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A delay damage mesomodel of laminates under

dynamic loading: basic aspects and identification issues
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This paper deals with the modeling of damage in laminates under dynamic loading. In the first part, the basic aspects of
the model, which were developed in previous studies, are described. In the second part, we focus on current de-
velopments concerning the identification of the model using dynamic experiments. Since the applications are related to
the design of composite crash absorbers, particular attention is given to the dissipation of energy.
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1. Introduction

The design of composite crash absorbers, whose

purpose is to ensure the safety of aircraft passengers in

case of a crash during landing, is a challenging task. In

order to avoid numerous and costly experimentations,

EADS Suresnes wishes to develop a reliable numerical

tool. Such a tool must include properly identified ma-

terial models capable of capturing the physics of the

deterioration and dissipation phenomena which take

place during a crash.

The absorbers we are focusing on are made of con-

tinuous Kevlar–Carbon multidirectional laminates.

These are characterized by a deterioration scheme in-

volving several damage mechanisms, the most important

of them being multifragmentation of the fibers, delam-

ination and transverse cracking. In order to take these

mechanisms into account, a first damage mesomodel

was developed in statics. The main feature of this

damage mesomodel is that it introduces the damage

mechanisms through internal damage variables which

are constant throughout the thickness of each ply. In

addition, an interface damage model was introduced to

deal with delamination [4]. In the type of loading under

consideration, since fracture is always a dynamic phe-

nomenon, high strain rates occur, particularly during the

localization process. The rate effects which take place

during the fracture process are modeled using a delay

damage model. The main assumptions of the delay

model are the following:

i(i) the evolution of damage due to variations of forces

is not instantaneous,

(ii) a maximum damage rate exists, just as a maximum

crack velocity exists.

A key issue in the case of energy absorption is the

precise identification of the energy dissipated during

fracture. Usually, this is not done because the behavior,

although it is well-known before localization, cannot be

identified after the peak using homogeneous tests.

Therefore, for dynamic loading, the problem of the

identification of the model in the case of localization of

strains and damage must be dealt with. One difficulty is
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that the boundary conditions are rarely known perfectly

and often known with a great deal of imprecision when

fracture occurs.

In this paper, we first review the basic aspects of the

model which was developed in previous studies, first in

statics [1–3], then in dynamics [5]. Next, we focus on

the rate effect with special attention on the dissi-

pated energy, both from a local point of view and from

a structural point of view. Finally, we propose an

identification strategy which is quite insensitive to the

uncertainties on the boundary conditions and we illus-

trate this strategy with simple but representative exam-

ples.

2. Damage mechanics and mesomodeling of laminates

When dealing with composites, the key issue is the

scale on which the model is constructed. This is also the

scale on which the calculations have to be performed.

On the one hand, the use of the microscale, besides

numerous other difficulties, would raise the computing

costs beyond reasonable limits. On the other hand, the

use of the macroscale would not enable a proper rep-

resentation of the basic features of the laminate and of

its deterioration mechanism. Moreover, for severe dy-

namic loading, the concept of homogenized material is

meaningless. Therefore, it is necessary to define a scale

on which the material can be described properly with-

out going into excessive detail. A pragmatic approach

consists of determining a characteristic length of the

main damage mechanisms. For laminated composites,

between the macroscale of the structure and the mi-

croscale of the single fiber, there is an intermediate

modeling scale called the mesoscale. This scale is as-

sociated with the thickness of the layer and the thick-

nesses of the different interlaminar interfaces. On this

scale, the main damage mechanisms (delamination,

matrix microcracking, fiber/matrix debonding and fiber

breakage) appear nearly uniform throughout the

thickness of each mesoconstituent, at least under quasi-

static loading. Thus, they can be described in a rela-

tively simple way. In our method, we conjecture that

due to the smallness of the mesoscale (one-tenth of a

mm) a static description of the damage mechanisms

should remain valid even for high loading rates.

Therefore, we are proposing to adapt a mesomodel

previously defined for static loading [1–4] to the dy-

namic case. This mesomodel is initially defined by

means of two mesoconstituents:

• a single layer, which is assumed to be homogeneous

and orthotropic,

• an interface, which is a mechanical surface connect-

ing two adjacent layers and which depends on the rel-

ative orientation of their fibers (Fig. 1).

The damage mechanisms are taken into account by

means of internal damage variables. Then, a mesomodel

is defined by adding another property which consists of

prescribing a uniform damage state throughout the

thickness of the elementary ply; this point plays a major

role when one tries to simulate a crack with a damage

model. Additionally, delay damage models are intro-

duced. One limitation of the proposed mesomodel is that

material fracture is described by only two types of

macrocracks: (i) delamination cracks within the inter-

faces and (ii) cracks orthogonal to the laminate�s mid-

plane, each cracked layer being cracked throughout its

thickness.

2.1. The single-layer model

Let us consider the case of a laminated SiC/MAS-L

composite with silicon carbide fibers and a glass matrix.

This material is produced by the French company

EADS. The stiffness of the fiber (200 GPa) is greater

than that of the matrix (75 GPa) and cracks appear first

in the matrix. This material was modeled and charac-

terized for static loading in [3] based on previous studies

on carbon-epoxy laminates [2]. Each layer is reinforced

in only one direction. In the following expressions,

subscripts 1, 2 and 3 designate the fiber�s direction, the

transverse direction within the layer and the normal

direction respectively. Three scalar damage variables,

assumed to be constant throughout the thickness of the

ply, are used: d1, associated with cracks orthogonal to

the fiber�s direction; d2 and d12, associated with cracks

parallel to the fiber�s direction.

2.1.1. Damage kinematics

The model is defined to be consistent with two ex-

perimental observations:

• the behavior in tension and the behavior in compres-

sion are independent;

• the ratio between m012 and E01 is constant.

Moreover, the damage related to out-of-plane stres-

ses is taken into account only in the interface model.

Thus, the expression of the strain energy density of the

damaged elementary layer is:

Fig. 1. Mesomodel of a laminate.
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where h�iþ designates the positive part. This expression
enables us to distinguish between tension and compres-

sion depending on whether the cracks are closed or

open. The rates of release of damage energy associated

with d1, d2 and d12 are expressed as follows:
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where hh � ii designates the mean value through the

thickness.

2.1.2. Damage evolution in statics

For the sake of simplicity, the behavior in the fiber�s

direction is assumed to be independent on the transverse

and shear behavior. Moreover, through the material

parameter b, the model introduces a coupling between

the evolution of d2 and that of d12, which, on the aver-

age, are both associated with the same types of cracks.

Then, the damage evolution is given by:

d1 ¼ f1ð
ffiffiffiffiffi

Y1
p

Þ if d1 < 1; d1 ¼ 1 otherwise

d2 ¼ f2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y12 þ bY2
p

Þ if d2 < 1; d2 ¼ 1 otherwise

d12 ¼ f12ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y12 þ bY2
p

Þ if d12 < 1; d12 ¼ 1 otherwise

8

<

:

ð3Þ

where Y ¼ sups6 t Y js for each quantity Y .

The static identification of these evolution laws (i.e.

the identification of functions f1, f2 and f12) is carried

out by macrotests in tension–compression on different

stacking sequences of the laminate [3]. Then, the classi-

cal theory of laminates is used to obtain information on

the elementary ply�s scale. For example, Fig. 2 shows the

results of the tension–compression test on the unidirec-

tional specimen and Fig. 3 shows the evolution law of d1
vs. Y1.

2.2. Modeling of the interlaminar interface [4,8]

2.2.1. Definition of the interface

The interface is a mechanical surface which carries

out stress and displacement transfers from one ply to

another. It depends on the relative orientations of the

upper and lower plies. We assume that it is orthotropic.

The axes N1 and N2 are the bisectors of the angle be-

tween the directions of the fibers of the adjacent layers

(see Fig. 4).

The kinematic variable is the displacement disconti-

nuity designated by:

sUt ¼ Uþ �U� ¼ sU1tN1 þ sU2tN2 þ sU3tN3 ð4Þ

The undamaged energy of the interface is:

ED ¼ 1

2
k01sU1t



þ k02sU2tþ k03sU3t
�

¼ 1

2

r213
k01

�

þ r223
k02

þ r233
k03



ð5Þ

where k01 , k
0
2 and k03 are the initial elastic characteristics.

Fig. 2. Tension-compression test on unidirectional SiC/MASL.

Fig. 3. Static damage evolution law d1 ¼ f1ð
ffiffiffiffiffi

Y1
p

Þ.

Fig. 4. The orthotropic directions of the interface.
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2.2.2. Kinematics and damage evolution

The interface damage model is built using the same

approach as for the single-layer model. The deteriora-

tion of the interface can be described by three damage

variables:
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The forces associated with the dissipation are:
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A simple modeling approach consists in considering that

the evolution of damage is governed by the equivalent

damage force:

Y ¼ Y3 þ c1Y13 þ c2Y23 ð8Þ

where c1 and c2 are constant coupling parameters. With

respect to the delamination modes, these terms are as-

sociated with the first, second and third opening modes

respectively. The damage evolution law is defined by:

d ¼ d3 ¼ d13 ¼ d23 ¼ wð ffiffiffiffi

Y
p Þ if d < 1

d ¼ d3 ¼ d13 ¼ d23 ¼ 1 otherwise

�

ð9Þ

2.3. Modeling of the delay damage effect

It is well-known that classical damage models are

incapable of describing fracture properly. Consequently,

the numerical simulation of failure initiated by strain

softening depends to a great extent on the mesh being

used [7]. One way of avoiding such numerical difficulties

is to use localization limiters [9]. This is a regularization

procedure based on the introduction of additional terms

in the formulation of the continuum. A large class of

these limiters was studied by Sluys [14]. For example, the

non-local theory [10] or the second-gradient approach

include higher-order gradient terms. Alternatively, the

use of a material�s rate dependence in the constitutive

model introduces an implicit length scale into the gov-

erning equations of the problem and removes mesh

sensitivity [11,12]. In order to respect the localization

size, one often has to introduce a characteristic time that

is not related to any physical phenomenon.

Now, the problem consists in proposing and identi-

fying a physically meaningful damage model which

provides a consistent prediction of fracture. Of course,

such a model depends to a great extent on the type of

material under consideration. In particular, the length

scale being introduced is related to the material�s inter-

nal length scales (i.e. its heterogeneity). This was the

concept which governed the damage mesomodel de-

scribed previously. The model presented here is then

completed by introducing a viscosity on the damage

evolution law. Furthermore, it is assumed that the

damage rate is necessarily finite, that is rupture is not

instantaneous. As a consequence, the delay damage

model is defined by introducing a maximum damage

rate or a minimum critical time explicitly. The latter,

being a characteristic of the local fracture process itself,

is several orders of magnitude smaller than the charac-

teristic time associated with classical viscoelasticity or

viscoplasticity models. Another point, that is not taken

under consideration here, is that, certain composites,

e.g. glass-epoxy laminates, are eminently viscous, which

obviously influences their dynamic response. However,

the characteristic times introduced in such cases are not

related to the fracture process.

In order to investigate the performance of our dam-

age model with delay effects, let us consider a one-

dimensional case. The analysis is based on a simple

damage model with only one scalar damage variable

defined as the relative variation of the elastic modulus

r ¼ E0ð1� dÞh�iþ � E0h��iþ ð10Þ

The model is defined by its strain energy ED, which is

divided into two parts in reference to the fact that the

cracks can be closed or open:

ED ¼ 1

2

hri2þ
E0ð1� dÞ

"

þ h�ri2þ
E0

#

ð11Þ

The damage energy release rate is:

Y ¼ oED

od

�

�

�

�

r

¼ hri2þ
2E0ð1� dÞ2

¼ E0h�i2þ
2

ð12Þ

The evolution of damage is assumed to be driven by Y .

In fact, for many long-fiber composites [2,3] and for a

progressive damage mode, a typical quasi-static damage

evolution law is:

d ¼ hf ð ffiffiffiffi

Y
p Þiþ if d < 1

d ¼ 1 otherwise

�

with
Y ¼ sups�t Y js
f ð

ffiffiffiffi

Y
p

Þ ¼
ffiffiffi

Y
p

� ffiffiffiffiY0
p

ffiffiffi

Yc
p

� ffiffiffiffiY0
p

(

ð13Þ

In the following examples, we will assume that there is

no threshold, i.e. Y0 ¼ 0, and we will also study the in-

fluence of the static law on the time to rupture and on

the dissipated energy. We will choose the static law

among the family of power laws given by:

f ð
ffiffiffiffi

Y
p

Þ ¼
ffiffiffiffi

Y
p
ffiffiffiffiffi

Yc
p

� �n

¼ h�iþ
�c

� �n

; where : Yc ¼
E0�2c
2

ð14Þ

4



A consequence of the expression of Y is that for non-

monotonic loading the damage variable depends on the

maximum value of the damage force over time.

The introduction of a delay effect leads to a new

damage evolution law which can be written as:

_dd ¼ 1

sc
� f1� H ½hf ð

ffiffiffiffi

Y
p

Þ � diþ�g if d < 1;

d ¼ 1 otherwise ð15Þ

A consequence of this law is that for a quasi-static

evolution of damage the static evolution law is verified:

_dd ’ 0) d ¼ f ð
ffiffiffiffi

Y
p

Þ

In turn, this implies that Hð0Þ ¼ 1. Moreover, let us

assume that H 0 < 0 and, in order to insure that _ddmax ¼
1=sc, let us prescribe that:

lim
x!þ1

HðxÞ ¼ 0

One can observe that the faster H tends to 0, the smaller

the delay effect. A simple choice for H is:

HðxÞ ¼ exp½�a � x� ð16Þ

With this choice, the more or less brittle character of the

damage evolution law is governed by a (Fig. 5).

The physics of this type of model is such that the

damage evolution is not instantaneous, but is governed

by the internal characteristic time sc. Moreover, a max-

imum damage rate 1=sc exists. Combined with a dy-
namic analysis, the delay effect introduces a length-scale

effect into the initial value problem, even though the

constitutive equations do not contain a parameter with

the dimension of a length explicitly.

The type of model being studied here has the fol-

lowing properties:

• it is consistent with static analysis;

• the size of the fracture process zone is comparable to

the thickness of the ply.

The delay damage effect can be seen first in the stress–

strain curves (Fig. 6). A significant increase in the

strength parameters can be observed throughout, from

the quasi-static strain rate to the high strain rates typical

of impact situations. A rapid analysis of this curve

shows that the dissipated energy, i.e. the area under the

curve, increases with the strain rate.

Previous works have already demonstrated the con-

sistency of the damage model with delay effects for

classical dynamic loading [5,6]. Before considering the

consequences of the delay effect on the behavior of a

structure under quasi-static loading, let us first study the

influence of the loading and of the constitutive param-

eters on the dissipated energy and on the time to rup-

ture.

In a first approach, we are assuming that the same

values of a and sc can be used for the different damage

modes. The objective of the following section is to study

the behavior of the damage delay model precisely.

3. Strain-rate effects and dissipation analysis

The objective of this section is to study the influence,

mainly on the dissipated energy, of the strain rate and

delay parameters introduced in the damage evolution.

We will see that the size of the localization zone is of the

order of C0sc=a. To get a size comparable to the thick-
ness of the ply, we chose sc equal to 2 ls.

The parameters of the model are given in Table 1.

3.1. Typical damage evolution in a beam until rupture

Initially, in a structure, the strain rate depends on the

loading conditions and their characteristic time. Then, in

the localization zone, it reaches much higher values,

since localization is a dynamic phenomenon. To illus-

trate this strain rate effect, let us consider the one-

dimensional example of a bar subjected to a moderate

strain rate.

First, before localization takes place, the average

strain rate is of the order of the loading parameter _�� and,
since _�� � 1=sc, the damage inside the bar has the same
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value it would have with a static law. Past the peak, the

damage is localized in a band of width h in which

the damage rate tends quite rapidly to 1=sc and where the
strain rate becomes much higher. In order to illustrate

this point, a numerical example was calculated using an

explicit scheme, starting from a static load case on a

beam with an initial 1% sectional defect in the middle.

The static loading was chosen such that localization

would occur within a few time steps (about 1000). Fig. 7

shows the strain rate and the damage rate given by the

simulation inside and outside of the localization zone.

In order to evaluate dissipation during the fracture

process which takes place in the localization zone, one

must:

• evaluate h,

• evaluate the strain rate in that region.

Therefore, it seems appropriate to study the effect of

the strain rate on the dissipated energy in order to see

where and when most of the energy absorption occurs in

a loaded structure.

3.2. Estimation of the strain rate in the localization

zone

From our example, we can see that the strain rate in

the localization zone leads to a damage rate at rupture

which is very close to 1=sc. The objective of the fol-
lowing section is to determine the range of strain rates in

which this property is true.

3.2.1. Approximation of the damage rate for high strain

rates

In this part, we are studying the response of the

model to loading at a constant strain rate _��:

Y ðtÞ ¼ E0 � _��2t2
2

For high strain rates, d is negligible compared to f ð
ffiffiffiffi

Y
p

Þ,
which leads to the following approximation:

_dd ¼ 1

sc
� 1

�

� exp� a
�

�c

� �

¼ 1

sc
� 1

(

� exp� a
_�� � t
�c

" #)

ð17Þ

Fig. 8 shows the comparison of the previous expression

with the exact one. On this example, for strain rates

higher than 3000 s�1, the exact curve and the asymptotic

curve nearly coincide.

Under lower strain rates, _dd does not reach the limit

value 1=sc. Even at high strain rates, the time to rupture
tr is greater than sc. We need to estimate trð _��Þ in order to
evaluate the range of strain rates in which _dd ’ 1=sc, i.e.
the range of average strain rates which are compatible

with localization.
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Fig. 7. Strain rate and damage rate in the beam during localization.

Table 1

Material properties

Elasticity Damage

Young�s modulus:

E0 ¼ 57 GPa

Threshold: Y0 ¼ 0 MPa

Density:

q0 ¼ 2280 kgm�3
Critical force: Yc ¼ 0:23 MPa

Resulting quantities Critical strain: �c ¼ 2:8� 10�3
Wave velocity:

C0 ¼ 5000 m s�1
Delay constant: a ¼ 10

Impedance:

Z0 ¼ 1:14� 107
kgm�2 s�1

Critical time: sc ¼ 2 ls
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3.2.2. Estimation of tr( _��)
From (17) integrated between 0 and �r ¼ _�� � tr, we get:

1 ¼ 1

_��sc
� _�� � tr
"

þ �c
a
� exp

" 

� a � _�� � tr
�c

#

� 1
!#

ð18Þ

Let us denote:

tr ¼ sc � ð1þ gÞ ð19Þ

where g is small (a few percent); therefore, we can ap-

proximate this expression by:

1 ¼ 1þ gþ �c
a _��sc

� exp

""

� a � _�� � sc
�c

#

� 1� a � _�� � sc
�c

g

!

� 1
#

ð20Þ

Thus,

g ’ �c
asc _��

and tr ’ sc þ
�c
a _��

ð21Þ

Now, we are able to determine _ddjd¼1ð _��Þ ¼ _ddðtrÞ:

_dd ’ 1

sc
� 1

(

� exp� a
_��

�c
� scð1

"

þ gÞ � 1
#)

ð22Þ

In order to get _ddðtrÞP ð1=scÞð1� 3� 10�4Þ, _�� must be
such that:

sc _��P �c 1

�

þ 7
a

�

ð23Þ

Verification of the quality of the approximation

Figs. 9 and 10 show respectively the exact value of

trð _��Þ and the relative error on tr associated with expres-

sion (17) or with its first-order approximation. Within

the range of _�� being considered, the relative error is
about 1%.

We deduce from expression (22) that the minimum

strain rate in the localization zone is:

sc _�� ¼ �c 1

�

þ 7
a

�

’ 6� 10�3 ð24Þ

Fig. 8 shows that this approximation is very satisfactory.

3.2.3. Estimation of the density of dissipated energy

In the general case, the expression of the density of

dissipated energy is:

xd ¼
Z tr

0

Y � _dddt; with : tr being the time to rupture

ð25Þ

For a uniform strain rate, we get:

xd ¼
Z tr

0

E0 � _��2
2

� t2 � _ddðtÞdt ¼ E0

2 _��

Z �rð _��Þ

0

�2 � _ddð�Þd� ð26Þ
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In the localization zone, this expression can be approx-

imated by:

xd ’
E0 � _��2
2 � sc

� s
3
c

3
1½ þ g�3 ’ E0 � ðsc _��Þ2

6
1

�

þ 3�c
asc _��



ð27Þ

which, itself, can be approximated by:

xd ’
E0 � ðsc _��Þ2

6
ð28Þ

Fig. 11 shows the exact value of xd and its approximate

values according to (27) and (28). It appears that in the

localization zone xd varies like ðsc _��Þ2, which, taking (22)
into account, leads to:

xd ’
E0

6
�2c 1

�

þ 7
a

�2

¼ xs 1

�

þ 7
a

�2

ð29Þ

where xs is the static density of dissipated energy. In

turn, this expression provides a means of identifying a.

4. Estimation of the width of the localization zone: one-

dimensional wave propagation analysis

Let us consider a bar of infinite length whose material

behaves according to the delay damage model presented

above. The bar is assumed to be subjected to uniform

quasi-static loading and its homogeneous state is char-

acterized by d, � with � ¼ d�c for the model being stud-
ied.

Now, let us consider, as in e.g. [14] or [15], the

equation of motion linearized about the homogeneous

strained state ð�; dÞ:

_rr;x ¼ q€vv with _rr ¼ E ð1
h

� dÞ _��� _dd�
i

ð30Þ

and, observing that _��;x ¼ v;xx (where v denotes the ve-

locity perturbation):

c20 ð1
h

� dÞv;xx � _dd;x�
i

¼ €vv with c0 ¼
ffiffiffiffi

E

q

s

ð31Þ

Linearizing the damage evolution law around the

strained static state yields:

€dd ¼ a

sc

_��

�c
� _dd

!

¼ 1

Tc

_��

�c
� _dd

!

with Tc ¼
sc

a
ð32Þ

Now, let us consider perturbations of the harmonic

form:

v ¼ v0expiðxt � kxÞ
_dd ¼ _dd0expiðxt � kxÞ

�

ð33Þ

where k is complex due to the viscosity induced by the

delay damage model.

The introduction of the wave expression into the

linearized problem leads to the following system:

ð1� dÞk2 � x2

c2
0

h i

v0 þ ½ik�� _dd0 ¼ 0

ik
Tc�c

h i

v0 þ 1
Tc
þ ix

h i

_dd0 ¼ 0

8

<

:

ð34Þ

For a non-trivial solution corresponding to a zero de-

terminant of the above system to exist, the following

dispersion equation must be verified:

ðc0TckÞ2 ¼ ðTcxÞ2

� ð1� 2 � dÞ þ ðTcxÞ2ð1� dÞ � idTcx
ð1� 2 � dÞ2 þ ðTcxÞ2ð1� dÞ2

ð35Þ

This expression yields the values of the real and imagi-

nary parts of the wave vector. In the following expres-

sions, we designate by x and k the non-dimensional

frequency and wave vector respectively, i.e.:

x ¼ Tcx

k ¼ c0Tck ¼ bþ ia
ð36Þ

a represents the rate of decay of the solution and its

inverse represents the non-dimensional length of energy

concentration for a given x.

From (35), one can deduce:

b2 ¼ P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

�

þ a
�

a2 ¼ P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

�

� a
� ð37Þ

with:

P ¼ 1

2

x2

ð1� 2 � dÞ2 þ x2ð1� dÞ2

a ¼ ð1� 2 � dÞ þ x2ð1� dÞ
b ¼ �dx

ð38Þ

One can deduce from the last expression the values of ce
(which is the non-dimensional phase celerity), cg (which
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Fig. 11. Dissipated energy vs. sc _��.
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is the non-dimensional group celerity) and also the non-

dimensional localization length 1=a as a function of x.
One also gets the asymptotic value (for x ! 1) as a
function of d:

ceð1Þ ¼ cgð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi

1� d
p

1

að1Þ ¼ 2ð1� dÞ3=2
d

ð39Þ

These functions are plotted in Figs. 12 and 13 for

d ¼ 0:6, which is greater than the critical value of d for
purely static loading, which corresponds to a change of

regime. Fig. 14 presents the localization length as a

function of the damage.

In our example, this leads to an estimation of the

width of the localization band equal to:

lc ¼
ffiffiffi

2
p

c0Tc ’ 1 mm ð40Þ

4.1. Dissipation in a beam

As we saw in the one-dimensional example of a

beam, there are two regions in the structure: the local-

ization zone and the rest, which behaves more or less as

in statics. The previous sections provided some evalua-

tions of both the density of dissipated energy and the

width of the localization zone. A first attempt at com-

paring the dissipations in these two regions of the beam

can consist of using these approximations. First, one can

assume that the dissipated energy in the non-localized

zone is the same as in statics. Then, in order to evaluate

the energy dissipated in the localization zone, one can

use the results of Parts 3.2.3 to get the dissipation den-

sity and (40) to evaluate the size of the localization zone.

Another remark is that the strain rate in the local-

ization zone becomes high only after instability occurs,

i.e. after a critical amount of damage (with our model

parameters, this value is about d ¼ 1=2). Consequently,
the dissipated energy which corresponds to the localiza-

tion needs to be estimated only from that time onward.

Using these approximations, Fig. 15 shows the

comparison of the magnitudes of the different energies

as functions of a in a 15 cm long beam. One can observe

that the dissipation in the localization zone is of the

same order of magnitude as the other energies for usual

values of a. Therefore, it seems reasonable to identify

this quantity. This approach is quite simplified, but it

could explain the behavior for small values of a.

5. Identification from structural tests

The previous section focused on the dissipated energy

in the localization zone. This dissipation appeared to be

of the same order of magnitude as the other energies in

the structure. Therefore, it seems possible to identify the

related phenomena. The next question is to see how one

can identify the delay damage parameters from experi-

ments with measurement uncertainties, a situation which

happens often in dynamic tests, especially when fracture

is involved. In this section, we present a method based

on the modified error in constitutive relation. In the case

of vibration with damping, this approach was shown to

be very robust [16,17]. So far, it has not been used in the

case of transient dynamics. In fact, as we will show in the

following section, this case involves the resolution of a

coupled direct-retrograde wave propagation problem.

So far, in order to test the interest of this method, we

have studied only an elastic case. In this case, the in-

formation considered to be reliable is:
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Phase velocity
Group velocity

Tc
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Fig. 12. Velocity d ¼ 0:6.

0.25 0.5 0.75 1 1.25 1.5 1.75 2
ωTc

1

2

3

4

5

1/ α decay length

Fig. 13. Decay length d ¼ 0:6.

0.5 0.6 0.7 0.8 0.9
d

Localization length

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0
a

c
 .

/
L

.
τ

0
(a

d
im

e
n

s
io

n
a

l)

Fig. 14. Localization length.

9



• the wave equation

and the unreliable information is:

• the Young�s modulus (which is to be identified),

• the boundary conditions.

5.1. The identification problem

The problem we are attempting to solve is the fol-

lowing: in the case of a one-dimensional elastic rod, we

want to identify the Young�s modulus E using a dynamic

test in which one can measure both the force and the

displacement boundary conditions at both ends (Fig.

16). This can be achieved with a split Hopkinson�s

pressure bar test. Furthermore, we assume that these

boundary conditions are measured with high uncer-

tainty. Since this is a dynamic test, the stress state in the

specimen is not homogeneous and the identification

must be performed by an inverse approach.

The first point to be noted is that due to the redundant

boundary conditions this problem is ill-posed, i.e. it has

no solution in most cases. The method we are proposing

consists of first reformulating the problem so it becomes

well-posed, then identifying E using the solution fields to

evaluate the quality of the Young�s modulus.

5.2. Formulation and resolution

Our guiding principle, which was inspired directly by

studies on model updating in vibration problems [16], is

to concentrate, during the identification process, on the

exact verification of the properties which are considered

to be reliable. Then, the uncertain quantities are taken

into account by minimizing a modified constitutive re-

lation error [17]. Here, let us split the quantities into two

groups as shown in Table 2.

The identification of the Young�s modulus E is car-

ried out in two steps: first, for a fixed E, the ill-posed

problem is reformulated as the minimization of:

eðu; r; ud; fdÞ ¼ kr� E � �k2 þ kfd � ~ffdk2 þ kud � ~uudk2

ð41Þ

under the conditions:

u KA to ud; r DA to fd; q � €uu� divr ¼ 0 ð42Þ

where KA and DA means respectively kinematically

admissible and dynamically admissible.

One can note that the boundary conditions ud and fd
are related to the fields used in the minimization prob-

lem and, therefore, can be different from the measured

values ~uud and ~ffd.

This minimization under constraints is performed by

introducing Lagrange multipliers. The stationarity of the

Lagrangian function, denoted L, leads to a differential

system in time and space which connects the expected

fields and the multipliers, designated by u�. Due to the

equilibrium constraint, the formulation yields some final

conditions on the Lagrangian multipliers. Therefore, it is

ud
~

~
f d

ud
~

~
f d

E ?

Fig. 16. The rod with redundant measurements.

Table 2

Reliable and uncertain quantities

Reliable Uncertain

Equilibrium:

q � €uu� divr ¼ 0

Constitutive relation:

r ¼ E � �
Measurements: ~uud and ~ffd
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necessary to solve a coupled dynamic problem whose

unknowns are the displacement u and the multiplier u�,

with:

uð0Þ ¼ u0 _uuð0Þ ¼ _uu0 with u0; _uu0 given

u�ðTfÞ ¼ 0 _uu�ðTfÞ ¼ 0 where Tf is the final time

ð43Þ

Consequently, one must solve simultaneously a direct

problem and an adjoint (time-retrograde) problem

which are related to one another. Different methods for

solving these problems have been studied [19]. For ex-

ample, one can assemble a time scheme on all the time

steps, leading to a global problem in time and space.

Such methods would lead to huge matrix sizes. Another

option is to use the transition matrix of the system in

order to express the unknown initial conditions in terms

of the final prescribed conditions. The latter is the

method we chose to use.

The identification of the best E is carried out using

the same functional as the minimization of:

min
E

gðEÞ ¼ min
E

eðuðEÞ; rðEÞ; udðEÞ; fdðEÞÞ ð44Þ

where ðuðEÞ; rðEÞ; udðEÞ; fdðEÞÞ is the solution of (41).
Using the same functional is a great advantage if the

minimization is to be performed by a gradient method.

In fact, noting that:

LðrðEÞ; uðEÞ; udðEÞ; fdðEÞ; u�ðEÞ; kðEÞ;EÞ ¼ gðEÞ ð45Þ

and considering the fact that ðrðEÞ; uðEÞ; udðEÞ; fdðEÞÞ
are the solutions to Eq. (41), we have:

oL

or
¼ oL

ou
¼ oL

ou�
¼ oL

oud
¼ oL

ofd
¼ 0 ð46Þ

Therefore, the expression of the gradient is:

DgðEÞ � q ¼ oL

oE
� q ð47Þ

which can be evaluated directly from the fields which are

the solutions of (41).

5.3. Example

The identification method described above was vali-

dated on a numerical example. A preliminary calcula-

tion consisted of simulating an experiment on a rod fixed

at one end and subjected to a constant velocity at the

other (Fig. 17).

Then, the displacements and forces at both ends were

taken from this simulation in order to create a set of

measurements. Some high-frequency sinusoidal pertur-

bations (up to 40%) were added to these values to rep-

resent the uncertainties.

With these measurements, we were able to test the

identification of the Young�s modulus by a classical

method and by the method presented here. The classical

method, inspired by [18], consisted of splitting the ini-

tially ill-posed problem into two well-posed problems,

one with prescribed displacements the other one with

prescribed forces. The calculation was made to match

the perturbed measurements exactly (Fig. 18). Then, the

identification was made by defining a discrepancy be-

tween the two calculations using the solution fields. Fig.

19 shows the identification functional of each method as

a function of the relative Young�s modulus. On this

example, our method turned out to be particularly ro-

bust whereas the other was incapable of identifying E

correctly.

Fig. 17. The numerical test.
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Fig. 18. Exact and perturbed boundary conditions.
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In order to illustrate the numerical procedure, we

show the resulting fields u and u� in several cases:

• Using the exact boundary conditions and Young�s

modulus, the method yields the same displacement

field as the simulation used to create the boundary

conditions. u� equals 0.

• With the exact boundary conditions and a Young�s

modulus different from the one to be identified, Fig.

20 shows the displacement field and the Lagrangian

multiplier u�. One can observe that u� is different

from 0, mainly because the boundary conditions are

not consistent with the new wave velocity.

• For perturbed boundary conditions and the Young�s

modulus to be identified.

• For perturbed boundary conditions and incorrect

Young�s modulus.

One should note that the magnitude of the local error

is governed by u�, which explains why u� is zero in the

first case and non-zero in the others. Another remark is

that due to the final conditions u� equals 0 at the final

time Tmax (Fig. 21).

In addition, the values of u and u� in the beam at

t ¼ Tmax=2 are shown in Fig. 22. The example with E ¼ 2

and perturbed measurements shows that both imperfec-

tions influence the level of u� and that their effects com-

bine compared to the cases with perturbed measurements

alone or with an incorrect Young�s modulus alone.

Currently, we have work underway to extend this

method to the case of the delay damage model. In this

case, what we want to identify is the evolution law.

Therefore, the static law is assumed to be known. In

fact, it can be identified using standard static tests. As in

the elastic case, the quantities will be divided into two

groups, depending on whether we consider them to be

reliable or not (Table 3).

As in the elastic case, the identification is proceeded

in two steps. In the first one, the solution fields of a new

mechanical problem are sought, then in the second one,

the right parameters should be identified from the value

of the functional for the solution fields. The problem

Fig. 20. u and u� for an incorrect Young�s modulus in the time x space plane.
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Fig. 19. Variation of the error with E: (a) classical approach, (b) our method.
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associated to the first step is now to find the solution

fields that minimize an error in the evolution relation of

the damage variable, under the constraint of equilib-

rium. Some difficulties, that were not encountered in the

elastic case, arise. The differential system that the

problem results in, becomes non-linear, with still both

initial and final conditions to be satisfied. Some solving

methods are still to be developed for this type of prob-

lem. Another question is the one related with the pos-

sibility of several local minima, during the identification

process. If such a problem occurs, a gradient method

will not be efficient anymore.

6. A three-dimensional damage calculation in dynamics

6.1. Problem definition

We present an example of a 3D finite element cal-

culation in order to demonstrate the ability of the
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Fig. 21. Displacement u (a) and multiplier u� (b) as functions of time in the middle of the beam.
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Fig. 22. Displacement in the beam at time t ¼ Tmax=2.

Table 3

Reliable and uncertain quantities: the damage case

Reliable Uncertain

Equilibrium: q � €uu� divr ¼ 0 Evolution laws: _dd ¼ ð1=scÞð1� HðY ; dÞÞ
Static laws: r ¼ E � ð1� dÞ � � Y ¼ E � �2=2 Measurements: ~uud and ~ffd
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damage mesomodel to predict the dynamic response of a

composite structure until ultimate fracture [6]. In order

to perform the simulation, the constitutive damage

mesomodel presented in the second section was imple-

mented into the explicit finite element code LS-Dyna3D

[20]. The following calculation was performed on a

perforated SiC/MAS-L laminate ½�22:5�s. A velocity

was prescribed on two edges of the plate. After an initial

ramp, the velocity was set to a constant value V0 ¼ 5

m s�1. The final time (T ¼ 100 ls) corresponds to a total

extension of about 1 mm. The characteristics of the

problem are shown in Fig. 23.

Because of the symmetry, only one-half of the

structure was modeled. Let us note that reasonable

values were chosen for the material constants of the

interlaminar interface model. The critical times sc and s0c
and the constants a and a0 were given the following

values:

sc ¼ s0c ¼ 2 ls and a ¼ a0 ¼ 1

6.2. Numerical results

Figs. 24 and 25 show the microcracking intensity

maps and the fiber-direction damage maps at different

times. One can see clearly that a transverse crack or-

thogonal to the fibers appears and then grows inside

each ply. At t ¼ 100 ls, the size of the transverse cracks

is about 2 mm. Therefore, we can consider that final

fracture occurs at about this time.

Fig. 26 shows the degradation of the ½�22:5�s inter-
face. The dark area represents the completely destroyed

zone and then the delamination crack.

This typical example of a progressive fracture situa-

tion illustrates the possibilities of the computational

damage mesomodel. The results are in agreement with

the typical degradations observed experimentally in

laminates. Indeed, damage begins very close to the free

surface and then propagates inside the composite.

7. Conclusions

In this paper, a previously defined delay damage

mesomodel has been studied, giving special attention to

the dissipation in the localization zone which we believe

to be a key factor when one deals with shock absorption.

We showed, at least for the model proposed, that this

energy is quite significant and, therefore, that it should

be possible to identify the delay parameters of the

model.

Fig. 23. Perforated laminate ½�22:5�s subjected to dynamic

tension loading.
Fig. 24. Longitudinal damage maps for the layers at t ¼ 50 and

100 ls.

Fig. 25. Shear damage maps for the layers at t ¼ 50 and 100 ls.

Fig. 26. Interface damage maps for the layers at t ¼ 50 and

t ¼ 100 ls.
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Dynamic Hopkinson pressure bar tests, which are

still in progress at EADS, have shown the existence of

significant uncertainties on the boundary conditions.

Therefore, we sought an identification approach which

would be as insensitive as possible to these uncertainties.

Our first results are encouraging, but should be con-

firmed in the case of damage with localization. This part

of the work is underway.

The structural calculation presented in this paper

showed the capability of such models to simulate the

magnitudes of the damage mechanisms in the plies as

well as in the interfaces at any time until complete

fracture. The results indicate that the mesomodel re-

produces the damage behavior of laminated composites

qualitatively. However, the calculations performed with

such a mesomodel do generate very high computation

costs. Therefore, another challenge will be to develop a

more effective computational strategy, possibly associ-

ated with the use of parallel computers.
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