reasons.

• First, relaxation schemes are known for their ability to handle complex (real) EOS, while the VFRoe-ncv
scheme may have stability issues on real EOS (see [13] for instance) as many approximate Riemann solvers.

• On the contrary to the Jin-Xin relaxation schemes, the VFRoe-ncv scheme requires numerous calls to ther-
modynamic properties which may be very CPU consuming with real EOS. This significantly increases the
advantage of the Jin-Xin-GRU relaxation scheme over the VFRoe-ncv scheme in terms of CPU time.

Moreover, two important features of the Jin-Xin-GRU scheme are worth recalling here. Firstly, with the Jin-Xin-
GRU scheme, the approximated shock waves are sharp but not located at the exact location. This is due to the
loss of conservativity introduced in the GRU step. Nonetheless, it is important to note that approximated shocks
converge towards the exact ones as the mesh size tends to zero. Hence, this loss of conservativity diminishes
with mesh refinement. Secondly, the stochastic choice arising in the GRU step introduces some oscillations in the
approximated solutions (with respect to the approximated solutions obtained with the Jin-Xin relaxation scheme).
Nevertheless, the latter are stable and vanish when the mesh size tends to zero.

16



References
[1] R. Abgrall and D. Torlo. High order asymptotic preserving deferred correction implicit-explicit schemes for

kinetic models. SIAM Journal on Scientific Computing, 42(3):B816–B845, 2020.

[2] F. Bouchut. Nonlinear stability of finite Volume Methods for hyperbolic conservation laws: And Well-
Balanced schemes for sources. Springer Science & Business Media, 2004.

[3] C. Chalons and J.-F. Coulombel. Relaxation approximation of the euler equations. Journal of Mathematical
Analysis and Applications, 348(2):872–893, 2008.

[4] A. J. Chorin. Random choice solution of hyperbolic systems. Journal of Computational Physics, 22(4):517–
533, 1976.

[5] P. Colella. Analysis of the effect of operator splitting and of the sampling procedure on the accuracy of
glimm’s method. Report No. LBL-8774. California Univ., Berkeley (USA). Lawrence Berkeley Lab., 1978.

[6] P. Colella. Glimm’s method for gas dynamics. SIAM Journal on Scientific and Statistical Computing, 3(1):76–
110, 1982.

[7] F. Coquel and B. t. Perthame. Relaxation of energy and approximate riemann solvers for general pressure
laws in fluid dynamics. SIAM Journal on Numerical Analysis, 35(6):2223–2249, 1998.

[8] D. Coulette, E. Franck, P. Helluy, M. Mehrenberger, and L. Navoret. High-order implicit palindromic dis-
continuous galerkin method for kinetic-relaxation approximation. Computers & Fluids, 190:485–502, 2019.

[9] F. Delarue and F. Lagoutière. Probabilistic analysis of the upwind scheme for transport equations. Archive
for rational mechanics and analysis, 199(1):229–268, 2011.
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