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Computational structural dynamics plays an essential role in the simulation of linear and nonlinear systems. 
Indeed, the characteristics of the time integration procedure have a critical impact on the feasibility of the 
calculation. In order to go beyond the classical approach (a unique time integrator and a unique timescale), 
the pioneer approach of Belytschko and co-workers consisted in developing mixed implicit–explicit time 
integrators for structural dynamics. In a first step, the implementation and stability analyses of partitioned 
integrators with one time step have been achieved for a large class of time integrators. In a second step, the 
implementation and stability analyses of partitioned integrators with different time steps were studied in 
detail for particular cases. However, stability results involving different time steps and different time 
integrators in different parts of the mesh is still an open question in the general case for structural 
dynamics. The aim of this paper is to propose a state-of-the art of heterogeneous (different time schemes) 
asynchronous (different time steps) time integrators (HATI) for computational structural dynamics. Finally, 
an alternative approach based on energy considerations (with velocity continuity at the interface) is 
proposed in order to develop a general class of HATI for structural dynamics. 

KEY WORDS: structural dynamics; heterogeneous asynchronous time integrators; hybrid multi-time

methods; energy-based methods

1. INTRODUCTION

Time integration schemes for linear transient dynamics have been developed for a long time, and it
is well established that consistency and stability ensure convergence by h-refinement in time [24].
Both explicit (centered method) and implicit methods (Houblot, Newmark, and Hilber–Hughes–
Taylor (HHT)) have been studied and used in great success in a strong link with the finite element
method to solve large-scale engineering applications potentially nonlinearly [10, 19, 28, 48]. Even
today, the most common time integration methods used in commercial finite element codes were
developed by Newmark [3, 20]. In practice, choosing a time integration method depends mainly
on stability, accuracy, and target numerical dissipation properties. Indeed, based on Lax’s theorem
[2], stability and consistency (accuracy) are necessary conditions for the convergence to the exact
solution. In this respect, spectral stability is a standard stability metric for linear systems. However,
physical energy bounds will be preferred for nonlinear systems [22, 92].

On the one hand, the time discretization of transient dynamics equation consists of checking the
following five steps: unconditional stability when applied to linear problems, second-order accu-
racy, no more than one set of implicit equations that have to be solved for each time step, being
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self-starting, and controllable algorithmic dissipation in the higher-order modes [13, 102]. For
instance, popular ˛-schemes (HHT-˛, Wood–Bossak–Zienkiewicz (WBZ)-˛, and Chung–Hulbert
(CH)-˛) allow us to preserve second-order accuracy and numerical dissipation for possible spurious
high frequencies [10, 16, 36, 44, 45, 47, 48, 53, 56, 87, 111, 139]; Time Discontinuous Galerkin
(TDG), Time eXtended Finite Element Methods (T-XFEM) allow possible temporal discontinuities
with high-order accuracy [77, 98, 112, 162]; space–time methods allow space–time refinement and
control of accuracy [27, 32, 109, 114, 117]. However, when considering nonlinear problems, the
previous implicit schemes can lose their unconditional stability, and many contributions along the
years have proposed direct or indirect methods to overcome this difficulty. Indeed, many publica-
tions are still devoted to the clarification of specific issues in the nonlinear regime, such as accuracy,
stability, energy-decaying properties, overshoot, high-frequency behavior, and numerical integration
of internal forces. For that purpose, energy-conserving integrators were proposed by Simo, Laursen,
Romero, and others (balance of linear momentum, angular momentum, energy, and energy entropy
momentum) [89] [37, 65, 86, 118, 120, 138, 146]; symplectic integrators (Hamiltonian framework
with conservative loadings) [40, 85, 147], variational integrators and variational ˛-schemes [54,
58, 69, 83, 84, 135, 137, 139], and discrete energy-conserving integrators (discrete variational inte-
grators) [85, 119] were also proposed. For instance, a variational symplectic integrator conserves
exactly a discrete Lagrangian symplectic structure and has better numerical properties over long
integration time, compared with standard integrators. More generally, variational approaches have
also been applied to non-smooth contact dynamics [70, 71, 91].

On the other hand, it consists of controlling the time step: choosing a time step depends on the
frequency content of the loading, the target accuracy and stability properties of the time integration
scheme [1], and also convergence of nonlinear solvers. Adaptive time steps are often needed in order
to recover the accuracy and CPU time efficiency [31, 35, 36, 72, 76, 82].

An excellent state of the art on generalized single-step–single-solve (GSSSS) framework algo-
rithms that encompasses the class of linear multi-step methods (LMS) can be found in the works of
Tamma et al. [98, 133, 135, 137, 139] and Hulbert [102]. GSSSS time integrators can be viewed as
the fully discretized time integration framework for the integration of the equation of motion, which
inherently contains all previous time integrators (see also [20, 41])).

However, the main drawback of the previous standard approach is in the use of the same time
integration scheme (homogeneous time integration) and the same time step for all the finite ele-
ments of the mesh (synchronous time integration). This is why an evident improvement consists in
developing heterogeneous time integration (each part of the mesh has its own time integration) and
asynchronous time integration (each time integration scheme has its own time discretization). Many
attempts were carried out on this goal for at least 40 years. Belytschko contributions were central on
this topic, and the present paper discusses the state of the art of heterogeneous asynchronous time
integration in structural dynamics. The goal of heterogenous asynchronous time integrators (HATI)
is to proceed to finite element calculations with different timescales and specific time integrators in
each part of the mesh (subdomains) in order to control locally the time step and the accuracy (possi-
bility of code coupling). A high ratio between the different timescales (100–1000) can be required.
The main difficulty resides in the general property of stability of the HATI (the global stability
depends on the stability property of each subdomain and the time gluing on the interface between
the subdomains). Engineering applications of HATI can be found for instance in multiphysics, fluid–
structure interaction (FSI), multibody dynamics, seismic problems generated by an impact, design
of crashworthy automobiles, safety-related impact simulations for aircraft components (localized
nonlinearities and fine timescales).

The purpose of this paper is to describe a general methodology to obtain asynchronous coupling
methods for different time integration schemes (Newmark, HHT-˛, WBZ-˛, and CH-˛), for instance
on the basis of energy considerations. Here, the gluing of subdomains with their own time integrator
and their own timescale is ensured with Lagrange multipliers and velocity continuity. Asynchronous
kinematic conditions on the interface between the subdomains are obtained by ensuring the zero
interface pseudo-energy. Two methods will be derived in this paper. The first method, for which the
interface problem involving the Lagrange multipliers is solved at the large timescale, can handle
the popular dissipative ˛-schemes (HHT-˛, WBZ-˛, and CH-˛). In the particular case of Newmark
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time integrators, the proposed method matches the PH method proposed by Prakash and Hjelmstad
in 2004 [108]. The second method is based on gluing at the micro timescale. It can be viewed as an
extension to ˛-schemes of the GC method proposed by Gravouil and Combescure in 2001 [88, 90].

The present paper is organized as follows. After a brief introduction of the equations of structural
dynamics (Section 2), we propose (Section 3) a state of the art of HATI. Then, a specific class of
HATI is proposed and applied to a large class of problems in Section 4. Finally, possible extensions
and open questions are given in the conclusion.

2. TIME INTEGRATORS FOR STRUCTURAL DYNAMICS

2.1. Equations of structural dynamics

We consider here the finite element method, which conducts to the semi-discretized equilibrium
system of Equation (1) for an undamped structure [24]:

M Ru .t/ C fint .u .t// D fext .t/ 8t 2 Œt0; tf �

u .t0/ D u0; Pu .t0/ D Pu0

(1)

where M is the symmetric definite-positive mass matrix, u .t/ the semi-discretized displacement
field at time t, fint .u .t// the internal forces at time t (it fulfills the Lipschitz continuity in each
time interval), fext .t/ the given external forces at time t (a smooth function of t is assumed) and
possible Dirichlet boundary conditions. In this article, we will no longer consider boundary condi-
tions in space for clarity and simplicity. Single and double superposed dots over a quantity denote
respectively its first and second time derivatives. The initial displacement and velocity fields are
respectively denoted as u0 and Pu0. t0 and tf denote respectively the beginning and the end of
the time study. Assuming linear elasticity (fint.t/ D Ku.t/ with K as the global stiffness matrix)
involves the following semi-discretized linear transient dynamics equation:

M Ru .t/ C Ku .t/ D fext .t/ 8t 2 Œt0; tf �

u .t0/ D u0; Pu .t0/ D Pu0

(2)

In the previous formalism, equilibrium equation is ensured in a strong sense in time. It is now well
established that efficient time integrators are based on weak formulations in time. In other words,
prescribing discretized energy balance (or any other kind of discretized balance equations) requires,
in a first step, a weak formulation in time of the balance of momentum. As will be shown later, it is a
key point for building HATI. As a first step, we can consider the following variational formulation:

L .u; Pu/ D T . Pu/ � V .u/ (3)

where the continuous Lagrangian is the difference between the kinetic energy and the potential
energy:

T . Pu/ D
1

2
Put M Pu

V .u/ D Vint � Vext D
1

2
ut Ku � Ft

extu

(4)

The Euler–Lagrange Equation (2) resulting from this functional can be obtained by the following
stationary principle:

ıL D 0 8ıu 2 U0

�

H 1 .�/
�

8t 2 Œt0; tf �

u .t0/ D u0; Pu .t0/ D Pu0

(5)

Note that we make no attempt to address issues of existence and uniqueness of the solution. In a
second step, we can introduce a continuous variational formulation in time based on the following
well-known action integral [5, 57]:

A .u; Pu/ D

Z tf

t0

L .u; Pu/ dt (6)
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The Euler–Lagrange Equation (2) resulting from this semi-discretized functional can be obtained
by a modified stationary principle:

ıA D 0 8ıu 2 U0

�

H 1
�

�; Œt0; tf �
��

; ıu .:; t0/ D ıu
�

:; tf
�

D 0

u .t0/ D u0; Pu .t0/ D Pu0

(7)

Indeed, it can easily be shown that it involves the following expression:

ıA D 0 ,
R tf

t0
ıut .t/ .M Ru .t/ C Ku .t/ � fext .t// dt D 0 (8)

The semi-discretized weak formulation in time (8) can be considered as a starting point for vari-
ational integrators. The time discretization of (8) is also called the acceleration form of structural
dynamics [102]. However, rather than expressing the inertial effects in terms of acceleration, we can
introduce the following Hellinger–Reissner action integral introduced by Washizu [5]:

AHR .u; Pu; v/ D

Z tf

t0

LHR .u; Pu; v/ dt (9)

where the Hellinger–Reissner Lagrangian is defined as follows:

LHR .u; Pu; v/ D THR . Pu; v/ � V .u/ (10)

Here, the velocity v is a new unknown which is defined by the following modified kinetic energy:

THR .u; Pu; v/ D vt M Pu �
1

2
vt Mv (11)

It involves the following two-field stationary principle:

ıAHR D 0

,

Z tf

t0

�ıut .t/ .MPv .t/ C Ku .t/ � fext .t// dt C

Z tf

t0

ıvt .t/ M . Pu .t/ � v .t// dt D 0
(12)

Then, we obtain the following two Euler–Lagrange equations:

MPv .t/ C Ku .t/ D fext .t/ 8t 2 Œt0; tf �

Pu .t/ � v .t/ D 0 8t 2 Œt0; tf �

u .t0/ D u0; v .t0/ D v0

(13)

Here, we obtain finally the definition of the velocity v. This first-order system of equation is equiv-
alent to (2). It is also called the momentum form of structural dynamics [102]. Its form allows the
use of some classes of time integration methods designed for first-order differential equations with
the state vector X � .u; v/ (see for instance recent time integrators proposed by Krenk for struc-
tural dynamics [111, 118]). It is also the basis for building time integrators for rigid-body dynamics
such as the well-known rigid-body energy-momentum-conserving methods [34]. Another interest
of the Hellinger–Reissner stationary principle (12) resides in the central role played by the veloc-
ity in structural dynamics. Indeed, as very well understood by Washizu, the good duality bracket in
structural dynamics is based on the velocity and the linear momentum. In other words, thereafter,
kinematic constraints will be introduced on velocity (assuming for instance a linear constraint on
the boundary of the domain):

L Pu .t/ D 0 (14)

This can be introduced very easily in a semi-discretized weak formulation in time (either in (6) or
(9)) with Lagrange multipliers. Thereafter, we follow the action integral (9). It involves

QA .u; Pu; v; �/ D

Z tf

t0

QL .u; Pu; v; �/ dt D

Z tf

t0

�

LHR .u; Pu; v/ C �
t .t/ L Pu .t/

�

dt (15)

4



where � is the Lagrange multiplier linked to the constraint (14). The corresponding three-field
stationary principle is obtained:

ı QA D 0

,

Z tf

t0

�ıut .t/
�

MPv .t/ C Ku .t/ � fext .t/ � Ltƒ .t/
�

dt

C

Z tf

t0

ıvt .t/ M . Pu .t/ � v .t// dt

C

Z tf

t0

ı�
t .t/ L Pu .t/ dt D 0

(16)

with the corresponding Euler–Lagrange equations:

MPv .t/ C Ku .t/ D fext .t/ C Lt ƒ .t/ 8t 2 Œt0; tf �

Pu .t/ � v .t/ D 0 8t 2 Œt0; tf �

L Pu .t/ D 0 8t 2 Œt0; tf �

u .t0/ D u0; Pu .t0/ D Pu0

(17)

Here, we obtain the physical meaning of the Lagrange multipliers. � represents the generalized
momentum [144], and Ltƒ .ƒ D � P�/ the interface force. In the next part of this paper, the
stationary principle (16) will be the basis for a general class of HATI.

Here, we have to notice that (2) and (13) are ODEs in time. However, (17) consists of a differential
algebraic equation (DAE). In other words, care has to be taken for the extension of time integrators
from ODE to DAE (e.g., [29, 50, 163]). In the following, we will not mention the relation Pu .t/ �

v .t/ D 0 anymore for clarity.
At this point, we can introduce the time discretization. Let t0 < t1 < � � � < tn < tnC1 < � � � < tf

be a partition of the time domain, and let h D tnC1 � tn be the time step size. For brevity, a constant
h value is assumed hereinafter. Now, following the concept of weak equilibrium in time previously
introduced, we assume that the discretized equilibrium equation is only ensured at some times inside
h. The corresponding time depends strongly on the considered time integrator. This idea is not new
and follows the very powerful approach proposed in the G-˛ methods [69, 92] or more generally
by Tamma et al. [133, 137, 139] (see also HHT-˛ [10], WBZ-˛ [16], and CH-˛ [45] for some well-
known particular cases of ˛-schemes). Then, based on the three-field stationary principle (16) and
the G-˛ integrators, we obtain the following discretized/semi-discretized space–time equations:

MPvnC�g
C KunC�f

D fnC�f
C Lt

ƒnC�f
.�g ; �f / 2 Œ0; 1�2 (18)

and

Z tf

t0

L Pu .t/ dt D 0 (19)

External forces, internal forces, and Lagrange multipliers required by the kinematic constraint are
expressed at time tnC�f

in (18). As explained by Tamma, a specific parameter is dedicated to
acceleration, in order to recover second-order accuracy for the acceleration [139]. Indeed, many
well-known second-order-accurate time integrators (for displacement and velocity) can be first-
order accurate for acceleration [25, 92, 137, 139]. Then, following Tamma and co-authors, a
second-order accuracy for displacement, velocity, and acceleration discretized fields can be recov-
ered through a weak equilibrium in time. Indeed, all designs of algorithms contained within the
realm of second-order-accurate LMS possess a specific time level at which a much more rigorous
understanding of the acceleration term is obtained [133]. Now, using the two different parame-
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Table I. The link between the spectral radius at infinity and the time integrator parameters.

Scheme ˛g ˛f 
 ˇ

HHT-˛ 0 �˛HHT D
1��1

1C�1

1
2 � ˛HHT

1
4 .1 � ˛HHT/2

WBZ-˛ ˛WBZ D
�1�1
1C�1

0 1
2 � ˛WBZ

1
4 .1 � ˛WBZ/2

CH-˛ 2�1�1
1C�1

�1

1C�1

3
2 � 2˛f .1 � ˛f /2

ters �g and �f , the averaged displacements, velocities, accelerations external forces, and Lagrange
multipliers read

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

PvnC�g
D .1 � �g/Pvn C �g PvnC1

PunC�f
D .1 � �f / Pun C �f PunC1

unC�f
D .1 � �f /un C �f unC1

fnC�f
D .1 � �f /fn C �f fnC1

ƒnC�f
D .1 � �f /ƒn C �f ƒnC1

(20)

The aim now is to propose a general formalism of modern time integrators with Lagrange mul-
tipliers in order to introduce in the next paragraph the HATI. For instance, the classical form for
the generalized-˛ scheme proposed by Chung and Hulbert [45] is characterized by two weighting
parameters ˛g and ˛f . It writes

.1 � ˛g/MPvnC1 C ˛gMPvn C .1 � ˛f /KunC1 C ˛f Kun

D .1 � ˛f /fnC1 C .1 � ˛f /fn C Lt
ƒnC1�˛f

(21)

From the averaged equilibrium equations in (20) and (21), it can be easily seen that the following
relationships between the time integrator parameters hold:

²

�g D 1 � ˛g

�f D 1 � ˛f
(22)

In practice, ˛g , ˛f , 
 , and ˇ are fixed in order to achieve unconditional stability, second-order accu-
racy, and control of spurious high-frequency oscillations while minimizing low-frequency numerical
dissipation. Three ˛-schemes are considered here: HHT-˛ [10], WBZ-˛ [16], and CH-˛ [45]. Fur-
thermore, it is convenient to define the ˛g and ˛f parameters as a function of the the spectral
radius at the high-frequency limit, denoted as �1, characterizing the amount of numerical dissipa-
tive energy in the high-frequency range. The two other algorithmic parameters 
 and ˇ involved in
the classical Newmark formulae [3] are then expressed in terms of ˛g and ˛f as has been resumed
in Table I. From Equation (20), the averaged acceleration, velocity, and displacement can be put in
the following form:

8

<

:

PvnC�g
D Pvn C �g�PvnC1

PunC�f
D Pun C �f � PunC1

unC�f
D un C �f �unC1

(23)

Now, combining these expressions and the following Newmark formulae [145]:
´

unC1 D un C h Pun C
�

1
2

� ˇ
�

h2 Pvn C ˇh2 PvnC1

PunC1 D Pun C .1 � 
/hPvn C 
hPvnC1

(24)

or similarly
´

�PvnC1 D 1

h

� PunC1 � 1



Pvn

�unC1 D ˇh



� PunC1 C h Pun C 
�2ˇ
2


h2 Pvn
(25)

we obtain a new format for the generalized-˛ schemes with Lagrange multipliers:

K�� PunC1 D gnC1 C Lt
ƒnC�f

(26)
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with the following dynamics matrix operator:

K� D �g

1


h
M C �f

ˇh



K (27)

and the right-hand side vector gnC1 expressed as

gnC1 D fnC�f
� Kun � �f hK Pun �

�

1 �
�g




�

MPvn � �f

�


�2ˇ
2


�

h2KPvn (28)

Here, the fundamental roles of �g and �f are clear: they consist of a separate ponderation on the
mass matrix M and the stiffness matrix K (Equation (27)). In practice, Equations (25) and (26) are
used for the numerical implementation of a given ˛-time integrator. It can be noticed that Equations
(26)–(28) correspond to the Newmark time integrators with the following relationships: �g D � D 


and �f D � D 
 . Finally, it is interesting to adopt a compact form for the ˛-time integrators (with
Lagrange multipliers) as a combination of (25) and (26):

K
��UnC1 D GnC1 C L

t
ƒnC�f

(29)

with the right-hand side vector given by

GnC1 D FnC�f
� NUn (30)

The previous matrices and vectors involved in the compact form for the complete solving over time
step h for all ˛-time integrators are given in the following:

K
� D

2

6

4

K� 0 0

�ˇh



I I 0

� 1

h

I 0 I

3

7

5
; L

t D

2

4

Lt

0

0

3

5 (31)

Un D

2

4

Pun

un

Pvn

3

5 ; �UnC1 D

2

4

� PunC1

�unC1

�PvnC1

3

5 (32)

FnC�f
D

2

4

fnC�f

0

0

3

5 ; N D

2

6

6

4

�f hK K �f

�


�2ˇ
2


�

h2K C
�

1 �
�g




�

M

hI 0
�


�2ˇ
2


�

h2I

0 0 � 1



I

3

7

7

5

(33)

We recall that Newmark, Krenk, Simo, or Verlet time integrators for instance are particular cases of
the compact form in Equation (29) with Lagrange multipliers (e.g., [145, 150]).

2.2. Stability analysis of ODE and DAE

As briefly described in the introduction, analysis of time integrators is necessary in order to under-
stand the advantages and drawbacks of the various schemes dedicated to structural dynamics. Of
particular importance are stability, accuracy, numerical dissipation, and overshoot. Typically, sta-
bility can be evaluated by an appropriate norm on the solution vector (displacement, velocity, and
possibly acceleration), generally based on eigenvector orthogonality property (series of uncoupled
SDOF systems) [25, 92, 102]. Classically, stability analysis is performed from the amplification
matrix A defined as

XnC1 D AXn (34)

where X � .u; v/ is the considered state vector. For LMS methods, stability is governed by the so-
called Dahlquist barrier where it is proven that there exists no unconditionally stable LMS methods
with accuracy greater than order 2 [4] (e.g., Time Discontinuous Galerkin Integrators (TDG) integra-
tors are not LMS integrators and are not concerned by this limit). Furthermore, most time integrators
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for structural dynamics are A-stable, that is, unconditionally stable in the linear regime. However,
it may not be sufficient to ensure a robust temporal integration. For instance, HHT-˛ can exhibit a
low effectiveness of the numerical dissipation with possible overshoot [51]. In the same way, Hul-
bert and Hughes proved that the HHT-˛ time integrator suffers from the velocity overshoot and that
the acceleration is only first-order accurate [25]. A better stability condition consists in L-stability.
Indeed, it has been shown that this stability property does not exhibit overshoot [52]. L-stability
combined with the optimized dissipation characteristics of higher modes represents the attractive
properties in the linear regime of the CH-˛ method [45]. These properties can be user controlled
by means of the spectral radius at infinity (�1) (�1 D 0 corresponds to the case of asymptotic
annihilation of the high-frequency response, while �1 D 1 corresponds to the case of no numerical
dissipation) (Table I). In fact, L-stability is related to high-frequency numerical dissipation and has
been shown to be critical for solving problems of constrained nonlinear dynamics. More recently,
the concept of Lyapunov exponents was also used to quantify the stability in structural dynamics
[75]. Finally, the (energy) stability analysis suggested, among others, by Belytschko, Shoeberle, and
Hughes is of great interest as it can be applied in nonlinear structural dynamics [6, 9]. It has to be
noticed that the energy method does not require any state vector at a given time, which is of great
interest for asynchronous time integrators. Indeed, the energy method proposed by Hughes has been
widely used for obtaining the stability conditions for coupling schemes, mixing implicit and explicit
schemes [24]. This is why, this nice property was used initially for the stability analysis of GC HATI
[66, 74, 79, 88]. Furthermore, stability analysis of the PH method has also been proven this way
[108]. It consists in proving that the interface pseudo-energy is equal or less than zero. Here, the
interface pseudo-energy is employed as the starting point of the new coupling methods by seeking
to ensure the zero-interface pseudo-energy. Thus, the following coupling schemes are built from the
discrete balance equation given in the energy method in terms of pseudo-energy. For a given sub-
domain (by omitting the scripts for belonging subdomains), the pseudo-energy balance equation for
the Newmark time integrator is given by [24]

�

1

2
Pvt APv C

1

2
PutK Pu

�nC1

n

D
1

h
� Put ¹.fnC1 � fn/º : : :

�

�


 �
1

2

�

®

�PvtA�Pv
¯

(35)

where A is defined as

A D M C
�

ˇ �



2

�

h2K (36)

The previous balance equation can also be denoted as

�Ekin C �Eint D �Eext C �Ediss (37)

where �Ekin, �Eint, �Eext, and �Ediss are the increments over the time step of kinetic, internal,
external, and numerical dissipated pseudo-energies [24]. Based on an eigenvalue analysis of the
matrix A, we obtain very easily the stability property of the Newmark time integrator [88]. It can
be noticed that the pseudo-energy method is dedicated to stability analysis of time integrators by
studying the eigenvalues of operator A (Equation (36)). When Lagrange multipliers occur (DAE),
the following interface pseudo-energy is added on the right-hand side of Equation (37) in the same
way as the external pseudo-energy [90, 140, 151]:

�Einterface D
1

h
� Put

®

Lt .ƒnC1 � ƒn/
¯

(38)

As already mentioned by Hughes [24] and all the papers based on the GC approach [88], the pseudo-
energy method has to be distinguished from the discretized energy balance equation (Equations
(72) and (74)). Indeed, here, the pseudo-energy is dedicated to stability analysis. Furthermore, the
numerical energy balance equation is dedicated to the energy-preserving analysis of a given time
integrator. A second comment concerns Equations (37) and (38): their combination consists in a
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generalization of the pseudo-energy method (mainly dedicated to ODE, without Lagrange multipli-
ers) to DAE (with Lagrange multipliers). This property is also confirmed by stability analysis based
on amplification matrix applied to DAE with Lagrange multipliers (see Section 3.3 for details). In
the next part, a new class of HATI will be introduced, from fundamental Equations (19) and (38).

3. HETEROGENEOUS ASYNCHRONOUS TIME INTEGRATORS

3.1. A state of the art of HATI

In the aim to surpass the classical approach (a unique time integrator and a unique timescale for the
whole structure) for structural dynamics, many attempts in the past have consisted of developing
HATI. Generally, it consists of cutting the considered structure into different subdomains individ-
ually handled by an appropriate time integrator with a chosen time step. Since the pioneer works
of Belytschko and co-authors, much work has been performed in order to circumvent the barri-
ers associated with a unique time integrator with a global time discretization. To relax the time
step constraint imposed by stability requirements, mixed (heterogeneous) methods or multi-time
(asynchronous) methods with different time steps for each domain were proposed. Belytschko and
Mullen [7, 8, 12, 26] were the first to use a mixed explicit/implicit method with a nodal partition,
while Hughes and Liu [11, 14] introduced a mixed method using an element partition. Belytschko
and co-authors introduced subcycling for first-order problems and later extended it to non-integer
time step ratios [15, 21]. Belytschko and others developed subcycling with non-integer ratios for
second-order structural problems [14, 15, 18]. Although popular, the stability of second-order sub-
cycling methods has been elusive. Smolinski and Sleith proposed an explicit subcycling algorithm
for second-order problems that was proven stable but is less accurate than other algorithms [38,
39, 55, 78]. The multi-timescale features of theses approaches often suffer from stability difficul-
ties as soon as subcycling is activated, explained by the need of interpolated values at the interface
between the subdomains from the fine timescale to the coarse timescale. This drawback of subcy-
cling algorithms has been discussed by several authors such as Belytschko and Lu [42, 43], Klisinski
and Mostrom [64], and Daniel [59, 61–63, 99, 100] who showed that multi-time-step algorithms
coupling explicit integration schemes lead to narrow bands of possible unstable time steps, smaller
than the expected stability limit (statistical stability [49]). Wu and Smolinski [67, 78] proposed a
new explicit multi-time strategy (mE/E) for solving structural dynamics problems derived from the
modified trapezoidal rule method. Stability has been analyzed with the so-called energy method
originally introduced by Hughes for hybrid explicit/implicit coupling algorithm [24]; stability has
been well achieved, but investigated dynamics problems highlight accuracy difficulties for a rather
small time step ratio of less than 10. Recently, an optimization of the multi-timescale approach
involving only explicit time integration schemes has been achieved, by associating a local time step
with each finite element composing the whole domain [134]. Local time integration is also available
for variational integrators (e.g., [153]). All these former coupling algorithms can be classified in a
primal approach in the sense that subdomains are linked on the interface nodes (or elements) with a
displacement continuity property.

Theoretically, in order to build the space–time discretized weak formulation, it is possible to
choose between displacement, velocity, and acceleration continuity at the interface. Indeed, for the
discretized formulation in time, they are only equivalent when the time step tends to zero. This
is why dual approaches are of great interest in their ability to prescribe the continuity of a given
kinematic quantity of interest by the use of Lagrange multipliers (e.g., Equation (19)). The GC
method, proposed by Gravouil and Combescure [88, 90], has been then built in this framework
with a velocity continuity at the interface at the finest timescale in order to build a general class of
HATI. The authors showed that any Newmark time integrator can be coupled (explicit or implicit)
with their own timescale, providing a general demonstration of stability using the energy method
(Section 2.2) [24, 88, 90]. Nonetheless, energy dissipation can occur as soon as different timescales
are considered, leading to a global first-order accuracy when second-order time integrators are used.

Many engineering applications of this method are available for transient nonlinear dynamics, FSI,
non-matching interfaces, co-computations, simulation of automobile crashes, hybrid experimen-
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tal/numerical real-time testing, earthquake loading, impact on concrete structures, microsystems,
coupled electro-mechanical problems, and fracture in polysilicon micro electro-mechanical systems,
with two or more subdomains with their own integrator and timescale [60, 66, 74, 79, 88, 90, 93, 94,
96, 97, 103–107, 116, 131, 132, 140–142, 145, 148–152, 154, 157–161, 164–166] (see for instance
[145] for an example with nine subdomains, nine different time integrators, and a maximum ratio of
time steps close to 1000).

Recently, further efforts have been carried out to build coupling methods able to handle the
generalized-˛ schemes proposed by Chung and Hulbert [45], well known for being able to control
numerical damping and to filter out spurious high-frequency components of the response. The low
frequencies are unaffected, and the time integrator remains second-order accurate. Bursi et al. [143]
underline that the GC method based on the velocity continuity at the end time of the fine time steps
is incompatible with the generalized-˛ scheme whose terms involved into the equation of motion
are weighted by different parameters. Therefore, in order to adapt the generalized-˛ scheme to the
end time collocation format of the GC coupling method, a new form of the generalized-˛ scheme
proposed by Arnold and Bruls [122] in the multibody dynamics context is adopted, enforcing the
equilibrium at the end of the time step instead of an averaged form as in the original time integra-
tor. The derived interfield parallel solution method, called the PM-˛ method, is an extension to the
˛-schemes of the PM method [143].

Built upon the GC formulation, two other multi-time coupling schemes have been proposed. The
first one is the PH method developed by Prakash and Hjelmstad [108, 167], assuming a velocity
continuity on the interface at the macro timescale (large time step) unlike the GC method based
on the micro timescale (fine time step). It enables the dissipative drawback of the GC method to
be tackled while optimizing the computation time related to the solving of the interface problem.
The authors proved by using the energy method that the pseudo-energy at the interface remains
equal to zero (Equation (38)). They concluded that the PH method is energy conserving when cou-
pling non-dissipative Newmark schemes such as the implicit constant average acceleration (CAA)
scheme and the explicit central difference (CD) scheme. Recently, the Mahjoubi Gravouil Combes-
cure (MGC) method (based on a similar macro timescale velocity continuity assumption) has been
built in order to be able to couple the Newmark schemes, HHT-˛ scheme [10], Simo scheme [37],
and Krenk scheme (balance dissipation scheme, [111, 118, 120, 125, 130]) in linear dynamics [141,
145]. In other words, the MGC method can be seen as an extension of the PH method to the HHT-˛
scheme. Nonetheless, the MGC coupling method uses a modified equation of motion for the HHT-
˛ scheme: solving the equation of motion related to a given time step requires quantities one time
step before, losing the single-solve single-step format of the original HHT-˛ scheme. More gener-
ally, recent works propose asynchronous variational time integrators for structural dynamics [101,
127, 129]. Furthermore, there are some attempts for heterogeneous asynchronous variational time
integrators for nonlinear structural dynamics; however, they reveal to be conditionally stable [144].
More generally, truly (homogeneous) asynchronous variational integrators are now available in that
different time step can be chosen at each element, generalizing the subcycling approach, with pos-
sible contact nonlinearities [126, 153]. In the same way, FSI problems often require heterogeneous
asynchronous time integrators. For such applications, we can distinguish partitioned and monolithic
approaches, with specific integrators and timescales for the solid and fluid parts. A very good state
of the art for both partitioned and monolithic approaches can be found for instance in references
[17, 30, 33, 46, 68, 73, 80, 81, 95, 115, 123, 124]. Drawbacks and advantages of partitioned and
monolithic approaches are still studied in detail, in terms of stability, accuracy, and computational
cost [95, 155]. It can be noticed that a generalization of the GC method has been applied recently
with success to FSI [161]. Finally, one can also mention overlapping methods as an alternative for
the development of HATI for specific applications such as multiscale physics, continuum/molecular
dynamics coupling [23, 121, 128, 136].

In this paper, two new BGC (Brun Gravouil Combescure) coupling methods, denoted in the
following BGC-macro and BGC-micro methods, will be derived by seeking to cancel the inter-
face pseudo-energy. The BGC-macro method is a macro-time-based method, such as the PH
and MGC methods [108, 140–142, 145]. It assumes a linear variation of the Lagrange multi-
pliers over the macro time step so as to lead to a kinematic condition at the interface, which,
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used together with the Lagrange multiplier variation assumption, guarantees the zero value of
the interface pseudo-energy. It will be shown that the new method exactly matches the PH
method when considering Newmark schemes but can also be easily extended to the ˛-schemes
(HHT-˛ [10], WBZ-˛ [16], and CH-˛ [45]) unlike the PH method. The BGC-micro method
is micro time based in the sense that the interface problem is handled at the micro timescale.
It generalizes the GC progenitor method of this family of hybrid (different types of integra-
tor) multi-time-step coupling schemes: the new micro-based coupling method exactly matches
the GC method for Newmark schemes but can also be employed for the ˛-schemes. In addi-
tion, it is important to note that the ˛-schemes are employed without modifying the original
formulation, unlike what has been carried out previously for the PM-˛ and MGC algorithms
[140–142, 145].

3.2. On dual HATI

3.2.1. A general class of dual HATI based on energetic considerations. We propose here a general
framework of dual HATI based on weak velocity continuity in time and energy considerations from
fundamental expressions (19) and (38). Assuming two subdomains �A and �B (�A \ �B D
;) with their own time integrator and timescale, which are respectively coarse and fine, we can
introduce the following action integral based on the three-field stationary principle (16) over the
macro time step hA D Œt0I tm�:

ı QA D 0

, �

Z tm

t0

ıuAt
.t/

�

MA PvA .t/ C KAuA .t/ � fA .t/ � Lt
Aƒ .t/

�

dt

�

Z tm

t0

ıuB t
.t/

�

MB PvB .t/ C KBuB .t/ � fB .t/ � Lt
Bƒ .t/

�

dt

C

Z tm

t0

ı�t .t/
�

LA PuA .t/ C LB PuB .t/
�

dt D 0

(39)

In order to consider a large class of time integrators, we follow the approach proposed by
Crisfield, Tamma, and co-authors (Section 2.1). In this way, we can choose for each subdo-
mains �A and �B a time integrator based on ˛-schemes (e.g., HHT-˛, WBZ-˛, and CH-˛). It
involves the following set of seven equations, with eight numerical parameters 
A; ˇA; �A;f ; �A;g

and 
B ; ˇB ; �B;f ; �B;g , with the two coarse and fine time steps hA and hB , respectively
(see Section 2.1 and Equations (22) and (25)–(28) for the definition of these time integ-
rator parameters):

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

K�

A� PuA
m D gA

m C Lt
AƒnC�A;f

�uA
m D ˇAhA


A
� PuA

m C hA PuA
0 C 
A�2ˇA

2
A
h2

A PvA
0

�PvA
m D 1


A hA
� PuA

m � 1

A

PvA
0

(40)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

K�

B� PuB
j D gB

j C Lt
Bƒj �1C�B ;f

�uB
j D ˇB hB


B
� PuB

j C hB PuB
j �1 C 
B �2ˇB

2
B
h2

B PvB
j �1

�PvB
j D 1


B hB
� PuB

j � 1

B

PvB
j �1

8j 2 ¹1; mº

(41)

Z tm

t0

LA PuA .t/ C LB PuB .t/ dt D 0 (42)

where Equations (40) and (41) correspond to weak equilibrium equation in time on the coarse
and fine timescales for subdomains �A and �B , respectively. Here, for simplicity, we assume that
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hA D mhB (more complex cases have to be investigated [129]). Then, the preceding equations can
also be given in a compact form as (Equation (29))

8

ˆ

<

ˆ

:

K
�

A�U
A
m D F

A

A

� NAU
A
0 C L

t
Aƒ�A;f

K
�

B�U
B
j D F

B
j �1C
B

� NBU
B
j �1 C L

t
Bƒj �1C�B ;f 8j 2 ¹1; mº

R tm
t0

LA PuA .t/ C LB PuB .t/ dt D 0

(43)

Finally, the last step consists of building the discretized form of the velocity continuity at the inter-
face between �A and �B (see the last equation in (43)). For that purpose, the energy balance based
on the energy method (Section 2.2) is applied to the whole structure based on subdomains �A and
�B plus the interface over the macro time step hA D Œt0I tm�:

�EA
kin;m C �EA

int;m C

m
X

j D1

®

�EB
kin;j C �EB

int;j

¯

D � � �

0

@�EA
ext;m C

m
X

j D1

�EB
ext;j

1

A C

0

@�EA
diss;m C

m
X

j D1

�EB
diss;j

1

A C �Einterface

(44)

The interface pseudo-energy can be written as (Equation (38))

�Ei D
1

hA
� PuA

m

t ®

Lt
A .ƒm � ƒ0/

¯

C

m
X

j D1

²

1

hB
� PuB

j

t ®

Lt
B

�

ƒj � ƒj �1

�¯

³

(45)

Assuming that the considered time integrators are ˛-schemes, then a linear interpolation from the
coarse timescale to the fine one (on the interface between subdomains �A and �B ) can be used (see
the last equation in (20)):

ƒj D

�

1 �
j

m

�

ƒ0 C
j

m
ƒm (46)

Historically, this equation was seen as a supplementary condition added to the set of
Equation (43) [88]. However, more generally, it can be seen as a fundamental property of ˛ time
integrators with Lagrange multipliers (Equation (20)). In other words, it is no more than a general
property of ˛-schemes with Lagrange multipliers used as a natural approach for dual HATI. As a
consequence, we can write

ƒj � ƒj �1 D
1

m
.ƒm � ƒ0/ (47)

Then, the interface pseudo-energy can be simplified as

�Einterface D

2

4

1

hA

� PuA
m

t
Lt

A C

m
X

j D1

²

1

mhB

� PuB
j

t
Lt

B

³

3

5 .ƒm � ƒ0/ (48)

Finally, the zero-interface pseudo-energy requirement �Einterface D 0 (for stability considerations)
leads to the two possible kinematic equations:

LA� PuA
m C

m
X

j D1

LB� PuB
j D 0 (49)

or

1

m
LA� PuA

m C LB� PuB
j D 0 (50)

The first kinematic Equation (49) is the basis of BGC-macro dual HATI [168] where velocity
continuity is ensured at the macro timescale between �A and �B .
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As already mentioned in this paper, the proposed pseudo-energy approach is a generalization
of the ODE stability analysis (without Lagrange multipliers) to the DAE stability analysis (with
Lagrange multipliers). This can be confirmed by an amplification matrix stability analysis (see
Section 3.3 for details). As a consequence, if the interface pseudo-energy (48) is zero or negative,
then the global stability of the HATI is ensured. In other words, each time integrator of each subdo-
main keeps its own stability property (independently on the interface). It is interesting also to notice
that only properties (47) and (49) are required for building BGC-macro dual HATI. Indeed, PH
methods (which are particular cases of BGC-macro dual HATI to Newmark) are built historically
on unnecessary assumptions (linearity of displacement, velocity, and acceleration fields). Now, the
same result can be obtained without these assumptions (see also [145, 151, 163, 164, 168]). Finally,
the second kinematic Equation (50) is the basis of BGC-micro dual HATI [168] where velocity con-
tinuity is ensured at the micro timescale between �A and �B . The GC method can be seen as a
particular BGC-micro dual HATI for Newmark, where a stability analysis was obtained for the first
time by the pseudo-energy method [88, 90].

In the next two subsections, we will define the specificities of BGC-macro and BGC-micro dual
HATI in terms of algorithmic implementation [168].

3.2.2. BGC-macro dual HATI. It is now time to write a general framework of dual HATI based on
velocity continuity at the macro timescale and energy considerations in a compact form (Equations
(43) and (49)):
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ˆ

:

K
�

A�U
A
m D F

A

A

� NAU
A
0 C L

t
Aƒ�A;f

K
�

B�U
B
j D F

B
j �1C
B

� NBU
B
j �1 C L

t
Bƒj �1C�B ;f 8j 2 ¹1; mº

LA� PuA
m C

Pm
j D1 LB� PuB

j D 0

(51)

It is clear that this set of Equation (51) is fully coupled on the macro timescale. This is why
it is required to propose a global formulation in time. For that purpose, we introduce the
following notations:
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ˆ

ˆ

ˆ
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�

Lt
A
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A

Et
B;j D

h

�

1 � �B;f

�

�

1 � j �1
m

�

C �B;f

�

1 � j
m

�i

Lt
B

Ct
B;j D

h

�

1 � �B;f

�

�

j �1
m

�

C �B;f

�

j
m

�i

Lt
B 8j 2 Œ1; m�

(52)

and

LA D
�

LA 0 0
�

; LB D
�

LB 0 0
�

(53)

The matrices CA;m and EA;m related to the subdomain �A are given by

CA;m D
�

CA;m 0 0
�

; EA;m D
�

EA;m 0 0
�

(54)

whereas the matrices CB;j and EB;j related to the subdomain �B are

CB;j D
�

CB;j 0 0
�

; EB;j D
�

EB;j 0 0
�

8j 2 Œ1; m� (55)
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Then, the global system of equilibrium equations is obtained by gathering the compact forms of the
three-stage time-stepping schemes for both subdomains. It writes
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(56)

Then, the BGC-macro HATI is composed of the following blocks:
"

K �Lt

B 0

# "

�U

ƒ

#

D

"

F

0

#

(57)

It can be solved by a bordering approach, by decomposing the quantities into free and linked quanti-
ties as �U D �Ufree C�Ulink. The bordering approach can be seen as a predictor–corrector method.
By splitting the system into free and link problems, the global system becomes

8

ˆ

<

ˆ

:

K�Ufree D F

Hƒ D �B�Ufree with H D
�

BK�1Lt
�

K�Ulink D Ltƒ

(58)

More details about the solving of the global system and the building of the interface Steklov–
Poincaré operator H can be found in [108, 140]. The BGC-macro integrator can be seen as a
generalization of PH and MGC HATI to general ˛-integrators. Some numerical examples of this
dual HATI will be presented in Section 4.

3.2.3. BGC-micro dual HATI. In this subsection, we propose an alternative class of dual HATI
methods based on velocity continuity at the micro timescale between the subdomains �A and �B .
From Equations (43) and (50), one obtains
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(59)

The Lagrange multipliers are computed at times t0 C �Af
and tj �1 C �Bf

for subdomains �A and
�B as

´

ƒ�A;f
D ƒ0 C �A;f .ƒm � ƒ0/

ƒj �1C�B;f
D ƒj �1 C �B;f �ƒj

(60)

In this case, the set of Equation (59) is not fully coupled at the macro timescale; then an explicit
formulation can be built at the micro timescale. Indeed, by splitting the quantities into free and
linked quantities on the micro time step, the kinematic equation can be rewritten as

1

m
LA� PuA

link;m C LB� PuB
link;j D �

1

m
LA� PuA

free;m � LB� PuB
free;j (61)
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The link problem for both subdomains can be derived as follows:
´

K�

A� PuA
link;m D Lt

Aƒ�A;f

K�

B� PuB
link;j D Lt

Bƒj �1C�B;f

(62)

Using Equation (62) and substituting the relationships concerning the Lagrange multipliers (47) and
(60) into the kinematic relation (61), we obtain the interface Equation (58) for BGC-micro HATI
with ˛-schemes:

H�ƒj D �bj (63)

where the interface operator at the micro timescale and the right-hand side vector are defined by
´

H D
�

�A;f LA.K�

A/�1Lt
A C �B;f LB.K�

B/�1Lt
B

�

bj D 1
m

LA� PuA
free;m C LB� PuB

free;j � 1
m

LA.K�

A/�1Lt
Aƒ0 � LB.K�

B/�1Lt
Bƒj �1

(64)

The interface equation has to be solved at each micro time step for computing the Lagrange mul-
tipliers at the micro timescale. It has to be underlined that, for linking the Lagrange multipliers
at the macro timescale ƒ�A;f

to the micro timescale ƒj �1C�B;f
, the assumption of a constant

Lagrange multiplier increment �ƒ has been adopted. This assumption will not be verified exactly
into the computations because the Lagrange multiplier increment �ƒj is computed at every micro
time step. In other words, contrary to the BGC-macro dual HATI integrator, the numerical vari-
ation of the Lagrange multipliers at the micro timescale cannot be accurately controlled. So, this
micro timescale method fails to ensure the zero-energy dissipation at the interface in the sense of
the energy method (see for instance numerical applications in Figure 6). On the opposite, the BGC-
macro method requires a single solve of the interface problem at the macro timescale for obtaining
the final Lagrange multiplier ƒm. The Lagrange multiplier at the micro timescale ƒj �1C�B;f

is
then directly interpolated from the initial and final Lagrange multipliers ƒ0 and ƒm. As a result, it
allows an accurate control of the Lagrange multipliers over the macro time step, enabling us to main-
tain the interface pseudo-energy at the zero value. Despite the overhead coming from the building
of a more complex interface operator H , the BGC-macro method is a conservative energy cou-
pling algorithm in the sense of the energy method and provides a greater computational efficiency
as well as some advanced parallel capabilities. Indeed, the free computations can be conducted in a
complete concurrent way for both subdomains, independently from each other. The dissipated inter-
face energy drawback has been recognized by the authors of the progenitor GC method as soon
as different timescales are considered; even a general proof of stability was obtained based on the
pseudo-energy method (Section 2.2) [88] or by numerical analysis (Figure 6):

�Ei BGC-macro D 0

�Ei BGC-micro 6 0
(65)

In the next subsection, a confirmation of pseudo-energy stability analysis is performed by the
amplification matrix for BGC-macro HATI. This new general result was obtained only recently by
Brun et al. [168], and based on the previous stability analysis developed in [132] and [143] for the
PM method (a particular case of BGC-micro HATI close to GC).

3.3. Stability analysis of the BGC-micro and macro dual HATI by the amplification matrix

In the previous section, it has been shown that BGC-macro HATI preserves exactly the inter-
face pseudo-energy by construction. This ensures the global stability of the HATI. Furthermore, it
has been shown theoretically and numerically that BGC-micro HATI ensures a zero-interface or
negative-interface pseudo-energy by construction. This also ensures the global stability of the corre-
sponding HATI, with possible numerical damping. Here, a confirmation of these stability properties
is carried out by the amplification matrix (Equation (34)). Historically, the amplification matrix
stability analysis for DAE such as GC or PM was performed for the first time by Bonelli and co-
authors [132, 143]. In other words, they have proposed a proof of stability by the amplification
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matrix for a large class of BGC-micro HATI. This result is a clear confirmation of the previous
stability analysis based on the pseudo-energy.

In the following, we also propose to confirm the previous pseudo-energy stability analysis of
BGC-macro HATI by the amplification matrix as already performed by Brun et al. [168]. Along
the lines of [132] and [143], an alternative convergence analysis is investigated here by building an
amplification matrix A linking a state vector at time tn C hA D tnC1 to the previous state vector
at time tn. The convergence of the BGC-macro method is carried out for a SDOF system, split into
two subdomains �A and �B . In the same way, the BGC-macro method is recast into the following
recursive form (external forces are assumed null as they do not influence the stability properties):

XnC1 D AXn (66)

where X is an appropriate state vector depending on the formulation of the time integration algo-
rithm, A is the amplification matrix. The BGC-macro method adopts the following state vector at
time tn:

Xn D
�

XA
n XB

n

�T
D

�

uA
n PuA

n hA PvA
n hA�n uB

n PuB
n hA PvB

n

�T
(67)

where XA
n and XB

n are the state vectors related the subdomains �A and �B , respectively. XA
n collects

the kinematic quantities of subdomain �A, including the Lagrange multiplier at the macro timescale,
and XB

n collects the kinematic quantities of subdomain �B . It is important to remark that the state
vector includes the Lagrange multiplier contrary to the PM method proposed by Bonelli et al. [132]
and Bursi et al. [143], including instead the free velocity related to the subdomain �A. In [168], it
has been proven that Equation (66) can be developed as

�

XA
nC1

XB
nC1

�

D

�

AAA AAB

ABA ABB

� �

XA
n

XB
n

�

(68)

where the matrices AAA, AAB , ABA, and ABB depend on the time step ratio. The absolute stability
of the BGC-macro method is investigated by computing the seven eigenvalues of the amplifica-
tion matrix A in the case of the split oscillator. The eigenvectors are linearly independent for each
repeated eigenvalue �i . Hence, the condition j�i j 6 1, for i D 1; : : : ; 7, is sufficient to demon-
strate the A-stability of the method. In Figure 1, the coupling between two CH-˛ schemes (spectral
radius �1 D 0:8 and �1 D 0:5 for each scheme) is investigated as a function of the time step
ratio m by plotting the absolute values of the eigenvalues as a function of the reduced angular fre-
quency �B D !BhB . Among the seven eigenvalues, only one pair is complex conjugate, giving
the principal eigenvalues, whereas the five remaining are the spurious ones. In all investigated cases
(any �1 and b1), the BGC-macro method is found to be unconditionally stable when coupling
unconditionally stable time integrators. In the following, the local truncation error �n is defined as

�n D AX.tn/ � X.tnC1/ (69)

where X.tn/ and X.tnC1/ correspond to the exact solutions of the state vector at times tn and tnC1.
From numerical calculations, the order of the truncation error can be assessed by computing the
slope of ln.�n/ as a function of the macro time step hA. Indeed, the power k of the leading term
of the local truncation error �n D ˛hk

A C O.hkC1
A / (˛ being constant) can be computed as k D

ln.�n.h2;A//�ln.�n.h1;A//

ln.h2;A/�ln.h1;A/
, where �n.h2;A/ and �n.h1;A/ are the numerical results of the local truncation

error for two different small values of the macro time step hA, with h1;A < h2;A. One obtains

�n D O.h3
A/ (70)

for any values of the time step ratio m. It is worth noting that the same result has been obtained
in [132] (Newmark schemes) and [143] (˛-schemes) for their proposed PM method, but only in the
case of the same time step in both subdomains. Indeed, as soon as different time steps are adopted,
the PM method only exhibits �n D O.h2

A/. For illustration, the local truncation error is plotted in
Figure 2 for a time step ratio m D 2. It can be seen that the power k of the leading term of the local
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Figure 1. j�i j of the split oscillator (b1 D 1) for the BGC-macro method: CH-˛ (�1 D 0:8) coupled with
CH-˛ (�1 D 0:5) with different time step ratios m. (a) m D 1; (b) m D 2; (c) m D 5; (d) m D 10.

truncation error depends on the quantity under consideration (displacement, velocity, acceleration,
and Lagrange multiplier). In detail, we have

�A
u D O

�

h4
A

�

; �A
v D O

�

h3
A

�

; �A
a D O

�

h3
A

�

; �A
� D O

�

h3
A

�

;

�B
u D O

�

h4
A

�

; �B
v D O

�

h3
A

�

; �B
a D O

�

h3
A

� (71)

Following the arguments of [132] and [143], a method will be convergent of the order k, if it is
stable and consistent of the order k, that is, �n D O.hkC1

A /. As a result, the BGC-macro HATI is
convergent of the order 2 for any time step ratio. The global error plotted in the numerical examples
will confirm this numerical analysis. It is important to underline that the second-order accuracy of
the ˛-schemes is preserved through coupling with the BGC-macro method, which is not the case
for the algorithms proposed in the literature [143]. Finally, an accurate analysis of the numerical
damping ratio and the relative period error can be found in [168] and corroborates the previous
truncation error analysis.

As a consequence, the amplification matrix stability analysis of BGC-micro and macro HATI
leads to the same stability conclusions as with the pseudo-energy method [132, 143, 168]. Fur-
thermore, it is shown that displacement, velocity, acceleration, and Lagrange multipliers are
second-order accurate in the general case for BGC-macro HATI (Equations (67) and (71)). In prac-
tice, it is of great interest to scrutinize the possible numerical dissipation coming from the proposed
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Figure 2. Local truncation error � of the split oscillator (b1 D 1): CH-˛ (�1 D 0:8) coupled with CH-˛
(�1 D 0:5) with time step ratios m D 2.

BGC-macro and BGC-micro HATI. Thus, the discrete energy balance equation is detailed in the
following in order to estimate the possible numerical damping of the HATI.

3.4. Numerical energy balance for dual HATI

With regard to a given subdomain, the discrete form of the energy balance equation for New-
mark time integrators can be found in the works of Hughes [24] and Krenk [111, 118]. Without
considering structural damping, the energy balance equation over a time step can be written as

�

1
2

PutM Pu C 1
2
ut Ku C

�

ˇ � 

2

�

1
2
h2 PvtMPv

�nC1

n
D � � �

�ut
®

1
2

.fnC1 C fn/ C
�


 � 1
2

�

.fnC1 � fn/
¯

�
�


 � 1
2

� ®

�utK�u C
�

ˇ � 

2

�

h2�PvtM�Pv
¯

(72)

which can also be denoted as

�Wkin C �Wint C �Wcomp D �Wext C �Wdiss (73)

where �Wkin, �Wint, �Wcomp, �Wext and �Wdiss are the increments over the time step of the kinetic,
internal, complementary, external, and dissipated energies, respectively. The left-hand side of the
preceding equation represents the increment of the classical mechanical energy (kinetic plus inter-
nal energy) over the time step h, as well as an additional energy, noted here as the complementary
energy, coming from the Newmark time integration schemes. The external energy appears on the
right-hand side of the balance equation. To study the stability of the algorithm, the external forces
can be considered as equal to zero. The stability requires that the left-hand side be definite pos-
itive and the right hand side be either equal to zero or negative. In the usual cases of the CAA
scheme (
 D 1

2
, ˇ D 1

4
, second-order accurate) and the CD scheme (
 D 1

2
, ˇ D 0, second-order

accurate), it can be easily seen that the right-hand side of Equation (72) is equal to zero, prov-
ing that these schemes are non-dissipative. Let us now consider two subdomains �A and �B ; the
global discrete energy balance equation includes the aforementioned contributions from both sub-
domains over the macro time step hA D Œt0I tm� and over each micro time step hB D Œtj �1I tj �

for j varying from 1 to m, plus an additional term corresponding to the interface energy. The
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discrete energy balance equation over the macro time step hA D Œt0I tm� for the whole domain can be
expressed as

�W A
kin;m C �W A

int;m C �W A
comp;m C

m
X

j D1

®

�W B
kin;j C �W B

int;j C �W B
comp;j

¯

D : : :

�W A
ext;m C

m
X

j D1

�W B
ext;j C �W A

diss;m C

m
X

j D1

�W B
diss;j C �Winterface

(74)

It has been already remarked that the interface forces Lt
ƒ act in the same way as the external forces.

Thus, the interface energy on the right side of the preceding equation is formed by the contributions
from both subdomains:

�Winterface D �uA
m

t ®

1
2
Lt

A .ƒ0 C ƒm/ C .
A � 1
2
/Lt

A�ƒm

¯

C
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°
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1
2
Lt

B

�

ƒj �1 C ƒj

�

C .
B � 1
2
/Lt

B�ƒj

¯

± (75)

Thus, the interface energy (in the sense of the classical energy norm) can be determined by two
ways: either explicitly from Equation (75) or implicitly from Equation (76):

�Winterface D ��W A
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m
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m
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int;j C �W B
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¯

(76)

For Newmark time integrators, either Equation (75) or (76) can be used for the numerical estimate
of the interface energy (see also (72) for the definition of the energy terms). More generally, for
˛-schemes, Equation (73) is defined as follows [92]:
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Then, for ˛-schemes, Equation (76) can be used for the numerical estimate of the interface energy
with the previous modified definition of the right-hand side. From the aforementioned relationships,
it is clear that the standard decreasing energy criterion is not applicable to the class of G-˛ meth-
ods (non-quadratic term on the right-hand side of Equation (77)). Although these methods exhibit
growth and decay of the mechanical energy in the linear regime, it is possible to define a norm on
the modified state vector X � .u; Pu; Pv/ such that kXiC1k 6 kXik [24, 92]. Thereby, the numerical
norm decay of the discrete solution is enough for the G-˛ schemes to exhibit numerical stability in
the linear case. Furthermore, such energy norms can be used as a basis (or a necessary condition) in
order to study the stability in the nonlinear regime as suggested, among others, by Belytschko and
Shoberle [6, 9, 16, 92].

4. NUMERICAL EXAMPLES

In the following sections, numerical examples are presented to illustrate the properties of the BGC-
micro and BGC-macro dual HATI with Newmark and ˛-schemes. Different time integrators and
different timescales are investigated for a SDOF system split into two subdomains. The orders of
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accuracy are verified when coupling non-dissipative (Newmark CAA and CD schemes) and dissi-
pative (CH-˛, HHT-˛, and WBZ -˛) schemes, and energetic contributions are scrutinized in both
energy norms (pseudo-energy and classical norm of energy). It is recalled that many engineering
applications of this method are available in the literature with two or more subdomains with their
own integrator and timescale in 2D and 3D (see the state of the art of HATI in Section 3.1 for refer-
ences). An example with nine subdomains, nine different time integrators, and a maximum ratio of
time steps close to 1000 can be found in [145].

4.1. SDOF problem

Generally, for linear structural dynamics simulations, a second-order accuracy is desirable, ensuring
that the error of quantities of interest decreases as the square of the time step. To check the order of
accuracy of coupling methods, the case of a SDOF oscillator is considered [108, 141]. The oscillator
is characterized by its mass and stiffness: m D 2:10�6 and k D 2:104. The equilibrium equation of
the undamped oscillator under free vibration (no external forces) is given by

Pv.t/ C !2u.t/ D 0 (78)

where Pv.t/ and u.t/ denote acceleration and displacement, ! D

q

k
m

being the angular frequency.
Initial conditions are prescribed as u.t D 0/ D u0 and v.t D 0/ D v0. An initial displacement
u.t D 0/ D 1 and a zero initial velocity are taken into account in the following. The mass and
the stiffness of the SDOF oscillator are divided into two parts: mA D 1:10�6, kA D 1:104 and
mB D 1:10�6, kB D 1:104 for the subdomains �A and �B . A Lagrange multiplier is introduced to
hold together the two masses. The macro time step hA is defined on subdomain �A with the CAA
implicit Newmark integrator .
A D 1

2
and ˇA D 1

4
/. The micro time step hB is defined on sub-

domain �B with the CD explicit Newmark integrator (
B D 1
2

and ˇB D 0). The ratio between
the macro and micro time steps is defined by m D hA

hB
. It is set to 20. The critical time step hB;crit

is equal to 2:10�5 s. The final time of the free-vibration simulation is tf D 2:10�4 s. The orders
of accuracy of the multi-time-step coupling methods are investigated by computing the global error
with respect to the analytical solution of the SDOF oscillator in terms of displacements, velocities,
and accelerations for the two masses. The reduced angular frequency for the macro subdomain �A

is introduced as the product of the angular frequency !A with the macro time step hA: �A D !AhA.
Range of values for the reduced angular frequency �A from 10�2 to 10�1 is considered for the
accuracy order study, corresponding to a macro time step hA varying from 10�7 to 10�6 s. The
micro time step is less than the critical value hB;crit satisfying the CFL condition [1] for stability
requirement of the CD explicit integrator.

4.2. BGC-micro dual HATI

In Figure 3, the BGC-micro method is compared with the GC progenitor method when coupling
two non-dissipative second-order accurate Newmark integrators (CAA scheme with CD scheme).
The two methods match exactly. The first-order accuracy is obtained for displacement, velocity, and

Figure 3. Accuracy orders for the multi-time-step (m D 20) BGC-micro and GC (reference) coupling
methods for Newmark schemes: CAA (
A D 1

2
, ˇA D 1

4
) / CD (
B D 1

2
, ˇB D 0).
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Figure 5. Accuracy orders for the multi-time-step (m D 20) BGC-micro coupling method: CH-˛ (�1 D
0:0)/Newmark (CAA), CH-˛ .�1 D 0:5/, HHT-˛ .�1 D 0:5/, and HHT-˛ .�1 D 0:5/.
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Figure 6. BGC-micro coupling method with m D 20: CH-˛ (�1 D 0:0)/CH-˛ (�1 D 0:5), at �A D
10�1. Total pseudo-interface energy and contributions from both subdomains.
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acceleration, reflecting the energy dissipation characterizing the GC method as soon as different
time steps are adopted.

It can be confirmed by Figure 4, which shows the discrete energy balance at the reduced angular
frequency �A equal to 10�1. As previously explained, the interface energy Winterface is computed in
two ways: directly from the Lagrange multipliers from Equation (75) and implicitly from the energy
balance in Equation (76) by accounting for all the other energetic contributions. When coupling ˛-
schemes, for example coupling CH-˛ (�1 D 0:0) related to the first subdomain (macro time step)
with Newmark CAA, CH-˛, HHT-˛, and WBZ-˛ with the value of �1 set to 0.5 for the three ˛-
schemes related to the second subdomain (micro time step), the order of accuracy is again equal to
1 for displacement, velocity, and acceleration discretized fields as shown in Figure 5. At the reduced
angular frequency �A D 10�1, this dissipative drawback is illustrated by plotting the pseudo-
interface energy in Figure 6, along with the contributions from both subdomains according to the
expression in Equation (48).

As remarked in Section 3.2.2, the pseudo-interface energy cannot be maintained to the zero value
because of the solving of the interface problem at the micro timescale. In Figure 7, the total energy
is plotted versus time, corresponding to the sum of internal, kinetic, and complementary energies
as written in the left side of the discrete balance equation in Equation (77). The decay of the total
energy is observed.

On the basis of this academic example, the consistency, accuracy, and convergence is demon-
strated for the proposed BGC-micro dual HATI when dealing with the ˛-schemes. The dissipative
drawback is inherited from the GC progenitor method, leading to the loss of one order of accuracy
when we deal with second-order-accurate schemes.

Figure 7. BGC-micro coupling method with m D 20: CH-˛ (�1 D 0:0)/CH-˛ (�1 D 0:5), at �A D
10�1. Internal, kinetic, and complementary energies (m D 20) and total energy.

Figure 8. Accuracy orders for the multi-time-step (m D 20) BGC-macro and PH (reference) coupling
methods for Newmark schemes: CAA
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Figure 10. Accuracy orders for the multi-time-step (m D 20) BGC-macro coupling method: CH-˛ (�1 D
0:0)/Newmark (CAA), CH-˛ (�1 D 0:5), HHT-˛ (�1 D 0:5), and HHT-˛ (�1 D 0:5).

4.3. BGC-macro dual HATI

First, the BGC-macro method is compared with the PH method [108] in Figure 8 in the case of
non-dissipative second-order-accurate Newmark integrators (CAA scheme with CD scheme). It can
be checked that the second-order accuracy in displacement, velocity, and acceleration is maintained
through coupling. In the case of Newmark schemes, the BGC-macro method matches exactly the
PH method. Because the pseudo-interface energy is chosen as the starting point for building the pro-
posed class of HATI methods, it is important to check that the pseudo-interface energy is equal to
zero. From Figure 9 with a reduced angular frequency �A D 10�1, it can be shown that the BGC-
macro method preserves the energy in the sense of the energy method: the interface pseudo-energy
Einterface is exactly equal to 0, whereas the classical norm of the interface energy Winterface is very
weak (of the order 10�7 of the initial internal energy) but is not exactly equal to 0. Secondly, we con-
sider the coupling of ˛-schemes: CH-˛ (�1 D 0:0) related to the first subdomain (macro time step)
coupled with Newmark CAA, CH-˛, HHT-˛, and WBZ-˛ with the value of �1 D 0:5 related to the
second subdomain (micro time step). In Figure 10, the order of accuracy of the BGC-macro method
is displayed for displacement, velocity, and acceleration. It has to be noted that second-order accu-
racy is not achieved in acceleration as observed elsewhere [92] for ˛-schemes. In Figure 11, in the
coupling case of CH-˛ schemes, it can be checked that second-order accuracy is retrieved by apply-
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Figure 11. Accuracy orders for the multi-time-step (m D 20) BGC-macro coupling method: CH-˛ (�1 D
0:0)/CH-˛ (�1 D 0:5) after post-processing of numerical accelerations.
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Figure 12. BGC-macro coupling method with m D 20: CH-˛ (�1 D 0:0)/CH-˛ (�1 D 0:5), at �A D
10�1. Total pseudo-interface energy and contributions from both subdomains.
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Figure 13. BGC-macro coupling method with m D 20: CH-˛ (�1 D 0:0)/CH-˛ (�1 D 0:5), at �A D
10�1. Internal, kinetic, and complementary energies (m D 20) and total energy.

ing the post-processing procedure concerning the accelerations proposed by Erlicher et al. [92]. At
an angular frequency �A D 10�1, the pseudo-interface energy is computed from the Lagrange
multipliers and plotted in Figure 12 along with the contributions from both subdomains. On the
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opposite of the BGC-micro coupling, it can be checked that the BGC-macro dual HATI ensures
the zero value of the pseudo-interface. The total energy is plotted versus time in Figure 13 where
the growth and decay classically observed for the ˛-schemes [92] are also obtained. In compari-
son with the BGC-micro coupling, a less global decay of the total energy is observed, highlighting
spurious energy dissipation at the interface coming from the BGC-micro method. Concerning the
BGC-macro dual HATI method, it can be concluded that consistency, accuracy, and convergence
are well achieved. The energy dissipative drawback of the BGC-micro dual HATI method is allevi-
ated, ensuring the second-order accuracy when dealing with second-order-accurate schemes such as
Newmark schemes (CAA and CD) and ˛-schemes.

5. CONCLUSIONS AND PERSPECTIVES

Based on the pioneer works of Ted Belytschko and coworkers, we have proposed a state of the art
on HATI. Historically based on displacement continuity at the interface between heterogenous time
integrators, we propose an alternative dual approach based on the velocity continuity. The aim is
to build a general methodology for HATI (Newmark, HHT-˛, WBZ-˛, and CH-˛) based on space–
time weak formulations and energy considerations. Here, the gluing of subdomains with their own
time integrator and their own timescale is ensured with Lagrange multipliers and velocity continu-
ity. Asynchronous kinematic conditions at the interface between the subdomains are obtained by
ensuring the zero interface pseudo-energy. Two methods are then derived. The first one (BGC-
macro), with velocity continuity at the large timescale, can handle the popular dissipative ˛-schemes
(HHT-˛, WBZ-˛, and CH-˛). In the particular case of Newmark time integrators, the proposed
method matches the PH method proposed by Prakash and Hjelmstad in 2004 [108] and also in [163].
The second method (BGC-micro) is based on a velocity gluing at the fine timescale. It can be viewed
as an extension to ˛-schemes of the GC method proposed by Gravouil and Combescure in 2001
[88, 90]. These two families of dual HATI are now popular and applied to a wide range of struc-
tural dynamics problems, possibly nonlinear, and also multiphysics, FSI, or general co-simulation
strategies. However, BGC-micro approaches remain first-order accurate when second-order time
integrators are considered. Developments are in progress to extend BGC-micro approaches at the
same level of accuracy as BGC-macro approaches, particularly for strongly nonlinear problems
(large strain, frictional contact, non-localized plasticity, etc.). Nevertheless, BGC-micro approaches
are still very promising for nonlinear problems owing to their ease of implementation. Furthermore,
the extension of dual HATI (macro and micro) to variational integrators has to be studied in detail
as the bridge between ˛-schemes and variational approaches is rather small. Some attempts to use
dual HATI to space–time localized multi-grid approaches seem also very interesting when coupled
with space–time error indicators [110, 113, 156]. Finally, dual HATI have also been applied recently
with success to FSI and co-simulations, and many extensions to multi-physics in general have to
be considered.
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