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Abstract

In this work we analyse the small-time reachability properties of a nonlinear parabolic equation, by means
of a bilinear control, posed on a torus of arbitrary dimension d. Under a saturation hypothesis on the control
operators, we show the small-time approximate controllability between states sharing the same sign. Moreover, in
the one-dimensional case d = 1, we combine this property with a local exact controllability result, and prove the
small-time exact controllability of any positive states towards the ground state of the evolution operator.

Keywords: bilinear control, heat equation, approximate controllability, exact controllability, moment problem,
biorthogonal family
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1 Introduction

In this paper we study controllability properties of the following Nonlinear Heat Equation on the d-dimensional
torus Td

{
∂tψ(t, x) =

(
∆− κψ(t, x)p + 〈u(t), Q(x)〉

)
ψ(t, x), x ∈ Td, t > 0,

ψ(t = 0, ·) = ψ0(·),
(NHE)

where d, p ∈ N∗, κ ∈ R, the operator ∆ =
∑d
i=1

∂2

∂x2
i

is the Laplacian and Q = (Q1, ..., Qq, µ1, µ2) : T → Rq+2 is a

smooth fixed function. The Rq+2-valued function u ∈ L2
loc(R+,Rq+2) plays the role of a control. This means that u

is the function that can be chosen to steer the solution of the problem towards a desired state. Observe that our
control depends only on time.

In numerous practical problems from chemistry, neurobiology and life science, the evolution of a specific system
is subjected to a control which is not external but rather a modification of the principal parameter of the evolution.
In these cases, it can be appropriate to consider evolution equations in the presence of multiplicative controls. Such
controls are called bilinear and take the form of 〈u(t), Q(x)〉 (as in the equation (NHE)) when only the time-depending
intensities can be adjusted, while the spatial parts are fixed.

An example of a parabolic model with a dynamics governed by a multiplicative control is the distributed
parameter control model studied by Lenhart and Bhat in [13]. In this work, the authors consider the wildlife damage
management for controlling population of diffusive small mammal species such as beavers, raccoons and muskrats.
These small mammal species often damage human interests and it is important to study the possibility to control
their dispersal behaviour. The migratory habit of such animals presents obviously an additional complication. For
instance, their removal from any habitat may cause the attraction of other individuals from nearby lands and a
consequent increase of the trapping cost. In [13], the authors study the dynamics of the population density of one of
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this species given by a control model incorporating dispersive dynamics and a multiplicative control which represents
the trapping. In such a work, the evolution is modelled by an equation of the form

∂tϕ(t, x) = (α∆ + a− bϕ(t, x) + p(t, x))ϕ(t, x), t > 0, (1.1)

where ϕ is the population density, α is constant, a and b are growth parameters and p is the rate of trapping which is
used as a control. When one can control the time-dependent intensity of the trapping but not its spatial distribution,
it is possible to separate the variables of function p and write

p(t, x) = u(t)µ(x).

This choice leads to a new formulation for the evolution model where the actual control is the function u and the
equation, for a = 0, takes the form of (NHE).

Global approximate controllability on the d-dimensional torus

Let us consider the following vector space:

H0 := spanR{Q ∈ Ĥ}, with Ĥ := {Q1, . . . , Qq}.

We also introduced the vectors

K =
{(

1, 0, . . . , 0
)
,
(
0, 1, . . . , 0

)
, . . . ,

(
0, . . . , 1, 0

)
,
(
1, . . . , 1

)}
.

Assumptions I. The potential Q = (Q1, ..., Qq, µ1, µ2) is such that Ĥ ⊂ C∞(Td,R) and{
1, cos〈k, x〉, sin〈k, x〉

}
k∈K ⊂ H0. (1.2)

We now present the first main result of the paper, that is, a small-time global approximate controllability property
of (NHE) between states sharing the same sign.

In what follows, we denote by
ψ(t;ψ0, u)

the solution of (NHE) at time t, associated with initial condition ψ0 and control u. Of course, it is intended that we
will look at such solutions only when existence is ensured (see Proposition (2.1).

Main Theorem A. Let s ∈ N∗ be such that s > d/2. Assume Assumptions I be verified. Then, (NHE) verifies the
following small-time approximate controllability properties.

� Let ψ0, ψ1 ∈ Hs(Td,R) be such that sign(ψ0) = sign(ψ1). For any ε > 0 and T > 0, there exist τ ∈ [0, T ] and
(u1, ...uq) ∈ L2((0, τ),Rq) such that ∥∥ψ(τ ;ψ0, u)− ψ1

∥∥
L2 < ε,

with u = (u1, ..., uq, 0, 0).

� Let ψ0, ψ1 ∈ Hs(Td,R) be such that ψ0, ψ1 > 0 (or ψ0, ψ1 < 0). For any ε > 0 and T > 0, there exists
(u1, ...uq) ∈ L2((0, T ),Rq) such that ∥∥ψ(T ;ψ0, u)− ψ1

∥∥
Hs

< ε,

with u = (u1, ..., uq, 0, 0).

Main Theorem A is a specific case of Theorem 3.3 where approximate controllability is ensured with general
control potentials Qj verifying specific saturating assumptions.

To the best of our knowledge, the most recent works on approximate controllability for nonlinear parabolic
equations via multiplicative controls are [18, 28]. In such works, the authors studied 1-dimensional problems with
globally Lipschitz continuous nonlinearities. They proved approximate controllability between states with the same
number of sign changes when time is sufficiently large. They considered space-time dependent controls α(t, x) built
according to the initial and the final state. The main novelties of Main Theorem A are the following.

� The approximate controllability is achieved in arbitrarily small times.

� The approximate controllability holds on Td for any d ∈ N, that is, in arbitrary spatial dimensions.

� The spatial profile Q(x) of the term 〈u(t), Q(x)〉 is fixed and only u plays the role of control.

� Equation (NHE) exhibits a polynomial nonlinearity.
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Global exact controllability to the ground state solution for the 1-dimensional problem

The second main result of our work is the exact controllability of (NHE) to the ground state solution in the
1-dimensional flat torus T. Let us consider the ordered eigenvalues {λk}k∈N of the Laplacian −∆ (not counted with
their multiplicity)

λk = k2, ∀ k ∈ N (1.3)

Note that, except for the first one λ0 = 0, all the eigenvalues are double. We denote by {c0, ck, sk}k∈N the
corresponding orthonormal eigenfunctions of −∆

c0 =
1√
2π
, ck(x) =

1√
π

cos(kx), sk(x) =
1√
π

sin(kx), ∀ k ∈ N∗, (1.4)

which form a Hilbert basis of L2(T). Notice that c0 represents the free evolution (u = 0) of the linear (κ = 0)
heat equation (NHE) with initial condition ψ0 = c0. Such a solution is usually called the ground state solution.
Henceforth, we will denote it by Φ. To study the exact controllability of (NHE), we introduce the following additional
assumption.

Assumptions II. The potential Q = (Q1, ..., Qq, µ1, µ2) is such that Q1 = 1 and µ1, µ2 ∈ H3(T,R) verify

〈µ1, c0〉L2 6= 0, 〈µ2, c0〉L2 = 0,

∃ b1, q1 > 0 : λq1k |〈µ1, ck〉L2 | ≥ b1, and 〈µ1, sk〉L2 = 0, ∀ k ∈ N∗,
∃ b2, q2 > 0 : λq2k |〈µ2, sk〉L2 | ≥ b2, and 〈µ2, ck〉L2 = 0, ∀ k ∈ N∗.

(1.5)

Observe that, for any admissible potential Q in the sense of Assumption II, Φ is also a trajectory of (NHE). Indeed,
denoting by uκ = κ

(2π)p/2
and setting û = (uκ, 0, . . . , 0), one has that Φ ≡ ψ(t; c0, û).

We now state our second main result which ensures global small-time exact controllability of the 1-dimensional
(NHE) to the ground state solution, starting from a positive state.

Main Theorem B. Let d = 1, κ > 0 and p ∈ 2N∗. Assume Assumptions I and Assumptions II be verified. Then,
(NHE) is exactly controllable in H3(T) to the ground state solution Φ in any positive time from any positive state.
In details, for any T > 0 and ψ0 ∈ {ψ ∈ H3(T,R) : sgn(ψ) > 0}, there exists u ∈ L2((0, T ),Rq+2) such that

ψ(T ;ψ0, u) = Φ.

Analogously, for any T > 0 and ψ0 ∈ {ψ ∈ H3(T,R) : sgn(ψ) < 0}, there exists u ∈ L2((0, T ),Rq+2) such that

ψ(T ;ψ0, u) = −Φ.

Main Theorem B yields small-time exact controllability to the ground state solution in H3 when κ > 0 and
p ∈ 2N∗. Such a property is obtained by using the global approximate controllability result between positive states
(Main Theorem A) together with a local exact controllability result to the ground state solution Φ in any positive
time (see Theorem 4.3). The specific choice of the parameters κ and p ensures that equation (NHE) is globally
well-posed in H3 which is crucial for the methodology of the proof of the local exact controllability.

Note that the result of Main Theorem B can be achieved by means of 5 controls. Indeed, we consider a potential
of the form

Q = (1, cos(x), sin(x), µ1(x), µ2(x))

satisfying Assumptions I and II. An example of suitable functions µ1 and µ2 are

µ1 = x3(2π − x)3, µ2 = x3(x− π)3(x− 2π)3

(see Example 4.2 for further details). Hence, it is sufficient to consider a potential of the form

Q = (1, cos(x), sin(x), x3(2π − x)3, x3(x− π)3(x− 2π)3),

to apply Main Theorem B and deduce the controllability of the nonlinear equation (NHE) to the ground state
solution Φ in any positive time T > 0.

An interesting aspect of Main Theorem B is the validity of an exact controllability result on the torus where the
Laplacian exhibits double eigenvalues. Indeed, the first step for proving local exact controllability of (NHE) is based
on the solvability of a suitable moment problem. The method for showing local controllability for bilinear control
problem of parabolic type, introduced in [5, 6], is not directly applicable in our framework. Indeed, we face two
additional difficulties
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� The presence of doubles eigenvalues is, a priori, an obstacle to the solvability of the moment problem at hand.
We address the problem by “filtering” the spectrum of the Laplacian via the two potentials µ1 and µ2. We
exploit hypotheses (1.5) so that µ1 acts only on the frequencies associated to the eigenfunctions {ck}k∈N and
µ2 only on those associated to {sk}k∈N∗ . Hence, we decompose the moment problem into two subproblems,
each characterized by simple eigenvalues, making both solvable.

� In order to adapt the technique proposed in [5, 6] the solutions of equation (NHE) need to be globally defined
and unique. These properties may be trivial in the linear case, whereas a more careful analysis should be
developed for a nonlinear equation like (NHE). We propose a method which require more regularity on the
initial condition and on the control.

Some references

The classical controllability problem of parabolic type equations as (NHE), with bilinear control, is a delicate matter
even in the linear case (κ = 0). The main reason is a structural obstacle, described in [9], which forbid from proving
controllability results in L2(T,R). In details, the authors of [9] showed that the reachable set of the (NHE), with
κ = 0, starting from any ψ0 ∈ L2(Td,R), is contained in a countable union of compact subsets of L2(Td,R) and then
it has dense complement. Therefore, this property prevents obtaining any classical exact controllability result in
L2. Hence, we shall explore different notions of controllability such as the approximate controllability or the exact
controllability to trajectories.

Approximate controllability results via multiplicative controls have been obtained in [30] for 1-D linear parabolic
problems in sufficiently large time T > 0 and between non-negative states. In [30] the control term is not scalar input
type, but depends on space and time (see also [31]). Similar results were proved in [16, 17] for linear degenerate
parabolic problems. Finally, approximate controllability for nonlinear problem was established in [18, 28].

The techniques leading to approximate controllability of Main Theorem A are inspired by a saturating geometric
control approach introduced by Agrachev and Sarychev in [1, 2] in the case of additive controls. In such works the
authors proved global approximate controllability of the 2D Navier–Stokes and Euler systems. Their approach has
been extended to study different equations with additive controls (see, for instance, [3, 33, 36, 37]). The saturating
control methodology has been implemented for bilinear control problems in the recent work [25]. In this paper
the authors studied the non-linear Schrödinger equation, proving small-time approximate controllability between
eigenmodes. Main Theorem A is inspired by the approach developed in [25]. Nevertheless, the saturating techniques
for parabolic equation as (NHE) leads to different controllability properties like small-time approximate controllability
between states with the same sign. For additional results on small-time controllability of PDEs through bilinear
control, achieved using similar methods, see [22, 24, 34, 23].

Another type of controllability not ruled out by the negative findings of [9] is the exact controllability to
trajectories. This property was firstly studied by Alabau-Boussouira, Cannarsa and Urbani in [5, 6] in an abstract
setting for parabolic PDEs by means of scalar input bilinear controls. An example of application of such results is the
local and semi-global controllability of a heat equation as (NHE) (for κ = 0) on the interval (0, 1). The methodology
has been later extended in [15] to network-type domains to cope with condensation phenomena of the eigenvalues of
the diffusion operator. The approach of [5, 6] used for studying local exact controllability to eigensolutions relies on
the solvability of a suitable moment problem related to the null controllability of a linearized version of the problem
at hand. The resolution of moment problems has been intensively studied in literature over a long period, starting
from the classical works [26, 27], to the more recent ones [7, 8, 11, 12, 15, 19, 20, 29, 10].

Scheme of the work

The paper is organized as follows. In Section 2 we present some preliminary results, mamely, local and global
well-posedness of the non-linear heat equation (NHE) and a crucial limit adopted in the proof of Main Theorem A.
In Section 3 we prove the small-time global approximate controllability and Main Theorem A. Section 4 is devoted to
the exact controllability to the ground state solution and contains the proof of Main Theorem B. In the appendices
A and B, we present the proofs of the local and global well-posedness results for equation (NHE), respectively.
Appendix C contains a technical estimate that we use in the proof of Main Theorem B.
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2 Preliminaries

The aim of this section is to present some preliminary results. We start by ensuring existence and uniqueness of
solutions of equation (NHE). In the second part of the section we prove a limit of conjugated dynamics, which is a
key point in the proof of Main Theorem A.

2.1 Local and global well-posedness

We start by stating the following local well-posedness result for the Cauchy problem (NHE).

Proposition 2.1. Let s > d/2 and Q ∈ Hs(Td,Rq+2). For any ψ0 ∈ Hs(Td,R) and u ∈ L2
loc(R+,Rq+2), there

exists a maximal time T = T (ψ0, u) > 0 and a unique mild solution ψ of (NHE). Namely, for any T < T ,
ψ ∈ C0([0, T ], Hs(Td,R)) and is represented by the formula

ψ(t;ψ0, u) = et∆ψ0 +

∫ t

0

e(t−s)∆ (〈u(s), Q(x)〉ψ(s, x)− κψ(s, x)p+1
)
ds.

Moreover, if T < +∞, then ‖ψ(t)‖Hs → +∞ as t→ T −. In addition, we have the following properties.

i. Assume that ψ0, φ0 ∈ BHs(Td,R)(0, R) for some R > 0 and u, v ∈ L2
loc(R+,Rq+2). Then, for any 0 ≤ T ≤

min{T (ψ0, u), T (φ0, v)}, there exists C = C(u, v) such that

sup
0≤t≤T

‖ψ(t;ψ0, u)− ψ(t;φ0, v)‖Hs ≤ C (‖ψ0 − φ0‖Hs + ‖u− v‖L2) . (2.1)

ii. Set K = ‖ψ‖C([0,T ],Hs)+‖ψ0‖Hs+‖u‖L2 . There exists δ = δ(T (ψ0, u), K) > 0 such that, for any ψ̂0 ∈ Hs(Td,R)
and û ∈ L2((0, T ),Rq+2) satisfying

‖ψ̂0 − ψ0‖Hs + ‖û− u‖L2 < δ, (2.2)

problem (NHE) admits a unique mild solution ψ̂ ∈ C
(
[0, T ], Hs(Td,R)

)
with initial condition ψ̂0 and control û.

The proof of Proposition 2.1 follows from a fix point argument and from Sobolev embeddings for s > d/2. It can
be found in Appendix A.

We further present a global well-posedness result for equation (NHE) in the case d = 1, κ ≥ 0 and p ∈ 2N∗.

Proposition 2.2. Let d = 1, p ∈ 2N∗, ψ0 ∈ H3(T,R), Q ∈ H3(T,Rq+2), u ∈ H1
loc((0,+∞),Rq+2) and κ ≥ 0. Then,

for any T > 0 there exists a unique mild solution ψ ∈ C0([0, T ], H3(T,R)) of (NHE).

The proof of Proposition 2.2 follows from some energy estimates and can be found in Appendix B.

2.2 Small-time limit of conjugated dynamics

Let us introduce the nonlinear operator

B(ϕ)(x) =

d∑
j=1

(
∂xjϕ(x)

)2
, ∀ϕ ∈ C1(Td,R). (2.3)

Then, the following result holds true.

Proposition 2.3. Let s ∈ N∗, s > d/2 and (Q1, ..., Qq) ∈ H2s+1(Td,Rq). Assume ψ0 ∈ Hs(Td,R), (u1, ..., uq) ∈ Rq,
and ϕ ∈ H2s+1(Td,R) be non-negative. Then, there exists a constant δ0 > 0 such that, for any δ ∈ (0, δ0), the

solution ψ(t; e−δ
−1/2ϕψ0, δ

−1u) of (NHE) with u = (u1, ..., uq, 0, 0) is well-defined in [0, δ]. Furthermore, the following
limit holds

eδ
−1/2ϕψ(δ; e−δ

−1/2ϕψ0, δ
−1u)→ eB(ϕ)+〈u,Q〉ψ0 in Hs, as δ → 0+.
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Proof. Preliminaries. For any δ > 0 we set φ(t) := eδ
−1/2ϕψ(t; e−δ

−1/2ϕψ0, δ
−1u). According to Proposition 2.1, φ(t)

exists up to some maximal time T δ = T (e−δ
−1/2ϕψ0, δ

−1u) and it has the same regularity of ψ. Furthermore, if
T δ <∞

‖e−δ
−1/2ϕφ(t)‖Hs → +∞ as t→ T δ−.

We introduce the following functions

w(t) = e(B(ϕ)+〈u,Q〉)tψδ0, v(t) = φ(δt)− w(t), (2.4)

where ψδ0 = eδ
1/4∆ψ0 ∈ Hr(Td,R), with r = s+ 2, is such that

‖ψ0 − ψδ0‖Hs → 0, as δ → 0+, (2.5)

and there exists C > 0 independent of δ > 0 such that

‖ψδ0‖Hs ≤ C, ‖ψδ0‖Hr ≤ Cδ−1/4, for δ ≤ 1. (2.6)

Our aim is to show that φ(δ)
δ→0+

−−−−→ e(B(ϕ)+〈u,Q〉)ψ0 in Hs. Thanks to (2.5) it is sufficient to prove that

‖v(t = 1)‖Hs
δ→0+

−−−−→ 0. (2.7)

However, before proving (2.7), we need to ensure the existence of δ0 > 0 small enough such that, for every 0 < δ < δ0,
v(t) is well-defined in [0, 1] and moreover that

δ−1T δ ≥ 1. (2.8)

An intermediate inequality. In view of (2.6), there exists C > 0 such that, for every t ∈ [0, 2],

‖w(t)‖Hs ≤ C, ‖w(t)‖Hr ≤ Cδ−1/4. (2.9)

We observe that v is a solution of the following equation

∂tv = δ∆(v + w)− δκ(e−δ
− 1

2 ϕ(v + w))p(v + w)− δ1/2(v + w)∆ϕ

− 2δ
1
2∇(v + w) · ∇ϕ+ B(ϕ)v + 〈u,Q〉v,

(2.10)

with initial condition
v(0) = ψ0 − ψδ0. (2.11)

Let us start by assuming that ψ0 ∈ H2s+2(Td,R) which implies ψ(t) ∈ H2s+2(Td,R) and then v(t) ∈ H2s+2(Td,R)
for every t ∈ (0, T δ). Let α = (α1, . . . , αd) ∈ Nd be such that |α| = |α1|+ . . .+ |αd| ≤ s. Thanks to the accreativity
of the operator −∆, we get

∂t‖∂αv‖2L2 = −2δ〈(−∆∂αv), ∂αv〉L2 + 2〈δ∆w + δκ(e−δ
− 1

2 ϕ(v + w))p(v + w)

− δ 1
2 (v + w)∆ϕ+ 2δ

1
2∇(v + w) · ∇ϕ+ B(ϕ)v + 〈u,Q〉v, ∂2αv〉L2

≤ 2〈δ∆w + δκe−pδ
− 1

2 ϕ(v + w)p+1 − δ 1
2 (v + w)∆ϕ

+ 2δ
1
2∇(v + w) · ∇ϕ+ B(ϕ)v + 〈u,Q〉v, ∂2αv〉L2

≤ 2
(
δ|〈∂α∆w, ∂αv〉L2 |+ δ|κ|

∣∣〈∂α(e−pδ− 1
2 ϕ(v + w)p+1

)
, ∂αv

〉
L2

∣∣
+ δ

1
2 |〈∂α

(
(v + w)∆ϕ

)
, ∂αv〉L2 |+ δ1/2|〈∂α

(
∇(v + w) · ∇ϕ

)
, ∂αv〉L2 | (2.12)

+ |〈∂α
(
B(ϕ)v

)
, ∂αv〉L2 |+ |

〈
∂α
(
〈u,Q〉v

)
, ∂2αv

〉
L2 |
)
.

We observe that since all the functions involved in the above estimate are in H2s+2(Td,R), no boundary terms
appear when integrating by parts.

Notice that there exist constants C > 0, independent of δ, such that |〈∇v · ∇ϕ, ∂2αv〉L2 | ≤ C‖ϕ‖H2s+1‖v‖2Hs and∣∣〈∂α(e−pδ− 1
2 ϕ(v + w)p+1

)
, ∂αv

〉
L2

∣∣ ≤ C‖e−pδ− 1
2 ϕ‖L∞‖ϕ‖sHs+1

(
psδ−

s
2 + 1

)
‖v + w‖p+1

Hs ‖v‖Hs .

6



Hence, we deduce the existence of a constant C > 0, independent of δ, such that

∂t‖∂αv‖2L2 ≤ Cδ‖w‖Hr‖v‖Hs + Cδ‖e−pδ
− 1

2 ϕ‖L∞(δ−
s
2 + 1)‖v + w‖p+1

Hs ‖v‖Hs + Cδ
1
2 ‖v + w‖Hs‖v‖Hs

+ Cδ1/2‖v‖2Hs + Cδ1/2‖w‖Hr‖v‖Hs + C‖v‖2Hs + C‖v‖2Hs .

Now, we have that ‖e−δ
− 1

2 ϕ‖L∞(δ−
s
2 +1)

δ→0−−−→ 0 thanks to the positivity of ϕ. Using (2.9) and the Young’s inequality
we deduce that there exists C > 0, independent of δ, such that

∂t‖∂αv‖2L2 ≤ Cδ3/4‖v‖Hs + Cδ‖v‖p+2
Hs + Cδ‖v‖Hs + Cδ

1
2 ‖v‖2Hs + Cδ

1
2 ‖v‖Hs

+ Cδ1/2‖v‖2Hs + Cδ1/4‖v‖Hs + C‖v‖2Hs + C‖v‖2Hs
≤ Cδ1/2 + C(1 + δ1/2)‖v‖2Hs + Cδ‖v‖p+2

Hs .

The last relation holds for t ≤ δ−1T δ. We recall that ‖ · ‖2Hs =
∑
α∈Nd
|α|≤s

‖∂α · ‖2L2 and therefore there exists C > 0

such that

∂t‖v‖2Hs ≤ Cδ1/2 + C(1 + δ1/2)‖v‖2Hs + Cδ‖v‖p+2
Hs .

By the Grönwall Lemma and recalling (2.11) we obtain that

‖v(t)‖2Hs ≤ eC(1+δ1/2)t

(
Cδ1/2t+ ‖ψ0 − ψδ0‖2Hs + Cδ

∫ t

0

‖v(y)‖p+2
Hs dy

)
(2.13)

for t ≤ δ−1T δ and for every ψ0 ∈ H2s+2(Td,R). Finally, we can extend the validity of (2.13) for every ψ0 ∈ Hs(Td,R)
thanks to item ii. of Proposition 2.1 and to the density of H2s+2(Td,R) into Hs(Td,R) with respect to the Hs-norm.

Properties of the maximal time. It remains to prove (2.8). We consider δ0 > 0 sufficiently small so that, for
0 < δ < δ0, we have ‖ψ0 − ψδ0‖2Hs < 1/2 and then

‖v(0)‖2Hs < 1/2.

Denote τ δ := sup
{
t < δ−1T δ : ‖v(t)‖Hs < 1

}
. The above inequality yields τ δ > 0. If τ δ = +∞ then (2.8) is

obviously verified. Thus, let us assume that
τ δ < +∞.

To prove (2.8) we show that for δ0 > 0 sufficiently small and 0 < δ < δ0 we have τ δ ≥ 1. Assume by contradiction
that, for every δ0 > 0 small, there exists 0 < δ < δ0 such that τ δ < 1. Thanks to (2.13), we get

1 = ‖v(τ δ)‖2Hs < eC(1+δ1/2)τδ

(
Cδ1/2τ δ + ‖ψ0 − ψδ0‖2Hs + Cδ

∫ τδ

0

‖v(y)‖p+2
Hs dy

)
. (2.14)

We recall that, by definition, ‖v(t)‖Hs < 1 in [0, τ δ). For δ0 sufficiently small we have

eC(1+δ1/2)τδ
(
Cδ1/2τ δ + ‖ψ0 − ψδ0‖2Hs

)
<

1

2
, (2.15)

since 0 < δ < δ0. Moreover,

eC(1+δ1/2)τδ

(
Cδ1/2τ δ + ‖ψ0 − ψδ0‖2Hs + Cδ

∫ τδ

0

‖v(y)‖p+2
Hs dy

)
< 1,

which contradicts (2.14). Hence, we conclude that there exists δ0 > 0 sufficiently small such that τ δ > 1 for every
0 < δ < δ0. Thus, (2.8) holds true.

Conclusion. Finally, 1 ∈ [0, τ δ) ⊂ [0, δ−1T δ) and thanks to (2.13) we have established the validity of (2.7) since

‖v(1)‖2Hs ≤ eC(1+δ1/2)
(
Cδ1/2 + ‖ψ0 − ψδ0‖2Hs + Cδ

)
→ 0 as δ → 0+.
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A first simple consequence of Proposition 2.3, concerning the control of (NHE), is the following small-time global
approximate null-controllability.

Corollary 2.4. Let s ∈ N∗ be such that s > d/2 and 1 ∈ span{Q1, ..., Qq}. Assume ψ0 ∈ Hs(Td,R). For any
ε, T > 0, there exists (u1, ..., uq) ∈ L2((0, T ),Rq) such that the solution ψ(t;ψ0, u) of the (NHE) in [0, T ] with control
u = (u1, ..., uq, 0, 0) is well-defined and

‖ψ(T ;ψ0, u)‖Hs < ε.

Proof. For any ε̃ > 0, consider c > 0 sufficiently large so that

|e−c| < ε̃

2‖ψ0‖Hs
=⇒ ‖e−cψ0‖Hs <

ε̃

2
.

Let −c =
∑q
j=1 ujQj for some (u1, . . . , uq) ∈ Rq. Thanks to Proposition 2.3, there exists δ > 0 such that the

constant control u = (u1, . . . , uq)/δ : [0, δ]→ Rq is such that the solution of (NHE) is well-defined in [0, δ] and

‖ψ(δ;ψ0, u/δ)− e−cψ0‖Hs < ε̃/2.

The triangular inequality ensures the result since, when we consider the control v = u
δ , we have

‖ψ(δ;ψ0, v)‖Hs ≤ ‖ψ(δ;ψ0, v)− e−cψ0‖Hs + ‖e−cψ0‖Hs < ε̃.

The dynamics can be obtained exactly in a time T , since 0 is stationary solution of (NHE) with control u = 0.
Indeed, thanks to the second point of Proposition 2.1, when ε̃ is sufficiently small the two solutions ψ(T −
δ;ψ(δ;ψ0, v), 0), ψ(T − δ; 0, 0) ≡ 0, are defined in the same time interval [0, T ]. Now, the first point of Proposition
2.1 yields the existence of C > 0, independent of ψ(δ;ψ0, v), such that

‖ψ(T − δ;ψ(δ;ψ0, v), 0)− ψ(T − δ; 0, 0)‖Hs ≤ C‖ψ(δ;ψ0, v)‖Hs < ε̃C.

The proof is therefore concluded since, for every ε > 0, it is sufficient to chose ε̃ = ε
C .

3 Small-time approximate controllability

The aim of this section is to prove the small-time approximate controllability results stated in Main Theorem A.

3.1 An intermediate controllability result

Let us recall the definition of Ĥ and H0 provided in Assumption I

H0 = spanR{Q ∈ Ĥ}, Ĥ = {Q1, . . . , Qq}.

We define Hj , for every j ∈ N∗, iteratively as the largest vector space containing elements ψ of the form

ψ = ϕ0 +

p∑
k=1

B(ϕk), ϕ0, . . . , ϕp ∈ Hj−1, p ∈ N, (3.1)

where the non-linear operator B is defined in (2.3). We also denote

H∞ =

∞⋃
j=0

Hj .

Let us recall the following result from the work [25].

Proposition 3.1. [25, Proposition 2.6] If Assumptions I are verified, then H∞ is dense in Hs(Td,R), s ≥ 0.

We start by ensuring the following property of small-time approximate controllability for (NHE).

Proposition 3.2. Let s ∈ N∗ be such that s > d/2 and (Q1, ..., Qq) ∈ C∞(Td,Rq) be such that 1 ∈ H0. Assume that
H∞ is dense in Hs(Td,R). Let ψ0 ∈ Hs(Td,R) and ϕ ∈ Hs(Td,R). For any ε, T > 0, there exist τ ∈ [0, T ) and
(u1, ..., uq) ∈ L2((0, τ),Rq) such that the solution ψ(t;ψ0, u) of (NHE) with control u = (u1, ..., uq, 0, 0) is well-defined
in [0, τ ] and

‖ψ(τ ;ψ0, u)− eϕψ0‖Hs < ε.
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Proof. Let us recall that the concatenation v ∗ u of two scalar control laws u : [0, T1]→ Rq+2, v : [0, T2]→ Rq+2 is
the control law defined on [0, T1 + T2] as follows

(v ∗ u)(t) =

{
u(t), t ∈ [0, T1]

v(t− T1), t ∈ (T1, T1 + T2].

Such definition extends to controls with values in Rq, componentwise. We will often use the fact that

ψ(T1 + t;ψ0, v ∗ u) = ψ(t;ψ(T1, ψ0, u), v), t > 0.

Let us start by assuming that the following property holds for any n ∈ N:

(Pn) for any ψ0 ∈ Hs(Td,R), φ ∈ Hn, and any ε, T > 0, there exist τ ∈ [0, T ) and (u1, ..., uq) : [0, τ ] → Rq
piecewise constant such that the solution of the (NHE) associated with the initial condition ψ0 and control
u = (u1, ..., uq, 0, 0) satisfies ∥∥ψ(τ ;ψ0, u)− eφψ0

∥∥
Hs(Td)

< ε.

Property (Pn) combined with the density feature given in Proposition 3.1 implies at once the statement.

We are thus left to prove (Pn). An analogous property appeared in [25, Theorem 2.2] in the study of nonlinear
Schrödinger equations with bilinear control. We provide the proof for completeness. Let us proceed by induction on
the index n.

Inductive basis: n = 0
If φ ∈ H0, there exists (u1, ..., uq) ∈ Rq such that φ(x) = 〈u,Q(x)〉 with u = (u1, ..., uq, 0, 0). Consider then the
solution of (NHE) associated with the constant control uτ := u/τ ∈ Rq and with the initial condition ψ0. Applying
Proposition 2.3 with ϕ = 0, we find τ ∈ [0, T ) such that∥∥ψ(τ ;ψ0, u

τ )− eφψ0

∥∥
Hs(Td)

< ε,

which proves the desired property.

Inductive step: n⇒ n+ 1
By assuming that (Pn) holds, we prove (Pn+1). If φ ∈ Hn+1, there exist N ∈ N and φ0, . . . , φN ∈ Hn such that

φ = φ0 +

N∑
j=1

B(φj).

Consider φ1 and c > 0 such that φ̃1 = φ1 + c ≥ 0 and note that B(φ̃1) = B(φ1). Thanks to Proposition 2.3, we can
fix γ ∈ [0, T/3) small enough such that∥∥∥eγ−1/2φ̃1ψ(γ; e−γ

−1/2φ̃1ψ0, 0)− eB(φ1)ψ0

∥∥∥
Hs

< ε/2.

Since c ∈ H0, φ1 ∈ Hn, then φ̃1 ∈ Hn. Thanks to the inductive hypothesis, for any σ, T, γ > 0 there exist δ ∈ [0, T/3)

and a piecewise constant control uδ,γ = (uδ,γ1 , ..., uδ,γq , 0, 0) : [0, δ]→ Rq+2 such that∥∥∥ψ(δ;ψ0, u
δ,γ)− e−γ

−1/2φ̃1ψ0

∥∥∥
Hs

< σ. (3.2)

Let now the dynamics evolve freely in a time interval of leght γ, that is, we consider the control 0|[0,γ] = (0, . . . , 0) :
[0, γ]→ Rq+2. From (2.1) we deduce that there exists C = C(γ) such that

∥∥∥ψ(δ + γ;ψ0, 0|[0,γ] ∗ uδ,γ)− ψ(γ; e−γ
−1/2φ̃1ψ0, 0)

∥∥∥
Hs

=
∥∥∥ψ(γ;ψ(δ, ψ0, u

δ,γ), 0)− ψ(γ; e−γ
−1/2φ̃1ψ0, 0)

∥∥∥
Hs

< Cσ.

We use again the inductive hypothesis to deduce that there exist δ′ ∈ [0, T/3) and a piecewise constant control

uδ
′,γ = (uδ

′,γ
1 , ..., uδ

′,γ
q , 0, 0) : [0, δ′]→ Rq+2 such that∥∥∥ψ(δ′;ψ(γ, e−γ

−1/2φ̃1ψ0, 0), uδ
′,γ)− eγ

−1/2φ̃1ψ(γ; e−γ
−1/2φ̃1ψ0, 0)

∥∥∥
Hs

< σ.
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Then, thanks to (2.1), there exists C ′ = C ′(‖uδ′,γ‖L2 , δ′) such that∥∥∥ψ(δ + γ + δ′;ψ0, u
δ′,γ ∗ 0|[0,γ] ∗ uδ,γ)− eB(φ1)ψ0

∥∥∥
Hs

≤
∥∥∥ψ(δ′;ψ(δ + γ;ψ0, 0|[0,γ] ∗ uδ,γ), uδ

′,γ)− ψ(δ′;ψ(γ; e−γ
−1/2φ̃1ψ0, 0), uδ

′,γ)
∥∥∥
Hs

+
∥∥∥ψ(δ′;ψ(γ; e−γ

−1/2φ̃1ψ0, 0), uδ
′,γ)− eγ

−1/2φ̃1ψ(γ; e−γ
−1/2φ̃1ψ0, 0)

∥∥∥
Hs

+
∥∥∥eγ−1/2φ̃1ψ(γ; e−γ

−1/2φ̃1ψ0, 0)− eB(φ1)ψ0

∥∥∥
Hs

≤ C ′Cσ + σ + ε/2.

Choosing σ > 0 small enough such that C ′Cσ + σ < ε/2, we have then proved that the piecewise constant control
uδ
′,γ ∗ 0|[0,γ] ∗ uδ,γ steers the initial state ψ0 ε-close to the state eB(φ1)ψ0 in time τ := δ′ + γ + δ < T . We can now

repeat the same argument for φ2, reasoning as if we were starting from the initial state eB(φ1)ψ0, and prove that the
system can be driven arbitrarily close to the state eB(φ1)+B(φ2)ψ0 in arbitrarily small time, and hence, by iteration, to

e
∑N
i=1 B(φi)ψ0. By inductive hypothesis we conclude that there exists a piecewise constant control u leading the state

e
∑N
i=1 B(φi)ψ0 arbitrarily close to eφ0+

∑N
i=1 B(φi)ψ0. in arbitrarily small time. This completes the proof of property

(Pn).

3.2 Small-time global approximate controllability

In this section we prove a more general results which in fact has inspired Main Theorem A.

Theorem 3.3. Let s ∈ N∗, s > d/2 and let (Q1, ..., Qq) ∈ C∞(Td,Rq) be such that 1 ∈ H0 and H∞ is dense in
Hs(Td,R).

i. Let ψ0, ψ1 ∈ Hs(Td,R) be such that sign(ψ0) = sign(ψ1). For any ε > 0 and T > 0, there exist τ ∈ (0, T ]
and (u1, ..., uq) ∈ L2((0, τ),Rq) for which the solution ψ(t;ψ0, u) of (NHE) with control u = (u1, ..., uq, 0, 0) is
well-defined in [0, τ ] and satisfies

‖ψ(τ ;ψ0, u)− ψ1‖L2 < ε.

ii. Let ψ0, ψ1 ∈ Hs(Td,R) be such that ψ0, ψ1 > 0 (or ψ0, ψ1 < 0). For any ε > 0 and T > 0, there exists
(u1, ..., uq) ∈ L2((0, T ),Rq) such that the solution ψ(t;ψ0, u) of (NHE) with control u = (u1, ..., uq, 0, 0) is
well-defined in [0, T ] and verifies

‖ψ(T ;ψ0, u)− ψ1‖Hs < ε.

Proof. Let us start by proving i.. Denote by Z the set of zeroes of ψj , for j = 0, 1. Consider for η > 0 the set

Zη := {x ∈ Td | dist(x, Z) < η},

and its complement in Td, Zcη. For η > 0, we define

φη = ρη log(ψ1/ψ0),

where ρη is a smooth function compactly supported inside Zcη. φη is well-defined because ψ1/ψ0 > 0 on Zcη.

Furthermore, ρη belongs to Hs(Td). Notice that

‖eφηψ0 − ψ1‖L2(Td) ≤ ‖eφηψ0 − ψ1‖L2(Zcη) + ‖ψ0 + ψ1‖L2(Zη)

Fixed any ε, T > 0, observe that we can choose η > 0 small enough such that

‖eφηψ0 − ψ1‖L2(Td) < ε/2.

We then apply Proposition 3.2 with ϕ = φη and we deduce that there exist a time τ ∈ [0, T ) and a control
u = (u1, ..., uq, 0, 0) ∈ L2((0, τ),Rq+2) such that the solution ψ(t;ψ0, u) of (NHE) is well-defined in [0, τ ] and

‖ψ(τ ;ψ0, u)− eϕψ0‖L2 < ε/2.

By the triangular inequality we conclude that

‖ψ(τ ;ψ0, u)− ψ1‖L2 ≤ ‖ψ(τ ;ψ0, u)− eϕψ0‖L2 + ‖eϕψ0 − ψ1‖L2 < ε,
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and the first item of the Proposition is then proved.

The proof of ii. follows from the same strategy used for proving i.. However, we now consider the Hs instead of
the L2-norm. Observe that Proposition 3.2 is valid for the Hs-norm. In this case, we substitute φη with two functions
φ1 = log(1/ψ0) and φ2 = log(ψ1) which are well-defined everywhere in Td. Note that φ1, φ2 ∈ Hs(Td,R) since
ψ1, ψ0 ∈ Hs(Td,R). Proposition 3.2 with ϕ = φ1 yields the existence of a control u1 = (u1

1, ..., u
1
q , 0, 0) : [0, τ1)→ Rq+2

which steers ψ0 close to the constant state 1 in time τ1 ≤ T/2. We apply again Proposition 3.2 with ϕ = φ2. Thus,
we can find a control u2 = (u2

1, ..., u
2
q, 0, 0) : [0, τ2)→ Rq+2 such that the solution of (NHE) starting from a state

close to 1 at time τ2 ≤ T/2 reaches a neighbourhood of the final target ψ1. Hence, the approximate controllability
in Hs can be achieved in time T by exploiting that 1 is a stationary solution of (NHE) associated to the control
ustat = (ustat1 , ..., ustatq , 0, 0) : [0, T − τ1 − τ2] → Rq+2, thanks to the assumption that 1 ∈ H0. The control will
therefore be defined as

(u2 ∗ ustat ∗ u1)(t) = 1[0,τ1)u
1(t) + 1[τ1,T−τ2]u

stat(t− τ1) + 1(T−τ2,T ]u
2(t− T + τ2).

Remark 3.4. The reason why the first part of Theorem 3.3 (and, consequently, of Main Theorem A) is stated only
for the L2-norm, while the second part is valid with the stronger Hs-norm, is due to our approximation technique.
More precisely, the term ‖eφηψ0 − ψ1‖L2(Zcη) cannot be small for η → 0 with respect to the Hs-norm, s > 0, as soon

as Z 6= ∅.

Proof of Main Theorem A. Main Theorem A follows from Theorem 3.3. Indeed, thanks to Proposition 3.1, the
space H∞ is dense in Hs(Td,R). Furthermore, the potentials Qj belong to Hr(Td,R) for every r > 0. Therefore,
the proof is completed.

4 Exact controllability to the ground state solution

We now move to the proof of Main Theorem B. Henceforth, we suppose d = s = 1. Let the solution of (NHE) exist
for any time T > 0. For instance, it is enough to require p ∈ 2N∗, κ ≥ 0 and ψ0 ∈ H3(T), as stated in Proposition
2.2. Main Theorem B will be a direct consequence of the following more general result.

Theorem 4.1. Let κ ≥ 0 and p ∈ 2N∗. Assume Assumptions II be verified and H∞ be dense in H3(T,R). Then,
(NHE) is exactly controllable to the ground state solution Φ in any positive time from any positive state. In other
words, for any T > 0 and

ψ0 ∈ {ψ ∈ H3(T,R) : sgn(ψ) > 0},

there exists u ∈ L2((0, T ),Rq+2) such that
ψ(T ;ψ0, u) = Φ.

Analogously, for any T > 0 and
ψ0 ∈ {ψ ∈ H3(T,R) : sgn(ψ) < 0},

there exists u ∈ L2((0, T ),Rq+2) such that
ψ(T ;ψ0, u) = −Φ.

Example 4.2. Examples of suitable functions µ1 and µ2 verifying hypotheses (1.5) in Assumptions II are

µ1 = x3(2π − x)3, µ2 = x3(x− π)3(x− 2π)3.

Indeed, both functions belong to H3(T,R), µ1 is symmetric with respect to x = π and µ2 is antisymmetric. Thus,
〈µ1, c0〉L2 6= 0 and 〈µ2, c0〉L2 = 0. Moreover,

〈µ1, sk〉L2 = 0, 〈µ2, ck〉L2 = 0.

By further computations, the remaining hypotheses in (1.5) are verified since

〈µ1, ck〉L2 =
96π(k2π2 − 15)

k6
, 〈µ2, sk〉L2 =

−864π(840− 105k2π2 + 2k4π4)

k9
.

Before proving Theorem 4.1, and consecutively Main Theorem B, we need to ensure the following local exact
controllability result to the ground state solution Φ = 1√

2π
.
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Theorem 4.3. Let κ ≥ 0 and p ∈ 2N∗. Assume Assumptions II be verified. Then, (NHE) is locally exactly controllable
to the ground state solution Φ in any positive time. In other words, for any T > 0 there exists RT > 0 such that, for
any

ψ0 ∈ {ψ ∈ H3(T,R) : ‖ψ − Φ‖H1 < RT },

there exists (u1, u2) ∈ H1((0, T ),R2) such that ψ(T ;ψ0, u) = Φ, where u = ( κ
Φp , 0, ..., 0, u1, u2). Furthermore,

‖u‖H1(0,T ) ≤
e−π

2Γ0/T

e2π2Γ0/(3T ) − 1
, (4.1)

where
Γ0 := 2ν + (max{ln γ1, 0}+ max{lnC2

Q, 0}+ γ2 + ln 8)/2 (4.2)

with

γ1 := 2κ(p+ 1)2

p+1∑
j=2

(
p+ 1

j

)
Φp+1−j , γ2 := 2κ(p+ 1)Φp +

p+1∑
j=2

(
p+ 1

j

)
Φp+1−j + 1,

and
RT = e−6Γ0/T1 , (4.3)

with

T1 := min
{ 6

π2
T, 1, T0

}
.

The constant T0 is defined in (4.5) and CQ in (C.4).

4.1 Control of the linearized system

The result of Theorem 4.3 follows from the null-controllability of an associated linear system and the iteration of a
control procedure on a clever choice of time steps, as proposed in [6].

We first observe that the ground state Φ = 1/
√

2π is solution of (NHE) in any time interval [0, T ] for u =
(uκ, 0, 0, . . . , 0), with uκ = κ

(2π)p/2
and ψ0 = Φ. Indeed, we recall that Q1 = 1, thanks to Assumptions II.

Let s1, s0 > 0. Consider the following linear system{
∂tξ(t)− ∂2

xξ(t) + κpξ(t) = 〈v(t), Q〉Φ, t ∈ (s0, s1).

ξ(s0) = ξ0,
(4.4)

with Q = (Q1, ..., Qq, µ1, µ2) ∈ H3(T,Rq+2) and q ∈ N∗. We denote by ξ(·; s0, ξ0, v) the solution of (4.4) with initial
condition ξ0 at time s0 and control v.

Definition 4.4. The pair (−∂2
x, Q) is said to be 1-null controllable in time T > s0 if there exists a constant N(T ) > 0

such that for any ξ0 ∈ L2(T,R), there exists a control v ∈ L2((s0, T ),Rq+2) such that ξ(T ; s0, ξ0, v) = 0 and moreover
‖v‖L2(0,T ) ≤ N(T ) ‖ξ0‖L2 . The best constant, that is,

N(T ) := sup
‖ξ0‖L2=1

inf {‖v‖L2 : ξ(T ; s0, ξ0, v) = 0}

is called the control cost. If v ∈ H1
0 ((s1, T ),Rq+2), the pair (−∂2

x, Q) is called smoothly 1-null controllable and

N(T ) := sup
‖ξ0‖L2=1

inf {‖v‖H1 : ξ(T ; s0, ξ0, v) = 0}

Remark 4.5. Let us observe that, fixed v ∈ L2((s0, s1),Rq+2) and Q ∈ H1(T,Rq+2), for any ξ0 ∈ L2(T,R), there
exists a unique mild solution

ξ ∈ C([s0, s1], L2(T))

of (4.4) (see [6, Proposition 2.1] adapted to the current case). Furthermore, given a smoother initial condition of
(4.4), for instance ξ0 ∈ H1(T), the solution ξ belongs to the space

C([s0, s1], H1(T)) ∩H1((s0, s1), L2(T)) ∩ L2((s0, s2), H2(T)).

Such regularity is called maximal regularity, and it is due to the analiticity of the semigroup generated by the
operator ∂2

x (see, for instance, [6, Proposition 4] and [4, Corollary 3] that can be adapted to (4.4)).
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The result that follows shows that we use the last two components of the control to drive the linear system (4.4)
to rest. Henceforth, where constants C come with no specific index, they may vary from line to line.

Proposition 4.6. Let Assumptions II be verified. Then, (−∂2
x, Q) is smoothly null controllable in any time T > 0.

Namely, for any ξ0 ∈ L2(T,R), there exists (v1, v2) ∈ H1
0 ((0, T ),R2) such that the solution of (4.4) with (s0, s1) =

(0, T ) and v = (0, ..., 0, v1, v2) satisfies
ξ(T ; ξ0, v) = 0.

Furthermore, there exist ν, T0 > 0 such that

N(τ) ≤ eν/τ , ∀ 0 < τ ≤ T0. (4.5)

Proof. For all T > 0, we want to prove the existence of N(T ) > 0 such that for any initial condition ξ0 ∈ L2(T,R)
there exists a control v = (0, ..., 0, v1, v2) so that ξ(T ; ξ0, v) = 0. To this purpose, we first note that the operator
−∂2

x + pκ exhibits double eigenvalues λ̃j = λj + pκ with j ∈ N (see definition (1.3) of λj), with the exception of the
first one, associated to the eigenfunctions {c0, cj , sj}j∈N∗ , defined in (1.4).

Let us consider the reduced problem (4.4) with Q̂ = (µ1, µ2) and (s0, s1) = (0, T ). We look for a control of the
form v̂ = (v1, v2). We decompose the solution with respect to the Hilbert basis {c0, ck, sk}k∈N∗ . Recalling that
〈µ1, sk〉L2 = 〈µ2, ck〉L2 = 0, the smooth-null controllability property is equivalent to finding v̂ ∈ H1

0 ((0, T );R2) such
that

0 = ξ(T ; ξ0, v̂) =
∑
k∈N

e−λ̃kT 〈ξ0, ck〉L2ck +
∑
k∈N∗

e−λ̃kT 〈ξ0, sk〉L2sk

−
∫ T

0

v1(s)
∑
k∈N

e−λ̃k(T−s)〈µ1Φ, ck〉L2ck ds−
∫ T

0

v2(s)
∑
k∈N∗

e−λ̃k(T−s)〈µ2Φ, sk〉L2sk ds.

Notice that Φ = c0 is a constant. The above relation is verified when the following infinite number of identities are
satisfied for a control function v̂ = (v1, v2)

〈ξ0, ck〉L2 = c0

∫ T

0

eλ̃ksv1(s)〈µ1, ck〉L2 ds, ∀ k ∈ N,

〈ξ0, sk〉L2 = c0

∫ T

0

eλ̃ksv2(s)〈µ2, sk〉L2 ds, ∀ k ∈ N∗,

that can be rewritten in compact form as∫ T

0

eλksṽ1(s) ds = d1
k, ∀ k ∈ N, (4.6)∫ T

0

eλksṽ2(s) ds = d2
k, ∀ k ∈ N∗, (4.7)

where

d1
k :=

〈ξ0, ck〉L2

c0〈µ1, ck〉L2

, d2
k :=

〈ξ0, sk〉L2

c0〈µ2, sk〉L2

∀ k ∈ N∗,

are well-defined thanks to Assumptions II and

ṽ1(s) = epκsv1(s), ṽ2(s) = epκsv2(s).

We treat (4.6) an (4.7) as two separate moment problems. Let us start solving (4.6). We seek for a function ṽ1 such
that

ṽ′1(t) = r1

(
T

2
− t
)
e−(T2 −t), r1 ∈ L2

(
−T

2
,
T

2

)
.

Therefore, it should hold

ṽ1(t)− ṽ1(0) =

∫ t

0

ṽ′1(s)ds =

∫ t

0

r1

(
T

2
− s
)
e−(T2 −s)ds.
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We require that ṽ1(0) = ṽ1(T ) = 0, which implies that r1 must satisfy∫ T
2

−T2
r1(s)e−sds = 0. (4.8)

Integrating by parts (4.6) and taking into account that ṽ1(0) = ṽ1(T ) = 0, we get for any k ∈ N∗

d1
k =

∫ T

0

eλksṽ1(s)ds =
1

λk

(
eλktṽ1(t)

∣∣T
0
−
∫ T

0

e−(T2 −t)+λktr1

(
T

2
− t
)
dt

)

=
1

λk

∫ T
2

−T2
e−s+λk(T2 −s)r1(s)ds.

The above identities can be rewritten as follows∫ T
2

−T2
e−(1+λk)sr1(s)ds = λkd

1
ke
−T2 λk , k ∈ N∗.

For k = 0 we have that

d1
0 =

∫ T

0

ṽ1(s)ds = sṽ1(s)|T0 −
∫ T

0

sr1

(
T

2
− s
)
e−(T2 −s)ds =

∫ T
2

−T2

(
T

2
− s
)
r1(s)e−sds

= −
∫ T

2

−T2
se−sr1(s)ds,

where we have used (4.8). Define the family

ωk := 1 + λk, k ∈ N∗,

and the sequence d̃1
kj

d̃1
01 = −d0, d̃1

k1 = 0, k ∈ N∗,

d̃1
00 = 0, d̃1

k0 = λkd
1
ke
−T2 λk , k ∈ N∗.

Thus, we look for r1 ∈ L2
(
−T2 ,

T
2

)
such that∫ T
2

−T2
sje−ωksr1(s)ds = d̃1

kj , j = 0, 1, k ∈ N. (4.9)

As proved in [11, Theorem 1.5], there exists T0 > 0 such that for every 0 < T < T0 there exists a family

{σk,j}k,j∈N ⊂ L2

(
−T

2
,
T

2

)
which is biorthogonal to

ekj(s) = sje−ωks, k, j ∈ N,

and moreover
‖σk,j‖L2(−T/2,T/2) ≤ Ce

C
√
ωk+C

T , j = 0, 1, k ∈ N∗.

Therefore, by defining

r1(s) := d̃1
01σ01 +

∞∑
k=1

d̃1
k0σk0(s),
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we deduce that r1 solves the moment problem (4.9). Let us finally show that r1 ∈ L2
(
−T2 ,

T
2

)
:

‖r1‖L2(−T/2,T/2) ≤ |d̃
1
00| ‖σ01‖L2(−T/2,T/2) +

∞∑
k=1

|d̃1
k0| ‖σk0‖L2(−T/2,T/2)

≤ CeC/T |d̃1
00|+ C

∞∑
k=1

λk|d1
k|e−

T
2 λk+C

√
1+λk+C

T

≤ CeC/T
 |〈ξ0, c0〉L2 |
c0|〈µ1, c0〉L2 |

+

( ∞∑
k=1

λ2
ke
−Tλk+C

√
λk+1

c20|〈µ1, ck〉L2 |2

)1/2

‖ξ0‖L2


≤ CeC/T

1 +

( ∞∑
k=1

λ
2(q1+1)
k e−Tλk+C

√
λk+1

)1/2
 ‖ξ0‖L2 ,

where q1 is the parameter introduced in Assumptions II. Let us analyse the behaviour with respect to T of the
following series:

S(T ) :=

∞∑
k=1

λ
2(q1+1)
k e−Tλk+C

√
λk+1 =

∞∑
k=1

(
λ

2(q1+1)
k e−

T
2 λk
)
e−

T
2 λk+C

√
λk+1. (4.10)

For any λ ≥ 0, we introduce the function f(λ) := e−
T
2 λ+C

√
λ+1. Its derivative is given by

f ′(λ) = e−
T
2 λ+C

√
λ

(
−T

2
+

C

2
√
λ+ 1

)
, (4.11)

and its maximum is attended at λ =
(
C
T

)2 − 1. Hence, for every 0 < T ≤ 1 we have

S(T ) ≤ eT2 +C
T

∞∑
k=1

(
λ

2(q1+1)
k e−

T
2 λk
)
≤ eCT

∞∑
k=1

(
λ

2(q1+1)
k e−

T
2 λk
)
. (4.12)

Now, for any λ ≥ 0, we consider the function g(λ) := λ2(q1+1)e−
T
2 λ. From its derivative g′(λ) = λ2q1+1e−

T
2 λ
(
2(q1 + 1)− T

2 λ
)
,

we deduce that

g(λ) is

 increasing if 0 ≤ λ < 4(q1+1)
T

decreasing if λ ≥ 4(q1+1)
T

(4.13)

and g has a maximum for λ = 4(q1+1)
T . We define the index

k1 := k1(T ) = sup

{
k ∈ N∗ : λk ≤

4(q1 + 1)

T

}
. (4.14)

We can rewrite the sum in (4.12) as

∞∑
k=1

λ
2(q1+1)
k e−

T
2 λk =

∑
1≤k≤k1−1

λ
2(q1+1)
k e−

T
2 λk +

∑
k1≤k≤k1+1

λ
2(q1+1)
k e−

T
2 λk +

∑
k≥k1+2

λ
2(q1+1)
k e−

T
2 λk . (4.15)

For any 1 ≤ k ≤ k1 − 1, we have∫ λk+1

λk

λ2(q1+1)e−
T
2 λdλ ≥ (λk+1 − λk)λ

2(q1+1)
k e−

T
2 λk ≥ λ2(q1+1)

k e−
T
2 λk , (4.16)

and for any k ≥ k1 + 2, it holds that∫ λk

λk−1

λ2(q1+1)e−
T
2 λdλ ≥ (λk − λk−1)λ

2(q1+1)
k e−

T
2 λk ≥ λ2(q1+1)

k e−
T
2 λk . (4.17)
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Therefore, we obtain that

∞∑
k=1

λ
2(q1+1)
k e−

T
2 λk ≤ 2

∫ ∞
0

λ2(q1+1)e−
T
2 λdλ+

∑
k1≤k≤k1+1

λ
2(q1+1)
k e−

T
2 λk . (4.18)

Recalling that g has a maximum at λ = 4(q1+1)
T , we have that

λ
2(q1+1)
k e−

T
2 λk ≤

(
4(q1 + 1)

T

)2(q1+1)

e−2(q1+1), for k = k1, k1 + 1. (4.19)

Moreover, we can rewrite the integral term in (4.18) as∫ ∞
0

λ2(q1+1)e−
T
2 λdλ =

2

T

∫ ∞
0

(
2s

T

)2(q1+1)

e−sds

=

(
2

T

)2q1+3 ∫ ∞
0

s2(q1+1)e−sds = Γ(2q1 + 3)

(
2

T

)2q1+3

,

(4.20)

where by Γ(·) we indicate the Euler integral of the second kind. Therefore, thanks to (4.19) and (4.20) we conclude
that there exist two positive constants C1

q1 , C
2
q1 such that

∞∑
k=1

λ
2(q1+1)
k e−

T
2 λk ≤

C1
q1

T 2q1+2
+

C2
q1

T 2q1+3
. (4.21)

From the above estimate we can prove that there exist positive constants C for which

‖r1‖L2(−T/2,T/2) ≤ Ce
C/T ‖ξ0‖L2 , ∀ 0 < T < min{T0, 1}, (4.22)

and thus
‖(ṽ1)′‖L2(0,T ) ≤ e

T/2 ‖r1‖L2(−T/2,T/2) ≤ Ce
C/T ‖y0‖ , ∀ 0 < T < min{T0, 1}. (4.23)

From the Poincaré inequality, there exists a constant C > 0 such that for any ṽ ∈ H1
0 (0, T ) it holds that

‖ṽ1‖H1(0,T ) ≤ C ‖(ṽ1)′‖L2(0,T ), and we deduce that

‖ṽ1‖H1(0,T ) ≤ C ‖(ṽ1)′‖L2(0,T ) ≤ Ce
C/T ‖ξ0‖L2 , ∀ 0 < T < min{T0, 1}. (4.24)

Finally, recalling that v1(t) = e−pκtṽ1(t), we conclude that

‖v1‖2H1(0,T ) =

∫ T

0

e−2pκt|ṽ1(t)|2dt+

∫ T

0

((
e−2pkt|ṽ1(t)|

)′)2

dt

≤ C ‖ṽ1‖2H1(0,T ) ≤ Ce
C/T ‖ξ0‖2L2 ,

for all 0 < T ≤ min{T0, 1}. The same computations are also valid for the second component of the control v2 and
the proof is then completed.

4.2 Proof of Main Theorem B

We now prove Theorem 4.3.

Proof of Theorem 4.3. (1) Time decomposition and preliminaries. Let T > 0 and define

Tf := min{T, π
2

6
,
π2

6
T0},

where T0 is the constant in (4.5). Let T1 be defined as follows

T1 :=
6

π2
Tf .
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Observe that, with this choice 0 < T1 ≤ 1. We now defined the sequences

Tj :=
T1

j2
, j ≥ 1 and τn :=

n∑
j=1

Tj , n ≥ 0,

with the convention
∑0
j=1 Tj = 0. It is easy to prove that

∞∑
j=1

Tj = Tf

and thus we will perform an iterative control procedure on the consecutive time intervals [τn, τn+1], n ≥ 0 so that at
the limit n→∞ we will prove exact controllability of (NHE) to the ground state solution in time Tf .

(2) Estimates in the first time step: inductive basis. Let us set y = ψ − Φ, where ψ and Φ are solutions of (NHE)
associated with the initial conditions ψ0,Φ ∈ H3(T) and controls u ∈ H1

loc(R+,Rq+2) and û := (uκ, 0, 0, . . . , 0) with
uκ = κ

Φp , respectively. Consider the equation satisfied by y in a general time interval (s0, s1):{
∂ty(t)− ∂2

xy(t) + κ(y(t) + Φ)p+1 = 〈u(t), Q〉y(t) + 〈u(t), Q〉Φ, t ∈ (s0, s1)

y(s0) = ys0 = ψ(s0)− Φ.
(4.25)

Our aim is to prove that system (4.25) is null controllable in time Tf by means of a bilinear control u. This would
imply that ψ(Tf ;ψ0, 0, u) = Φ. For this purpose, we shall first consider problem (4.25) and its linearization (4.4),
with initial condition ξ0 = y0 := ψ0 − Φ, in the time interval [s0, s1] = [τ0, τ1] = [0, T1]. Observe that, thanks to the
regularity of ψ0 and u, the solution of (NHE) is globally in time well-defined (see Proposition 2.2), as well as the
solution of the associated linear system{

∂tξ(t)− ∂2
xξ(t) + κpξ(t) = 〈v1(t), Q〉Φ, t ∈ (τ0, τ1)

ξ(τ0) = ξ0,
(4.26)

(see Remark 4.5).
From Proposition 4.6 we deduce that there exists a control, defined as v1 = (0, . . . , 0, v1

1 , v
1
2), with (v1

1 , v
1
2) ∈

H1
0 ((τ0, τ1),R2) such that

ξ(τ1; τ0, ξ0, v
1) = 0,

and ∥∥v1
∥∥
H1(τ0,τ1)

≤ N(τ1) ‖ξ0‖L2 = N(τ1) ‖y0‖L2 ≤ N(τ1) ‖y0‖H1 , (4.27)

with N(τ1) that satisfies (4.5) (because τ1 ≤ T0). We now define

u1 = (uκ, 0, . . . , 0, v1, v2) ∈ H1((τ0, τ1),Rq+2).

Using such control in equation (NHE) (and so in (4.25) in the time interval [τ0, τ1]), one easily finds that (4.25)
reads as 

∂ty(t)− ∂2
xy(t) + κ

p+1∑
j=2

(
p+ 1

j

)
yj(t)Φp+1−j = 〈v1(t), Q〉y(t) + 〈v1(t), Q〉Φ, t ∈ (τ0, τ1)

y(τ0) = y0.

(4.28)

We recall that y0 ∈ H3(T,R) and that µ1, µ2 ∈ H3(T,R), thanks to Assumptions II. Hence, from the definition of
y = ψ − Φ and since ψ and Φ are both solutions of (NHE), we deduce from i. of Proposition 2.1 that

sup
τ0≤t≤τ1

‖y(t)‖H1 = sup
τ0≤t≤τ1

‖ψ(t)− Φ‖H1 ≤ C
(
‖ψ0 − Φ‖H1 +

∥∥u1 − û
∥∥
L2(τ1,τ1)

)
≤ C

(
‖y0‖H1 +

∥∥v1
∥∥
H1(τ1,τ1)

)
.

(4.29)
Thanks to (4.27), we conclude that

sup
τ0≤t≤τ1

‖y(t)‖H1 ≤ C (1 +N(τ1)) ‖y0‖H1 .

17



Now, we introduce w := y − ξ (we use the control u1 for y and v1 for ξ on the time interval [τ0, τ1]) and we observe
that w solves the following problem

∂tw(t)− ∂2
xw(t)− κ(p+ 1)Φpw(t) + κ

p+1∑
j=2

(
p+ 1

j

)
Φp+1−jyj(t) = 〈v1(t), Q〉y(t), t ∈ (τ0, τ1)

w(τ0) = 0.

(4.30)

Thanks to estimate (C.3) of Proposition C.1, we have that

sup
t∈[τ0,τ1]

‖w(t)‖H1 ≤ A4(τ1, ‖y0‖H1) ‖y0‖2H1 . (4.31)

Observe that our initial condition ψ0 satisfies ψ0 ∈ {ψ ∈ H3(T,R) : ‖ψ − Φ‖H1 < RT }, with RT defined in (4.3).
Therefore, since RT < 1, we have that ‖y0‖H1 < 1 and moreover

N(τ1) ‖y0‖H1 ≤ eν/τ1e−6Γ0/τ1 < 1

since Γ0 > ν (see definition (4.2)). Hence, we obtain that

A4(τ1, ‖y0‖H1) ≤ K(τ1) (4.32)

where

K2(τ) := 2

2κτ(p+ 1)2

p+1∑
j=2

(
p+ 1

j

)
Φp+1−j (1 +N(τ)4

)
+ C2

QN(τ)2
(
1 +N(τ)2

) ·
eτ(2κ(p+1)Φp+κ(p+1)

∑p+1
j=2 Φp+1−j+1). (4.33)

Remark 4.7. Notice that for any τ ≤ 1 it is possible to prove that

K(τ) ≤ eΓ0/τ . (4.34)

Since τ1 ≤ 1, we deduce that (4.34) holds for τ = τ1. Using (4.32) and (4.34) (for τ = τ1) in (4.31) and recalling
that ξ(τ1; τ0, ξ0, v

1) = 0, we conclude that∥∥y(τ1; τ0, y0, u
1)
∥∥
H1 ≤ eΓ0/τ1e−12Γ0/τ1 = e−11Γ0/τ1 < 1. (4.35)

(3) Induction argument. Inequality (4.36) enables us to apply an iterative argument. In fact, we have just proved
the first step of an induction procedure which consists in building in consecutive time intervals of the form [τn−1, τn],
n ≥ 1, a control un = (uκ, 0, ..., 0, u

n
1 , u

n
2 ) ∈ H1((τn−1, τn),Rq+2) such that

1. ‖un‖H1(τn−1,τn) ≤ N(Tn) ‖yn−1‖H1 ,

2. ξ(τn; τn−1, yn−1, v
n) = 0,

3. ‖y(τn; τn−1, yn−1, u
n)‖H1 ≤ e(

∑n
j=1 2n−jj2−2n6)Γ0/T1 ,

4. ‖y(τn; τn−1, yn−1, u
n)‖H1 ≤

∏n
j=1K(Tj)

2n−j ‖y0‖2
n

H1 ,

(4.36)

where vn := un − û and, thanks to Proposition 2.2,

yn−1 := y(τn−1, 0, y0, q
n−1) ∈ H3(T,R), (4.37)

qn−1(t) =

n−1∑
j=1

uj(t)χ[τj−1,τj ](t) (component-wise). (4.38)

Observe that, by construction

yn = y(τn; τn−1, yn−1, u
n) ∈ H3(T,R), ∀n ≥ 1.

We underline that, thanks to the global well-posedness of the solution of (NHE) (and so of (4.25)), we do not meet
any problem of existence when changing at each step of the proof the initial condition, the control and the time
interval.
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Let us now prove the iterative step of the induction argument. We suppose properties 1.–4. of (4.36) hold for
each j = 1, . . . , n− 1. Hence, suppose we have built controls uj = (uκ, 0, ..., u

j
1, u

j
2) ∈ H1((τj−1, τj),Rq+2) such that

1.–4. of (4.36) are satisfied. In particular, for j = n− 1, assume that

1.
∥∥un−1

∥∥
H1(τn−2,τn−1)

≤ N(Tn−1) ‖yn−2‖H1

2. ξ(τn−1; τn−2, yn−2, v
n−1) = 0

3.
∥∥y(τn−1; τn−2, yn−2, u

n−1)
∥∥
H1 ≤ e(

∑n−1
j=1 2n−1−jj2−2n−16)Γ0/T1

4.
∥∥y(τn−1; τn−2, yn−2, u

n−1)
∥∥
H1 ≤

∏n−1
j=1 K(Tj)

2n−1−j ‖y0‖2
n−1

H1 .

(4.39)

We now prove the existence of un = (uκ, 0, ..., 0, u
n
1 , u

n
2 ) ∈ H1((τn−1, τn),Rq+2) such that 1.–4. of (4.36) are fulfilled.

Define qn−1 and yn−1 as in (4.38) and (4.37). We apply Proposition 4.6 to the linear system (4.4) with (s0, s1) = (0, Tn)
and ξ(0) = yn−1. The result ensures the existence of a control ṽn = (0, ..., 0, ũn1 , ũ

n
2 ) ∈ H1

0 ((0, Tn),Rq+2) such verifies

‖ṽn‖H1(0,Tn) ≤ N(Tn) ‖yn−1‖H1 ,

with N(Tn) ≤ eν/Tn and
ξ(Tn; 0, yn−1, ṽ

n) = 0.

We set ũn(s) := û+ ṽn(s) = (uκ, 0, ..., 0, ũ
n
1 , ũ

n
2 ) with s ∈ [0, Tn]. Consider problem (4.25) for (s0, s1) = (0, Tn) with

y(0) = yn−1. By using the control ũn in (4.25), we get (4.28) in [0, Tn] with control ṽn instead of v1. We denote by
y(s; 0, yn−1, ũ

n) with s ∈ [0, Tn] its solution. Observe that, since

yn−1 = y(τn−1; 0, y0, qn−1) = y(τn−1; τn−2, yn−2, u
n−1) ∈ H3(T,R),

from 3. of (4.39) we deduce that

N(Tn) ‖yn−1‖H1 ≤ eνn
2/T1e(

∑n−1
j=1 2n−1−jj2−2n−16)Γ0/T1 ≤ e−(2n+3)Γ0/T1 < 1, (4.40)

where we have used that ν < Γ0 and the identity

n∑
j=0

j2

2j
= 2−n(−n2 − 4n+ 6(2n − 1)), ∀n ≥ 0.

Now, for s ∈ [0, Tn], we define
w(s) := y(s; 0, yn−1, ũ

n)− ξ(s; 0, yn−1, ṽ
n).

Thus, we apply Proposition C.1, and we deduce that

‖y(Tn; 0, yn−1, ũ
n)‖H1 = ‖w(Tn; 0, ṽn)‖H1 ≤ A4(Tn; ‖yn−1‖H1) ‖yn−1‖2H1 .

We shift forward time interval into [τn−1, τn] and we define

un(t) := ũn(t− τn−1), vn(t) := ṽn(t− τn−1), t ∈ (τn−1, τn),

and we obtain
‖un‖H1(τn−1,τn) ≤ N(Tn) ‖yn−1‖H1 ,

and
ξ(τn; τn−1, yn−1, v

n) = ξ(Tn; 0, yn−1, ṽ
n) = 0.

Thus, 1. and 2. of (4.36) are fulfilled.
Recalling definition (4.33), property (4.40) and ν < Γ0, we deduce that

‖y(τn; τn−1, yn−1, u
n)‖H1 = ‖y(Tn; 0, yn−1, ũ

n)‖H1 ≤ K(Tn) ‖yn−1‖2H1 . (4.41)

Thus, using 3. of (4.39) and the estimate above, we obtain

‖y(τn; τn−1, yn−1, u
n)‖H1 ≤ en

2Γ0/T1

[
e(

∑n−1
j=1 2n−1−jj2−2n−16)Γ0/T1

]2
= e(

∑n
j=1 2n−1−jj2−2n−16)Γ0/T1 ,
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that is, 3. of (4.36) is satisfied. Finally, using again (4.41) and thanks to 4. of (4.39) we conclude that

‖y(τn; τn−1, yn−1, u
n)‖H1 ≤ K(Tn)

n−1∏
j=1

K(Tj)
2n−1−j

‖y0‖2
n−1

H1

2

=

n∏
j=1

K(Tj)
2n−j ‖y0‖2

n

H1 ,

which is exactly 4. of (4.36). The induction argument is therefore concluded.

(4) Conclusion. Let us now observe that, from 4. of (4.36), for every n ∈ N it holds that

‖y(τn; τn−1, yn−1, u
n)‖H1 ≤

n∏
j=1

K(Tj)
2n−j ‖y0‖2

n

H1 ≤
n∏
j=1

(
eΓ0j

2/T1

)2n−j

‖y0‖2
n

H1

= e(Γ02n/T1)
∑n
j=1 j

2/2j ‖y0‖2
n

H1 ≤ e(Γ02n/T1)
∑∞
j=1 j

2/2j ‖y0‖2
n

H1

≤
(
e6Γ0/T1 ‖y0‖H1

)2n

,

where in the last inequality we have used that
∑∞
j=1

j2

2j = 6. By definition, the above estimate reads as

‖y(τn; 0, y0, q
n)‖H1 ≤

(
e6Γ0/T1 ‖y0‖H1

)2n

,

with

qn(t) =

n∑
j=1

uj(t)χ(τj−1,τj)(t) (component-wise).

Taking the limit as n→ +∞, we deduce that∥∥ψ(π2T1/6; 0, ψ0, q
∞)− Φ

∥∥
H1 =

∥∥y(π2T1/6; 0, ψ0, q
∞)
∥∥
H1 = ‖y(Tf ; 0, ψ0, q

∞)‖H1 ≤ 0

thanks to the definition (4.3) of RT . Thus, we construct a control u ∈ H1
loc(R+,Rq+2)

u(t) :=

{∑∞
j=1 u

j(t)χ(τj−1,τj)(t), 0 < t ≤ Tf ,
0 t > Tf ,

(component-wise),

such that, at time Tf ≤ T , the solution of (NHE) reaches exactly the ground state, that is,

ψ(Tf ; 0, ψ0, u) = Φ.

Furthermore, we can derive a bound for the H1-norm of the control

‖u‖2H1(0,Tf ) ≤
∞∑
n=1

‖un‖2H1(0,Tf ) ≤
∞∑
n=1

(N(Tn) ‖yn−1‖H1)
2 ≤

∞∑
n=1

e−2(2n+3)Γ0/T1 =
e−π

2Γ0/Tf

e2π1Γ0/(3Tf ) − 1
.

where we have used (4.40). Since Tf ≤ T , we easily obtain (4.1).

We are finally ready to prove Theorem 4.1 and Main Theorem B.

Proof of Theorem 4.1. The result is obtained by combining Theorem 3.3 with s = 3 and Theorem 4.3. In details,
for every ψ0 ∈ H3(T,R) strictly positive, Theorem 3.3 allows defining a dynamics steering ψ0 close to Φ in the
H3 metric in an arbitrarily small time. If we are close enough to Φ, we can use the local controllability result of
Theorem 4.3. Thus, the solution of (NHE) reaches the target Φ in any finite time.

Proof of Main Theorem B. Main Theorem B is a direct consequence of Theorem 4.1 and the density property of
H∞ in H1(T,R) ensured by Proposition 3.1.
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Appendices

A Proof of Proposition 2.1

In this section, we shall prove the existence and uniqueness of solutions of (NHE).

Proof. (1) Existence and uniqueness of solutions. Let s > d/2 and ψ0 ∈ Hs(Td,R). For the sake of shortness, we
consider κ = 1. However, the proof remains valid in the general case. We are going to show that there exists t1 > 0
such that the Cauchy problem (NHE) admits a unique solution ψ ∈ C0([0, t1], Hs(Td,R)). We define the following
quantities

M := sup{
∥∥et∆ − I∥∥L(Hs(Td,R))

, 0 ≤ t ≤ 1}, r(ψ0) := 2M ‖ψ0‖Hs

C(Q) := max
1≤i≤d

‖Qi‖Hs , C(d, u,Q) :=
√

2d ‖u‖L2(0,1) C(Q).

Observe that, since s > d/2, we deduce that the embedding Hs(Td,R) ↪→ C0(Td,R) is continuous, that is, there
exists a constant C(Td) such that

sup
x∈Td

|y(x)| ≤ C(Td) ‖y‖Hs , ∀ y ∈ Hs(Td,R). (A.1)

We now define

δ := min

1,
(r(ψ0))2

4C(Td)2
(
C(d, u,Q)(r(ψ0) + ‖ψ0‖Hs) + 2p((r(ψ0))p+1 + ‖ψ0‖p+1

Hs )
)2

 , (A.2)

and set t1 = δ.
We denote B := BC0([0,t1],Hs))(ψ0, r(ψ0)) the ball in the space C0([0, t1],Hs(Td,R)) of center ψ0 and radius

r(ψ0). For every ψ ∈ B we define the following function

Φ(ψ)(t) := et∆ψ0 +

∫ t

0

e(t−s)∆ (〈u(s), Q(x)〉ψ(s, x) + ψ(s, x)p+1
)
ds. (A.3)

Let us show that Φ maps B into itself:

‖Φ(ψ)(t)− ψ0‖Hs ≤
∥∥et∆ψ0 − ψ0

∥∥
Hs

+

∥∥∥∥∫ t

0

e(t−s)∆ (〈u(s), Q〉ψ(s) + ψ(s)p+1
)
ds

∥∥∥∥
Hs

≤M ‖ψ0‖Hs +

∫ t

0

‖〈u(s), Q〉ψ(s)‖Hs +
∥∥ψ(s)p+1

∥∥
Hs

ds

≤M ‖ψ0‖Hs + C(Td)

(
C(Q)

∫ t

0

q∑
i=1

|ui(s)| ‖ψ(s)‖Hs ds+

∫ t

0

‖ψ(s)‖p+1
Hs ds

)

≤M ‖ψ0‖Hs + C(Td)
√
dC(Q)

(∫ t

0

q∑
i=1

|ui(s)|2ds

)1/2(
2

∫ t

0

‖ψ(s)− ψ0‖2Hs + ‖ψ0‖2Hs ds
)1/2

+ C(Td)2p
∫ t

0

‖ψ(s)− ψ0‖p+1
Hs + ‖ψ0‖p+1

Hs ds.

Thus, we deduce that Φ(ψ) ∈ B since

sup
t∈[0,t1]

‖Φ(ψ)(t)− ψ0‖Hs ≤
r(ψ0)

2
+ C(Td)

√
2dC(Q) ‖u‖L2(0,1)

(
sup

t∈[0,t1]

‖ψ(t)− ψ0‖Hs + ‖ψ0‖Hs

)
√
t1

+ C(Td)2p
(

sup
t∈[0,t1]

‖ψ(t)− ψ0‖p+1
Hs + ‖ψ0‖p+1

Hs

)
√
t1 ≤

r(ψ0)

2
+
r(ψ0)

2
= r(ψ0).
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Now, we show that Φ is a contraction over B. Let ψ, φ ∈ B, then

‖Φ(ψ)(t)− Φ(φ)(t)‖Hs =

∥∥∥∥∫ t

0

〈u(s), Q(x)〉(ψ(s)− φ(s)) + ψ(s)p+1 − φ(s)p+1ds

∥∥∥∥
Hs

≤
∫ t

0

‖〈u(s), Q(x)〉(ψ(s)− φ(s))‖Hs ds

+ C(Td)
∫ t

0

‖ψ(s)− φ(s)‖Hs
p∑
j=0

‖ψ(s)‖jHs ‖φ(s)‖p−jHs ds

≤ C(Q)
√

2d ‖u‖L2((0,1),Rq+2)

(∫ t

0

‖ψ(s)− φ(s)‖2Hs ds
)1/2

+ C(Td)2p−2

∫ t

0

‖ψ(s)− φ(s)‖Hs L(φ, φ)ds

where

L(ψ, φ) :=

p∑
j=0

(
‖ψ(s)− ψ0‖jHs + ‖ψ0‖jHs

)(
‖φ(s)− ψ0‖p−jHs + ‖ψ0‖p−jHs

)
Therefore, we get that

sup
0≤t≤t1

‖Φ(ψ)(t)− Φ(φ)(t)‖Hs ≤ C(Q)
√

2d ‖u‖L2((0,1)

√
t1 sup

0≤t≤t1
‖ψ(t)− φ(t)‖Hs

+ C(Td)2p−2
√
t1 sup

0≤t≤t1
L(ψ, φ) sup

0≤t≤t1
‖ψ(t)− φ(t)‖Hs

≤
(
C(d, u,Q) + C(Td)2p−2L̃(ψ0)

)√
t1 sup

0≤t≤t1
‖ψ(t)− φ(t)‖Hs ,

where

L̃(ψ0) :=

p∑
j=0

(
r(ψ0)j + ‖ψ0‖jHs

)(
r(ψ0)p−j + ‖ψ0‖p−jHs

)
.

With the same kind of computation one can prove that

sup
0≤t≤t1

∥∥Φ2(ψ)(t)− Φ2(φ)(t)
∥∥
Hs
≤
(
C(d, u,Q) + C(Td)2p−2L̃(ψ0)

)2 (
√
t1)2

√
2

sup
0≤t≤t1

‖ψ(t)− φ(t)‖Hs ,

and, iterating the procedure, one shows that

sup
0≤t≤t1

‖Φn(ψ)(t)− Φn(φ)(t)‖Hs ≤
(
C(d, u,Q) + C(Td)2p−2L̃(ψ0)

)n (
√
t1)n√
n!

sup
0≤t≤t1

‖ψ(t)− φ(t)‖Hs .

For n large enough, it holds that (
C(d, u,Q) + C(Td)2p−2L̃(ψ0)

)n (
√
t1)n√
n!

< 1.

Hence, form a well-known corollary of the Banach fixed point Theorem, we deduce that Φ is a contraction over B
and so there exists a unique fixed point ψ ∈ B which is the solution of (NHE). Furthermore, it holds that

sup
t∈[0,t1]

‖ψ(t)‖Hs ≤ (2M + 1) ‖ψ0‖Hs .

We have just proved that if ψ is solution of (NHE) in [0, τ ], then we can extend it into [0, τ + δ(τ)]. Indeed, by
defining the quantities

M(τ) := sup
τ≤t≤τ+1

{∥∥et∆ − I∥∥L(Hs(Td,R))

}
, r(τ, ψ(τ)) := 2M(τ) ‖ψ(τ)‖Hs , C(d, u,Q) :=

√
2d ‖u‖L2(τ,τ+1) C(Q),

and

δ(τ) := min

1,
(r(ψ(τ))2

4C(Td)2
(
C(d, u,Q)(r(ψ(τ)) + ‖ψ(τ)‖Hs) + 2p((r(ψ(τ)))p+1 + ‖ψ(τ)‖p+1

Hs )
)2

 ,
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then one just sets ψ(t) = ζ(t) for t ∈ [τ, τ + δ(τ)], where

ζ(t) = e(t−τ)∆ψ(τ) +

∫ t

τ

e(t−s)∆ (〈u(s), Q(x)〉ψ(s, x) + ψ(s, x)p+1
)
ds.

Let [0, T ) be the maximal interval of existence of ψ, solution of the (NHE). If T < +∞, then ‖ψ(t)‖Hs → +∞ as
t→ T −, otherwise ψ could be extended, which contradicts the maximality of T . Observe that, for any 0 < T < T ,

sup
t∈[0,T ]

‖ψ(t)‖Hs ≤ C ‖ψ0‖Hs . (A.4)

(2) Proof of the continuity (2.1) and the stability (2.2). Let ψ, φ ∈ C0([0, T ],Hs(Td,R)), with 0 ≤ T ≤
min{T (ψ0),T (φ0)}, be the solutions of the (NHE) corresponding to the initial conditions ψ0 and φ0 and con-
trols u and v, respectively. Then,

‖ψ(t)− φ(t)‖Hs ≤ ‖ψ0 − φ0‖Hs

+

∫ t

0

(‖〈u(s), Q〉ψ(s)− 〈v(t), Q〉φ(s)‖Hs +
∥∥ψ(s)p+1 − φ(s)p+1

∥∥
Hs

)ds

≤ ‖ψ0 − φ0‖Hs +

∫ t

0

‖〈u(s), Q〉(ψ(s)− φ(s))‖Hs ds+

+

∫ t

0

‖(〈u(s), Q〉 − 〈v(s), Q〉)φ(s)‖Hs ds

+ C(Td)
∫ t

0

‖ψ(s)− φ(s)‖Hs
p∑
j=0

‖ψ(s)‖jHs ‖φ(s)‖p−jHs ds

≤ ‖ψ0 − φ0‖Hs + C(Q)
√

2d ‖u‖L2(0,t)

√
t sup

0≤s≤t
‖ψ(s)− φ(s)‖Hs

+ C(Q)
√

2d ‖u− v‖L2(0,t)

√
t sup

0≤s≤t
‖φ(s)‖Hs

+ C(Td)
√
t

 p∑
j=0

sup
0≤s≤t

‖ψ(s)‖jHs sup
0≤s≤t

‖φ(s)‖p−jHs

 sup
0≤s≤t

‖ψ(s)− φ(s)‖Hs

Therefore, we get the existence of C1, C2, C3 > 0, only depending on the parameters of the problem, such that

sup
0≤t≤T

‖ψ(t)− φ(t)‖Hs ≤ ‖ψ0 − φ0‖Hs +

(
C(Q)

√
2d
√
T sup

0≤t≤T
‖φ(t)‖Hs

)
‖u− v‖L2(0,T )

+

C(d, u,Q) + C(Td)
p∑
j=0

sup
0≤t≤T

‖ψ(t)‖jHs sup
0≤t≤T

‖φ(t)‖p−jHs

√T sup
0≤t≤T

‖ψ(t)− φ(t)‖Hs

≤ ‖ψ0 − φ0‖Hs + C1R
√
T ‖u− v‖L2(0,T ) + (C2 + C3R

p)
√
T sup

0≤t≤T
‖ψ(t)− φ(t)‖Hs

where we have used (A.4) and that ψ0, φ0 ∈ BHs(0, R). If (C2 + C3R
p)
√
T < 1, then we obtain the validity of (2.1)

and then
sup

0≤t≤T
‖ψ(t)− φ(t)‖Hs ≤ C

(
‖ψ0 − φ0‖Hs + ‖u− v‖L2(0,T )

)
.

Otherwise, we can subdivide the interval [0, T ] into subintervals where inequality (C2 + C3R
p)
√
T < 1 holds and

obtain the result. Finally, the same techniques also imply the validity of (2.2).

B Global well-posedness and proof of Proposition 2.2

This appendix aims to prove Proposition 2.2. We show that for more regular initial conditions, ψ0 ∈ H3(T,R),
the solution of the unidimensional problem (NHE) is global in time, that is, the maximum time of existence is
T (ψ0) = +∞. First, we observe that if ψ0 ∈ H1(T,R) then, from Proposition 2.1, there exists T (ψ0) such that for
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every 0 < T < T (ψ0) there exists a unique solution ψ ∈ C0([0, T ],H1(T,R)). Second, if T (ψ0) = +∞ then the
solution is global in time, otherwise

‖ψ(t)‖H1 → +∞ as t→ T (ψ0).

It can be proved, thanks to the analiticity of the semigroup generated by ∆ and applying [14, Theorem 3.1, p. 143]
to the fixed point argument used in the proof of Proposition 2.1, that

ψ ∈ H1((0, T ), L2(T,R)) ∩ L2((0, T ), H2(T,R)).

Let us consider Ψ := ψt that formally solves the problem{
∂tΨ−∆Ψ + κ(p+ 1)ψpΨ = 〈u′(t), Q(x)〉ψ + 〈u(t), Q(x)〉Ψ
Ψ(0) = Ψ0 := ∆ψ0 − κψp+1

0 + 〈u(0), Q(x)〉ψ0.
(B.1)

Let us now proved the following result which is necessary for the proof of Proposition 2.2.

Proposition B.1. Let ψ0 ∈ H3(T,R), Q ∈ H3(T,Rq+2), u ∈ H1
loc((0,+∞),Rq+2), 0 < T < T (ψ0, u) and κ ≥ 0.

Then, there exists a unique solution Ψ ∈ L2((0, T ), H1(T,R)) of (B.1) given by

Ψ(t) = et∆Ψ0 +

∫ t

0

e(t−s)∆ (〈u′(s), Q(x)〉ψ(s) + 〈u(s), Q(x)〉Ψ(s)− κ(p+ 1)ψ(s)pΨ(s)) ds,

where ψ is the unique solution of (NHE) with initial condition ψ0. Furthermore, it holds that Ψ = ψt.

Proof. (1) Existence and uniqueness of solutions. We already know from the local well-posedness of (NHE) that
Ψ = ψt ∈ L2((0, T ), L2(T,R)). We now consider equation (B.1). In order to apply a fix point argument, for every
ξ ∈ C([0, T ], H1(T,R)), we consider the following map

Φ(ξ)(t) := et∆Ψ0 +

∫ t

0

e(t−s)∆
(
〈u′(s), Q(x)〉ψ(s) + 〈u(s), Q(x)〉ξ(s)− κ(p+ 1)ψ(s)pξ(s)

)
ds,

where ψ ∈ H1((0, T ), L2(T,R)) ∩ L2((0, T ),H2(T,R)) ∩ C([0, T ],H3(T,R)) is the solution of (NHE) with initial
condition ψ0 ∈ H3(T,R). We first observe that Ψ0 = ∆ψ0 − κψp0ψ0 + 〈u(0), Q(x)〉ψ0 is well-defined and is in
H1(T,R). Let us first prove that Φ maps C([0, T ], H1(T,R)) into itself. Since

f(·) := 〈u′(·), Q〉ψ + 〈u(·), Q〉ξ(·)− κ(p+ 1)ψ(·)pξ(·) ∈ L2((0, T ), L2(T,R)),

from [14, Theorem 3.1, p. 143] we deduce that Φ(ξ) ∈ H1([0, T ], L2(T,R)) ∩ L2((0, T ),H2(T,R)) for every
ξ ∈ C([0, T ],H1(T,R)). Thus, we deduce from [32, Proposition 2.1, p. 22 and Theorem 3.1, p. 23] that Φ maps
C([0, T ], H1(T,R)) into itself. We now prove that Φ is a contraction. Let ξ, ξ̃ ∈ C([0, T ], H1(T,R)). Then,

sup
t∈[0,T ]

∥∥∥Φ(ξ)(t)− Φ(ξ̃)
∥∥∥
H1

= sup
t∈[0,T ]

∥∥∥∥∫ t

0

e(t−s)∆
(
〈u(s), Q(x)〉(ξ(s)− ξ̃(s))− κ(p+ 1)ψ(s)p(ξ(s)− ξ̃(s))

)
ds

∥∥∥∥
H1

≤ C
∥∥∥(〈u(·), Q〉 − κ(p+ 1)|ψ(s)|p) (ξ(·)− ξ̃(·))

∥∥∥
L2((0,T ),L2(T))

≤ C
(∫ t

0

∥∥∥ξ(s)− ξ̃(s)∥∥∥2

L2
ds

)1/2

≤ C
√
T sup
t∈[0,T ]

∥∥∥ξ(t)− ξ̃(t)∥∥∥
L2
≤ C
√
T sup
t∈[0,T ]

∥∥∥ξ(t)− ξ̃(t)∥∥∥
H1

If C
√
T < 1 then Φ is a contraction. Otherwise, one can divide the interval [0, T ] in a finite number of sub-intervals

where Φ is a contraction and conclude the argument. So, we deduce that Φ admits a unique fix point Ψ in the space
C([0, T ], H1(T,R)) which is the solution of (B.1).

(1) Proof of the identity Ψ = ψt. We now prove that the unique solution of (B.1) is indeed ψt. Let t ∈ [0, T ],
τ > 0 such that 0 < t+ τ < T , and consider the difference

ψ(t+ τ)− ψ(t)

τ
−Ψ(t).
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Our aim is to prove that the above quantity converges to 0 as τ → 0. Thanks to the expression of ψ and Ψ as mild
solutions, we get

ψ(t+ τ)− ψ(t)

τ
−Ψ(t) =

1

τ

{
e(t+τ)∆ψ0 − et∆ψ0

}
+

1

τ

∫ τ

0

e(t+τ−s)∆ [−κψ(s)p+1 + 〈u(s), Q〉ψ(s)
]
ds

+
1

τ

∫ t

0

e(t−s)∆ [−κψ(s+ τ)p+1 + 〈u(s+ τ), Q〉ψ(s+ τ) + κψ(s)p+1 − 〈u(s), Q〉ψ(s)
]
ds

− et∆(∆ψ0 − κψp+1
0 + 〈u(0), Q〉ψ0)−

∫ t

0

e(t−s)∆ (〈u′(s), Q(x)〉ψ(s) + 〈u(s), Q(x)〉ξ(s)− κ(p+ 1)ψ(s)pξ(s)) ds

=
1

τ

{
e(t+τ)∆ψ0 − et∆ψ0

}
− et∆ψ0 − et∆(−κψp+1

0 + 〈u(0), Q〉ψ0))

+
1

τ

∫ τ

0

e(t+τ−s)∆ [−κψ(s)p+1 + 〈u(s), Q〉ψ(s)
]
ds+

∫ t

0

e(t−s)∆
[
−κψ(s+ τ)p

(
ψ(s+ τ)− ψ(s)

τ
−Ψ(s)

)]
ds

+

∫ t

0

e(t−s)∆
[
−κ
[
pψ(s)p

(
ψ(s+ τ)− ψ(s)

τ
−Ψ(s)

)
+ o

(
ψ(s+ τ)− ψ(s)

τ

)]]
ds

+

∫ t

0

e(t−s)∆
[
〈u(s+ τ)− u(s)

τ
,Q〉ψ(s+ τ) + 〈u(s+ τ), Q〉

(
ψ(s+ τ)− ψ(s)

τ
−Ψ(s)

)]
ds

+

∫ t

0

e(t−s)∆ [−κψ(s+ τ)pΨ(s)− pκψ(s)pΨ(s) + 〈u(s+ τ), Q〉Ψ(s)] ds

−
∫ t

0

e(t−s)∆ (〈u′(s), Q(x)〉ψ(s) + 〈u(s), Q(x)〉Ψ(s)− κ(p+ 1)ψ(s)pΨ(s)) ds.

Now, by taking the absolute value of the above identity, we obtain∣∣∣∣ψ(t+ τ)− ψ(t)

τ
−Ψ(t)

∣∣∣∣ ≤ ∣∣∣∣1τ {e(t+τ)∆ψ0 − et∆ψ0

}
− et∆ψ0

∣∣∣∣
+

∣∣∣∣1τ
∫ τ

0

e(t+τ−s)∆ [−κψ(s)p+1 + 〈u(s), Q〉ψ(s)
]
ds− et∆(−κψp+1

0 + 〈u(0), Q〉ψ0))

∣∣∣∣
+

∫ t

0

∣∣∣e(t−s)∆
[
〈u(s+ τ)− u(s)

τ
,Q〉ψ(s+ τ)− 〈u′(s), Q(x)〉ψ(s)− κψ(s+ τ)pΨ(s)

− pκψ(s)pΨ(s) + 〈u(s+ τ), Q〉Ψ(s)− 〈u(s), Q(x)〉Ψ(s) + κ(p+ 1)ψ(s)pΨ(s)
]∣∣∣ds

+

∫ t

0

|−κψ(s+ τ)p − κpψ(s)p + 〈u(s+ τ), Q〉|
∣∣∣∣ψ(s+ τ)− ψ(s)

τ
−Ψ(s)

∣∣∣∣ ds
+

∫ t

0

∣∣∣∣e(t−s)∆o

(
ψ(s+ τ)− ψ(s)

τ

)∣∣∣∣ ds,
which is of the type f(t) ≤ α(t) +

∫ t
0
β(s)f(s)ds. We apply the Grönwall’s Lemma, and we deduce that f(t) ≤ α(t) +∫ t

0
α(s)β(s)e

∫ t
s
β(r)drds, and then, by taking the limit as τ → 0, we finally obtain that∣∣∣∣ψ(t+ τ)− ψ(t)

τ
−Ψ(t)

∣∣∣∣→ 0.

Hence, we have proved that the unique solution Ψ of (B.1) coincides with ψt.

We are now ready to prove the global well-posedness of (NHE) with d = 1 stated in Proposition 2.2.

Proof of Proposition 2.2. From the local well-posedness result, we know that for any ψ0 ∈ H1(T,R) there exists
T (ψ0, u) > 0 such that for any 0 < t < T (ψ0, u) there exists a unique solution ψ ∈ H1((0, t), L2(T,R)) ∩
L2((0, t), H2(T,R)) ∩ C([0, t], H1(T,R)) of problem (NHE). Furthermore, if T (ψ0, u) < +∞, then ‖ψ(t)‖H1 → +∞
as t→ T (ψ0, u). We shall prove that

‖ψ(t)‖H1 ≤ C as t→ T (ψ0, u),
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and we would deduce that T (ψ0, u) = +∞, that is, the solution is globally well-defined. We recall that ‖ψ‖2H1 :=

‖ψ‖2L2 + ‖∂xψ‖2L2 . For almost every 0 < t < T (ψ0, u), we multiply the equation in (NHE) by ψ and we obtain

〈∂tψ,ψ〉L2 − 〈∆ψ,ψ〉L2 + κ〈ψp+1, ψ〉L2 =
〈
〈u(t), Q(x)〉ψ,ψ

〉
L2 .

Recalling that κ ≥ 0 and p ∈ 2N∗, we get κ〈ψp+1, ψ〉L2 > 0 and then 1
2
d
dt ‖ψ(t)‖2L2 ≤ C(t) ‖ψ(t)‖2L2 thanks to the

accreativity of −∆. Therefore, for a.e. t ∈ (0, T (ψ0, u)), we have the inequality

‖ψ(t)‖2L2 ≤ ‖ψ0‖2L2 e
2
∫ t
0
C(s)ds ≤ ‖ψ0‖2L2 e

2C
√
T (ψ0,u)‖u‖L2(0,T (ψ0,u)) . (B.2)

Now we multiply equation (NHE) by −∆ψ and we get

− 〈∂tψ,∆ψ〉L2 + 〈∆ψ,∆ψ〉L2 − κ〈ψp+1,∆ψ〉L2 = −
〈
〈u(t), Q(x)〉ψ,∆ψ

〉
L2 . (B.3)

Let us observe that thanks to the properties of ∆, for every ξ ∈ H2(T), it holds that

t 7→ 〈∆ξ(t), ξ(t)〉L2

is absolutely continuous and
d

dt
〈∆ξ(t), ξ(t)〉L2 = 2〈∂tξ(t),∆ξ(t)〉L2 .

We rewrite (B.3) in the equivalent form

−
∫ 2π

0

∂tψ∆ψdx+

∫ 2π

0

(∆ψ)2dx− κ
∫ 2π

0

ψp+1∆ψdx = −
∫ 2π

0

〈u(t), Q(x)〉ψ∆ψdx

and, integrating by parts, we obtain

− ∂tψ∂xψ|2π0 +

∫ 2π

0

∂x(∂tψ)∂xψdx+

∫ 2π

0

(∆ψ)2dx− κψp+1∂xψ
∣∣2π
0

+ κ(p+ 1)

∫ 2π

0

ψp(∂xψ)2dx

≤ C(t)

∣∣∣∣ψ∂xψ|2π0 − ∫ 2π

0

(∂xψ)2dx

∣∣∣∣ ,
and as above we get an inequality of the form

∫ 2π

0
∂x(∂tψ)∂xψdx ≤ C(t)

∫ 2π

0
(∂xψ)2dx, where we have used that the

first integral on the left-hand side is well-defined since ψt ∈ L2((0, T ), H1(T,R)) thanks to the fact that ψ0 ∈ H3(T,R)
and to Proposition B.1. Hence, we deduce that

1

2
∂t ‖∂xψ(t)‖2L2 ≤ C(t) ‖∂xψ0‖2L2 ,

and by the Grönwall’s inequality we get

‖∂xψ(t)‖2L2 ≤ ‖∂xψ0‖2L2 e
2
∫ t
0
C(s)ds ≤ ‖∂xψ0‖2L2 e

2C
√
T (ψ0,u)‖u‖L2(0,T (ψ0,u)) . (B.4)

Therefore, for almost every t ∈ (0, T (ψ0, u)) we have proved that

‖ψ(t)‖2H1 = ‖ψ(t)‖2L2 + ‖∂xψ(t)‖2L2 ≤ (‖ψ0‖2L2 + ‖∂xψ0‖2L2)e2C
√
T (ψ0,u)‖u‖L2(0,T (ψ0,u)) ,

where we have used (B.2) and (B.4). Since the right-hand side does not depend on t, we can take the limit as

t→ T (ψ0, u) and conclude that ‖ψ(t)‖2H1 ≤ C as t→ T (ψ0, u).

C An estimate for the exact controllability to the ground state solution

In this section we derive an estimate for the solution w of (4.30) which is useful for the proof of Theorem 4.3. Recall
that Φ = 1/

√
2π. We shall take advantage of estimate (4.29) that we have obtained for the solution of
∂ty(t)− ∂2

xy(t) + κ

p+1∑
j=2

(
p+ 1

j

)
yj(t)Φp+1−j = 〈v1(t), Q〉y(t) + 〈v1(t), Q〉Φ, t ∈ (s0, s1),

y(s0) = ys0 := ψ(s0)− Φ.

(C.1)
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Proposition C.1. Let ψ(s0) ∈ H3(T,R) and v1 ∈ H1((s0, s1),Rq+2) with 0 ≤ s0 < s1. Consider Q ∈ H3(T,Rq+2)
and y ∈ C([s0, s1],H3(T,R)) ∩ C1([s0, s1],H1(T,R)) be the solution of (C.1). Let v1 satisfy (4.27). Then, the
solution w ∈ C([s0, s1], H1(T,R)) ∩H1([s0, s1], L2(T,R)) of

∂tw(t)− ∂2
xw(t)− κ(p+ 1)Φpw(t) + κ

p+1∑
j=2

(
p+ 1

j

)
Φp+1−jyj(t) = 〈v1(t), Q〉y(t), t ∈ (s0, s1)

w(s0) = 0

(C.2)

satisfies the following inequality with σ = s1 − s0 and A4(σ, ‖ys0‖H1) defined in (C.7):

sup
t∈[s0,s1]

‖w(t)‖H1 ≤ A4(σ, ‖ys0‖H1) ‖ys0‖
2
H1 . (C.3)

Proof. We recall that w has been defined as w := y − ξ with ξ ∈ C([s0, s1],H1(T,R)) ∩ H1(s0, s1, L
2(T,R)) ∩

L2(s0, s1, H
2(T,R)) solution of the linear system (4.4) with control v1 ∈ H1

0 ((s0, s1),Rq+2) such that

ξ(s1; s0, ξ0, v
1) = 0, with ξ(s0) = ys0 = ψ(s0)− Φ

and
∥∥v1
∥∥
H1(s0,s1)

≤ N(σ) ‖ys0‖H1 , with σ = s1−s0. The existence of such control has been established in Proposition

4.6. Let us estimate the norm of w at time s1. We first multiply the equation in (C.2) by w and we obtain

〈∂tw(t), w(t)〉L2 − 〈∂2
xw(t), w(t)〉L2 − κ(p+ 1)Φp〈w(t), w(t)〉L2 + κ

p+1∑
j=2

(
p+ 1

j

)
Φp+1−j〈yj(t), w(t)〉L2

=
〈
〈v1(t), Q〉y(t), w(t)

〉
L2 .

Using the accreativity of −∂2
x and that H1(T) ↪→ C(T), we get

1

2

d

dt
‖w(t)‖2L2 ≤ κ(p+ 1)Φp ‖w(t)‖2L2 +

+ κ

p+1∑
j=2

(
p+ 1

j

)
Φp+1−j

(
‖y(t)‖2jH1

2
+
‖w(t)‖2L2

2

)
+ C2

Q

q+2∑
j=1

|v1
j (t)|2

‖y(t)‖2L2

2
+
‖w(t)‖2L2

2
,

where
CQ := sup

i=1,...,q+2

∥∥Qi∥∥
C0 (C.4)

By the Grönwall’s Lemma, for any t ∈ (s0, s1) it holds that

‖w(t)‖2L2 ≤

∫ t

s0

κ

p+1∑
j=2

(
p+ 1

j

)
Φp+1−j ‖y(s)‖2jH1 + C2

Q

q+2∑
j=1

|v1
j (s)|2 ‖y(s)‖2H1 ds

 ·
e
∫ t
s0

(2κ(p+1)Φp+
∑p+1
j=2 (p+1

j )Φp+1−j+1)ds.

Therefore, by taking the supremum over [s0, s1] we obtain

sup
t∈[s0,s1]

‖w(t)‖2L2 ≤

κσ p+1∑
j=2

(
p+ 1

j

)
Φp+1−j sup

t∈[s0,s1]

‖y(t)‖2jH1 + C2
Q

∥∥v1
∥∥2

L2(s0,s1)
sup

t∈[τ0,τ1]

‖y(t)‖2H1

 eA1(σ)

≤

2κσ(p+ 1)

p+1∑
j=2

(
p+ 1

j

)
Φp+1−j

(
‖ys0‖

2j
H1 +

∥∥v1
∥∥2j

L2(s0,s1)

)
+ C2

Q

∥∥v1
∥∥2

L2(s0,s1)

(
‖ys0‖

2
H1 +

∥∥v1
∥∥2

L2(s0,s1)

) eA1(σ)

≤

2κσ(p+ 1)

p+1∑
j=2

(
p+ 1

j

)
Φp+1−j (1 +N(σ)2j

)
‖ys0‖

2j
H1 + C2

QN(σ)2
(
1 +N(σ)2

)
‖ys0‖

4
H1

 eA1(σ)

≤

2κσ(p+ 1) ‖ys0‖
4
H1

p+1∑
j=2

(
p+ 1

j

)
Φp+1−j (1 +N(σ)2j

)
‖ys0‖

2(j−2)
H1 + C2

QN(σ)2
(
1 +N(σ)2

)
‖ys0‖

4
H1

 eA1(σ)

≤ A2(σ, ‖ys0‖H1)2 ‖ys0‖
4
H1

(C.5)
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where

A1(σ) := σ

2κ(p+ 1)Φp + κ

p+1∑
j=2

(
p+ 1

j

)
Φp+1−j + 1


A2(σ, ‖ys0‖H1) :=2κσ(p+ 1)

p+1∑
j=2

(
p+ 1

j

)
Φp+1−j (1 +N(σ)2j

)
‖ys0‖

2(j−2)
H1 + C2

QN(σ)2
(
1 +N(σ)2

)1/2

eA1(σ)/2.

Let us now multiply the equation in (4.30) by −∂2
xw(t)

− 〈∂tw(t), ∂2
xw(t)〉L2 + 〈∂2

xw(t), ∂2
xw(t)〉L2 + κ(p+ 1)Φp〈w(t), ∂2

xw(t)〉L2

− κ
p+1∑
j=2

(
p+ 1

j

)
Φp+1−j〈yj(t), ∂2

xw(t)〉L2 = −
〈
〈v1(t), Q〉y(t), ∂2

xw(t)
〉
L2 .

We now perform integrations by parts, and we get

〈∂t(∂xw(t)), ∂xw(t)〉L2 +
∥∥∂2

xw(t)
∥∥2

L2 − κ(p+ 1)Φp〈∂xw(t), ∂xw(t)〉L2

+ κ

p+1∑
j=2

(
p+ 1

j

)
Φp+1−jj〈yj−1(t)∂xy(t), ∂xw(t)〉L2 = −〈〈v1(t), Q〉y(t), ∂2

xw(t)〉L2

and therefore

1

2

d

dt
‖∂xw(t)‖2L2 +

∥∥∂2
xw(t)

∥∥2

L2 ≤ κ(p+ 1)Φp ‖∂xw(t)‖2L2

+ κ(p+ 1)

p+1∑
j=2

(
p+ 1

j

)
Φp+1−j

(
‖y(t)‖2jH1

2
+
‖∂xw(t)‖2L2

2

)
+ C2

Q

q+2∑
j=1

|v1,j(t)|2 ‖y(t)‖2H1 +

∥∥∂2
xw(t)

∥∥2

L2

2
,

where we have used that ∂tw = ∂ty − ∂tξ ∈ L2((s0, s1), H1(T,R)) (see Proposition B.1 for y and Remark 4.5 for ξ).
We apply the Grönwall’s Lemma, and we obtain that, for any t ∈ [s0, s1],

‖∂xw(t)‖2L2 ≤

∫ t

s0

κ(p+ 1)

p+1∑
j=2

(
p+ 1

j

)
Φp+1−j ‖y(s)‖2jH1 + C2

Q

q+2∑
j=1

|v1,j(s)|2 ‖y(s)‖2H1 ds

 eA3(s0,t)

with

A3(s0, t) :=

∫ t

s0

(
2κ(p+ 1)Φp + κ(p+ 1)

p+1∑
j=2

(
p+ 1

j

)
Φp+1−j

)
ds.

Taking the supremum over the interval [s0, s1], we obtain

sup
t∈[s0,s1]

‖∂xw(t)‖2L2 ≤

∫ s1

s0

κ(p+ 1)

p+1∑
j=2

(
p+ 1

j

)
Φp+1−j ‖y(s)‖2jH1 + C2

Q

q+2∑
j=1

|v1,j(s)|2 ‖y(s)‖2H1 ds

 eA3(s0,s1)

≤

κσ(p+ 1)

p+1∑
j=2

(
p+ 1

j

)
Φp+1−j sup

t∈[s0,s1]

‖y(t)‖2jH1 + C2
Q

∥∥v1
∥∥2

L2(s0,s1)
sup

t∈[s0,s1]

‖y(t)‖2H1

 eA3(s0,s1)

≤

2κσ(p+ 1)2

p+1∑
j=2

(
p+ 1

j

)
Φp+1−j

(
‖ys0‖

2j
H1 +

∥∥v1
∥∥2j

L2(s0,s1)

)
+ C2

Q

∥∥v1
∥∥2

L2(s0,s1)

(
‖ys0‖

2
H1 +

∥∥v1
∥∥2

L2(s0,s1)

) eA3(s0,s1).
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Thanks to the assumption on y0 we deduce

sup
t∈[s0,s1]

‖∂xw(t)‖2L2

≤

2κσ(p+ 1)2

p+1∑
j=2

(
p+ 1

j

)
Φp+1−j (1 +N2j(σ)

)
‖ys0‖

2j
H1 + C2

QN
2(σ)

(
1 +N2(σ)

)
‖ys0‖

4
H1

 eA3(s0,s1)

=

2κσ(p+ 1)2

p+1∑
j=2

(
p+ 1

j

)
Φp+1−j (1 +N2j(σ)

)
‖ys0‖

2(j−2)
H1 + C2

QN
2(σ)

(
1 +N2(σ)

) eA3(s0,s1) ‖ys0‖
4
H1

= A3(σ, ‖ys0‖H1)2 ‖ys0‖
4
H1 ,

(C.6)

where

A3(σ, ‖ys0‖H1) :=2κσ(p+ 1)2

p+1∑
j=2

(
p+ 1

j

)
Φp+1−j (1 +N2j(σ)

)
‖ys0‖

2(j−2)
H1 + C2

QN
2(σ)

(
1 +N2(σ)

)1/2

eA3(s0,s1)/2.

Finally, from (C.5) and (C.6), we conclude that

sup
t∈[s0,s1]

‖w(t)‖2H1 ≤ 2

(
sup

t∈[s0,s1]

‖w(t)‖2L2 + sup
t∈[s0,s1]

‖∂xw(t)‖2L2

)
≤ 2

(
A2(σ, ‖ys0‖H1)2 +A3(σ, ‖ys0‖H1)2

)
‖ys0‖

4
H1 ≤ A2

4(σ, ‖ys0‖H1)2 ‖ys0‖
4
H1 ,

with

A4(σ, ‖ys0‖H1) :=
√

2

2κσ(p+ 1)2

p+1∑
j=2

(
p+ 1

j

)
Φp+1−j (1 +N(σ)2j

)
‖ys0‖

2(j−2)
H1 + C2

QN
2(σ)

(
1 +N(σ)2

)1/2

·

eσ(2κ(p+1)Φp+κ(p+1)
∑p+1
j=2 (p+1

j )Φp+1−j+1))/2. (C.7)

The proof is therefore concluded.
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