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NONLOCAL DAMAGE THEORY By Gilles Pijaudier-Cabot, 1 S. M. ASCE and Zdenek P. Bazant,2 F. ASCE
AesTRAcT: In the usual local finite element analysis, strain softening causes spurious mesh sensitivity and incorrect convergence when the element is refined to vanishing size. In a previous continuum formula­tion, these incorrect features were overcome by the imbricate nonlocal · continuum, which, however, introduced some unnecessary computa­tional complications due to the fact that all response was treated as nonlocal. The key idea of the present nonlocal damage theory is to subject to nonlocal treatment only . those variables that control strain softening, and to treat the elastic part of the strain as local. The continuum damage mechanics formulation, convenient for separating the nonlocal treatment of damage from the local treatment of elastic behavior, is adopted in the present work. The only required modification is to replace the usual local damage energy release rate with its spatial average over the representative volume of the material whose size is a characteristic of the material. Avoidance of spurious mesh sensitivity and proper convergence are demonstrated by numerical examples, including static strain softening in a bar, longitudinal wave propagation in strain-softening material, and static layered finite element analysis of a beam. In the last case, the size of the representative volume serving in one dimension as the averaging length for damage must no\ be less than the beam depth, due to the hypothesis of plane cross sections. It is also shown that averaging of the fracturing strain leads to an equivalent formulation, which could be extended to anisotropic damage due to highly oriented cracking. 

INTRODUCTION Progressive damage due to distributed cracking has to be . treated in structural analysis as strain softening. This behavior is typical of concrete and is observed also in many other brittle heterogeneous materials such as rocks, stiff clays, two-phase ceramics, various composites, ice, wood and wood particle board, paper, filled elastomers, polymers and asphalt concretes, fiber-reinforced concrete, etc. Strain softening can be modeled by various types of constitutive laws, including endochronic theory, plastic-fracturing theory, plasticity with decreasing yield limit, bounding surface theory, and most recently continuum damage theory (4). Application of these models in finite element programs and other methods of structural analysis, however, runs into severe difficulties. As shown rigorously already in 1974 (2), when the stress-strain diagram exhibits a negative slope, and more generally when the matrix of tangential moduli ceases to be positive definite, the strain-softening damage tends to localize in a zone of vanishing volume (a line or a surface). This is true not 
1Grad. Res. Asst., Northwestern Univ., Evanston, IL 60201; on leave from Laboratoire de Mecanique et Technologie, Cachan, France. 2Prof. Dept. of Civ. Engrg., and Dir., Ctr. for Concrete and Geomaterials, Northwestern Univ. Tech 2410, Evanston, IL 60201. 
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only of statics, but also of dynamics (5,14,15). Because the energy dissipation per unit volume is finite, the vanishing of the damage zone volume causes the indicated structure to fail at zero energy dissipation. This is physically unrealistic, although mathematically the solutions of at least some structural problems with strain softening do exist and represent the limit of the finite element solution for a vanishing element size (4,5,8, 10-12). The consequence of strain localization due to strain softening is that finite element solutions exhibit strong spurious mesh sensitivity, becoming unobjective with regard to the analyst's choice of the mesh (2). These features have first been documented by numerical examples for simple strain-softening constitutive laws (4,8,9,11,16). Recently, however, it has been shown (12,13) by numerical examples of beams that the same spurious mesh sensitivity due to strain localization occurs with the models of continuum damage mechanics (17,26-28,33-38,40,46). The simplest, but admittedly a crude method to avoid strain localization and the associated mesh sensitivity is to impose a lower limit on the element size (2), as introduced in the crack band model (8,9, 1 I, 16). Alternatively, a strain-softening band of a width that is a material property may be embedded in the finite elements, as is done in the composite damage models of Pietrusczak and Mroz (41), and Willam, et al. (44,45) (see also Ref. 4). Still another possibility is to consider a line of damage (i.e., a crack), characterized by a stress-displacement rather than stress-strain relation, as developed for concrete in the model of Hillerborg, et al. (21,22). The line-crack stress-displacement formulation, however, is not generally applicable. It cannot cope with problems in which the damage zone does not localize fully, because the spacing ofline cracks is arbitrary and makes the response of this model unobjective in such situations (4). A more general and fundamental way to avoid strain localization to a zero volume and to overcome spurious mesh sensitivity is to adopt a nonlocal continuum approach (3,6,7,14). The idea of a nonlocal contin­uum, introduced during the 1960s by Kroner (29), Kunin (31), Krumhansl (30), Eringen and Edelen (19), and others (4), is to consider the stress to be a function of the mean of the strain from a certain representative volume of the material centered at that point. Introducing certain essential modifications of the classical nonlocal theory, Bazant, and Bafant, et al. (3,7,13) developed a nonlocal model that can handle strain softening in finite element analysis in a consistent manner, while at the same time avoiding spurious mesh sensitivity and precluding strain localization to a vanishing volume. The nonlocal formulation, which may be considered as the limit case of an imbricated system of finite elements (7,13), has nevertheless two properties that are inconvenient for practical applica­tions: (1) The behavior is nonlocal for all situations, including the elastic­or plastic-hardening response; and (2) an overlay with a local continuum must be introduced in order to avoid certain zero-energy periodic modes of instability. The objective of the present study is to develop a modified nonlocal formulation which avoids these two inconvenient properties. To this end it is useful, although not requisite, to adopt a formulation in which damage is described by a separate variable, distinct from the variables that describe the elastic behavior. This convenient feature is 
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provided by continuum damage mechanics (17,25,27 ,28,33-37 ,40,46). Theprincipal idea of this paper is to use the nonlocal concept only for thevariables that control damage and not for the strains or stresses in theconstitutive relation. Such an approach will represent a basic departurefrom the classical formulation of a nonlocal continuum. The purpose of introducing the nonlocal concept for damage is to limit the localization of strain softening to a zone of a certain minimum size thatis a material property, i.e., to serve as a localization limiter. A variety ofmathematical formulations have recently been introduced to serve, ineffect, as localization limiters. The simplest formulation of localizationlimiters is involved in the crack band model (2,8,9,11,16), as well as in thecomposite-damage finite element models (40,44,45). An alternative ap­proach to localization limiters is to make the material strength or yield limita function of the strain gradient. This idea, which was perhaps firstproposed by L'Hermite and Grieu (32) for shrinkage cracking and wasdeveloped to describe the size effect in bending of concrete beams withassumed plane cross section (26), has recently been adopted for strainsoftening in general by Schreyer and Chen (43), Floegl and Mang (20), andMang and Eberhardsteiner (39). Since the introduction of strain gradient isequivalent to comparing to the strength limit the stress value at a certainsmall distance from the point, this approach is also essentially nonlocal.Another variant of the nonlocal approach to localization limiters is tointroduce into the constitutive equation higher-order spatial derivatives,particularly the Laplacian, which arise from a Taylor series expansion ofthe nonlocal averaging integral (3,1). In this study, which is based on a1986 report (42), we will show that nonlocal damage is a very general andeffective formulation of localization limiters.
CONTINUUM DAMAGE THEORY For the sake of simplicity, attention will be restricted to isotropicmaterials with isotropic damage. Time-dependent material response(creep), as well as the effect of temperature and humidity will be neglected.The material will be assumed incapable of plastic behavior, which impliesthat unloading and reloading follow straight lines passing through theorigin. Thus, our formulation of damage theory will be a special case of thegeneral theory for continuum damage and plasticity (17,33). For the sake ofsimplicity, the anisotropic aspect of damage will be neglected, i.e., thegeneral tensor n will be approximated by the spherical tensor n = n I,where D is the scalar and I the identity matrix. The present idea of nonlocaldamage could nevertheless be implemented for anisotropic damage aswell. In the theory of continuum damage mechanics, first proposed byKachanov (25) for creep and applied by Lemaitre, and Lemaitre andChaboche (36,37), Krajcinovic (28) and others (17,40,46) to quasi-staticbehavior of strain-softening materials, the state of the material is charac­terized by strain tensor E and damage n is evaluated at the given point ofthe continuum. The strains are assumed to be small. From the thermody­namic viewpoint, the state of the material may be characterized by its freeenergy density lji, defined as 
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P'V = ½a:e .. .. .... . ......... ...... . . . ................... .. .................. . .... (1)in which p = mass density; the colon denotes the tensor product con­tracted on two indices; and <J' = stress tensor, which may be expressed as 
8(p'lf) er=� ..... ............... .......... . ......... ........... , .... . ............... (2)As a result of microcracking, the net resisting area of the material whichtransmits stress diminishes. Consequently the true stress <J" 1 in theundamaged material between the cracks becomes larger than the macro­scopic stress <J', which is in damage theory described by the relation (25):er er' = (1 ...., 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)in which !1 = damage (we use !1 instead of the usual notation w because !1will be later defined as nonlocal while the notation w is reserved for theusual local damage); !1 represents an internal (hidden) variable whichcan never decrease (0 .::: 0), has the initial value !1 = 0, and always !1 s1 with !1 = 1 representing the idealized asymptotic failure of a homoge­neously deformed material (e - co, <J" - 0). In practice, failure occursearlier, at !1 < 1, which is obtained through analysis. of localization, suchas crack-tip singularity. Assuming, for the sake of simplicity, that the strain in the undamagedmatrix of the material is equal to the macroscopic strain, and that thematerial exhibits no plasticity, Lemaitre and Chaboche (38) and othersexpressed the true stress as er'=C:s ... . . . .... . . . . . . . ...... .. ........................ ... ... .. . .. . ..... (4)Substituting Eq. 4 into Eq. 3, we h11ve a = (1 - O)C : s .. . .. . . .. . . .......... .. . . . .......... . .... .. . .. . ... . . . . ..... ..... (5)and substituting this into Eq. 1 we obtain 1-0 P'I' = -- 8 : C : E ... . . ... .... . . ..... . . . ... . .. . . .... . . .. . ......... ... . .. ... . . (6)2 Since damage comprises the creation and propagation of cracks andvoids, growth of damage dissipates energy. By differentiation of Eq. 6, theenergy dissipation rate is: 

· a(p'lf) a(p'lf) an q, = - Tt = - · an at = Yn ... .. . • . . ...... .... · . ....... . .  ··· . .  · .. . .. . · <7)in which we introduce the quantity:
a(p'lf) 1 Y = - an = 2 e : c : e . . .. . .  .. .. . .  . . . . . . .. . . . .  . .. .. . . . .. .. . .  .. . . . .  .. .. .. .. . (8)called the damage energy release rate (38). According to the second law ofthermodynamics (or Clausius-Du�em inequality), <p .::: 0. Since Y is apositive definite function of e and !1 .::: 0, this condition is always verified. 
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From this definition, however, one must exclude reverse stiffening phe­nomena such as crack healing. This phenomena could be described by asecond damage variable (3 1 ,43) . The damage properties of the material may be generally characterized,on the basis of experiments , by the damage evolution equation of the formfl =  /1 (0, E :O") . Although the present idea can be applied in general, we willconsider , for the sake of simplicity, only the special case where thisevolution equation is integrable for monotonic damage growth and reducesto the functional form n = j(Y). Loading and unloading are distinguishedby means of the loading function:F(Y) = Y - K( Y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .  (9) in which K(Y) = hardening-softening parameter. Its initial value is given asYi . After Y first exceeds Yi , K(Y) is assumed to be equal to the largestvalue of Y reached thus far at the given point. The damage evolution at apoint of the continuum for loading and unloading may then be defined asfollows: If F(Y) = 0 and .F(Y) = 0, then n = f(Y) . . . . . ... . . . . . . . . . . . .. ( 10a)If F(Y) < 0, or if F(Y) = 0 and F(Y) < 0, then Q = 0 . . . (10b)It must be emphasized that Eqs. 5 and 8-10 serve only as a simpleprototype of damage formulation. Obviously, more complicated damageevolution laws and damage loading functions are required to distinguishbetween damage in tension and compression, or in other triaxial states(33,46) .
NONLOCAL CONTINUUM DAMAGE The foregoing standard formulation of damage theory is local . It hasbeen demonstrated (2,5-10 , 1 2,13) that, in a local theory, the damage orstrain softening can, and often does, localize into a zone of vanishingvolume. Since <.p is finite, the total energy dissipation rate in this volumetends to zero, i . e .lim ( <p dV = 0 . .. .. . . . . . . . . ....... . .. . . . .... . . . ..... . .. . . . . . . .. . .. . . . .... .. (1 1)v - o  Jv In particular, the dynamic failure due to wave propagation in a materialrepresented by the tensile stress-strain curve shown in Fig. l (a) occursright at the start of softening (i. e., at the maximum stress point), withoutany stable progressive accumulation of damage before failure and withoutany dissipation of energy (5). This physically unrealistic property is alsoborne out by numerical finite element computations when the finiteelement subdivision of the structure is refined (5, 14) . As already men­tioned, it is proposed to circumvent this problem by defining damage in anonlocal manner. This can be done by replacing the local definition, n =j( Y). with the nonlocal definition: n =f( Y) . . . . . . . . .. . . . . . . . . . .. . . .. . . . . . . . . . .. . . . ... .. . . . .......... . . .. . ... .. . . . . . (12)in which Y represents the mean of Y over the representative volume V, ofthe material centered around the given point and fl the nonlocal damage.
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We will use 
Y = � l. Y dV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . ; . . . . . . . . . . . . . . . . . . . . . . . .  (1 3)
More generally , a weighting function could be introduced in the integrand of this equation, the same as in Ref. 3. The loading function for damage must also be formulated in terms of nonlocal quantities ,  i . e . ,  Eq. 9 is  replaced by 
F(Y) = Y - K(Y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  • · • . . . . . . . . . . . . . . . .  (14)

and Y is replaced by Y in Eq. 10 . The representative volume in one , two , or three dimensions may be taken as a line segment of length l, or a circle or sphere of diameter / where / = characteristic length of the material . Thatspatial averaging becomes physically realistic if we note that the macro­scopic equivalence between our assumed continuum with damage and the real heterogeneous material such as concrete cannot be achieved within a domain smaller than a few aggregate sizes . The material parameter l cannot be identified from tests of specimen whose strain is (oris assumed to be) 
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homogeneous. Identification of l will require both tests in which thedamage localizes (as in fracture tests) and tests in which damage does notlocalize. This problem is beyond the scope of this paper. Due to spatial averaging, a special treatment is required for pointslocated at the boundary or so close to it that a part V* of the materialrepresentative volume V, protrudes outside the boundary. For such points,which occupy a boundary layer of a certain characteristic thickness that isa material property, Eq. 13 must be modified as 
- 1 l y = (V,.  - V*) v, - V* 

y dV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (1 5)This means that the protruding part of the representative volume ischopped off and averaging is carried out only through the part of therepresentative volume that lies inside the body. The existence of aboundary layer is an inevitable consequence of the nonlocal continuumconcept.
SPECIAL UNIAXIAL FORMULATION In one dimension, the representative volume reduces to a line segmentwhose length is the characteristic length ,  l, provided that no weightingfunction is used. The mean damage energy release rate is defined as 
Y(x) = 1 lx2 ! EE2(x) dx .. . . . . .. .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .  (1 6)(X2 - X1) x1 2 where E = initial Young' s  elastic modulus . If the one-dimensional baroccupies the interval 0 s x s L such that L > l, the limits of thecharacteristic length are defined as x 1 = x - 1/2 , x2 = x + l/2 if x 1 � O; else x 1 = 0, x2 = x + l/2 . . . . . .. (17a)x1 = x - l/2 , x2 = x + l/2 if x2 ::;; L; else x 1 = x - l/2 , x2 = L  . . . . . . (17b)The imbricate finite element scheme developed before to treat thenonlocal behavior could be chosen to calculate averages directly fromnodal displacements . This approach, however, would be less efficientnumerically since averaging, required only for computation of damage, canhere be explicitly implemented with the usual, nonimbricated mesh on thebasis of local strains . To obtain a realistic shape of the stress-strain diagram with strain­softening, we use the following definition of damage evolution: - . - 1 If F(Y) = 0 and F(Y) = 0, then '1 = 1 - l + b(Y  _ Yit . . .  , (18)If F(Y) < 0, or F(Y) = 0 and .F(Y) < 0, then {l = 0 .. . . (19)in which b, n ,  and Y1 represent the material damage parameters, Y1 beingthe damage threshold . In numerical computations, different thresholds,Y1 , were used for tension and compression (a > 0 or ri < 0). Theparameters for tension were b = 9 .  27 x 10-3 , Y1 = 180. 5 MPa, n = 1 ,  andfor compression b = 2.05 x 10-5 , Y1 = 8540 MPa, n = 1 .  Note that
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generalization of Eq . 18 to multiaxial stress states would require certain precautions analyzed elsewhere ( 17 , 33) . It may be noted that, according to Eq. 1 8 ,  the area under the complete uniaxial stress-strain diagram cr = (1 - 0) EE up to E - oo is infinite if n = 1 ,  and finite if n > 1. For the modeling of complete failure due to distributed cracking, the stress-strain diagram should be integrable , how­ever for the present purpose of demonstrating objectivity of the theory this condition is unimportant , and n = 1 has been used for the sake of simplicity . The formula in Eq. 18 for n = l has the advantage that its parameters b and E can be identified from given test data by linear regression if Elo- is plotted versus Y - Y1 ; the slope of the regression line of this plot is b/E, and its vertical axis intercept is 1 /E. Obtained from Eq . 18 ,  the stress  versus mean strain (displacement divided by length) of a homogeneously deformed specimen of length l and a united cross-sectional area in tension and compression are shown Figs . l (b) and (c) . The shapes of these curves are obviously quite realistic for concrete . To verify proper convergence of nonlocal damage formulation , various one-dimensional problems have been solved by finite elements .  Only constant-strain finite elements have been used , for two reasons : ( 1 )  The numerical implementation of damage averaging i s  simpler than for higher­order elements ; and (2) large higher-order elements cannot represent the discontinuities due to cracking as well as small constant-strain elements .  The center of the averaging line segment having characteristic length l is made to coincide with the center of each element , whose coordinate is xc . To implement the averaging, we need to first determine the numbers n(i, j) ,  j = 1 , . . . , n.(i) of all finite elements which lie entirely or  partly within the characteristic length l ,  and their total number n.(i) .  We also compute the portion h;, j of the element length h.  , which lies within the characteristic length , i . e . ,  within the interval (x1 - l/2 , xi + 1/2) , x1 being the coordinate of the center of the element number i . For elements that lie entirely within the characteristic length , h;, j = h • .  At each loading step or time step of the computation, the mean value Y; of Y is calculated for each element number i from the following averaging formula: 
ne(i) Y, = L Oi. i Y,,<i, i> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . .  • • • • . . . . . . . (20a)J= 1 

ne(i) ai = L h 1 , i  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (20b) j= 1 (20c)
which is applicable in general, whether or not the characteristic length reaches beyond the boundary . It  i s ,  of course ,  again advantageous to calculate the values of h;, i and a; at the beginning of the computation and store them, provided that the computer' s  storage capacity is not over­taxed .  The averaging rule i n  Eqs. 20a-c has been implemented in a nonlinear finite element code based on continuum damage theory . First the tension 
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or compression of a bar consisting of N elements has been calculated for various element subdivisions of constant element size , with N = 8 ,  64, 128 .  The bar length is L = 21 and the characteristics length is given as / = I .  For the nonlocal approach, calculated curves of stress versus mean strain in the bar are the same for various N [Figs . l (h) and (c)] . For comparison , computations were also made for the classical local approach . In that case,  i t  is found that at a certain point of the descending branch [the branching points in Fig . l (d)] , uniform deformation of the bar becomes unstable and further softening localizes into a single element whereas the other elements unload . The subsequent unstable portion of the response curve is numer­ically obtained by prescribing the strain into the softening element while the remaining part of the structure still behaves elastically. (According to Ref. 2 ,  softening must localize into a single element if the formulation is local. ) After the branching point (bifurcation point) , only the response curve which descends sharply i s  possible . For sufficiently small elements , this curve exhibits snap-back [see Fig . l (d) ;  calculated for compression] . The fact that element subdivisions N = 8 ,  64, 128 give very different results confirms that local damage theory is unobjective with regard to element choice, i . e . ,  it exhibits spurious mesh sensitivity and improper conver­gence , as established in Refs . 2 and 8 .  For the nonlocal solution [the smooth curve in Fig . l (d)] , no instability develops for this beam, which is relatively short compared to the characteristic length I. Note also that when the beam is loaded through a spring, which is typical of the situation in a testing machine , then instability (bifurcation) occurs earlier and the response curve after the critical point shifts to the left .  
LONGITUDINAL WAVE IN STRAIN-SOFTENING MATERIALS 

An instructive example to study dynamic strain localization due to strain softening is the interference of two longitudinal waves propagating in opposite directions (4) . Consider a bar of length L = 41, and beginning with the instant t = 0 we impose as the boundary conditions constant outward velocities ti = �c at left boundary point x = 0 and ti = c at right boundary point x = L (c > 0) . Velocities are such that the initial inward waves are elastic , consisting of a step of strain of magnitude E = c/v , where v =(E/p) 112  = elastic wave velocity and p = mass per unit length = 2 ,500 kg/m3 • At time t = L/2v ,  the two elastic waves meet at midlength (x = L/2) , which causes strain to instantly double if the behavior remains elastic . However, we assume the boundary velocities to be sufficiently large so that superposition of the two wave fronts at midlength would produce strain softening at the midlength point . In particular , we consider that c is such that E = clv = 0.75Eµ (E" strain at peak stress) . For local behavior, this problem has an exact solution (5) , which is unique and may be used for a convergence check of the finite element solution .  We solve the problem with a uniform finite element subdivision, using both local and nonlocal damage models .  The explicit algorithm, as stated in detail in Refs . 7 and 12 ,  is used , with time step b. t = 0.2 x 10-6 sec . For numerical calculations we assume Y1 = 1 80. 5  MPa, E" = 10-4 , E = 32 ,000 MPa, c = 8 . 5  mm/s . Fig . 2 shows a comparison of nonlocal finite element solutions for different numbers N of finite elements with the exact local solution (5) . A good 

9



3 • 
8 
.§ 
] -0 .0001 

! 
-0 .0002 

- - - analytical local solution 
- non local solution 

f--,--,,-,--,---,--,---,--,--,-,--,--,,-,--,---l 
50 JOO 

number of time-stepJ 

FIG. 2. Interference of Constant Strain Waves in Rod; Convergence of Displace­
ments at x = 1 /4 

convergence may be noted. This is further apparent from Fig. 3, which shows 
the strain and stress histories at midlength for the nonlocal finite element 
solution, compared to the exact analytical solution. Despite large numerical 
noise, which is inevitable in this type of problem with a step wave front, the 
histories in Figs. 3(a) and (b) again indicate that convergence may be taking 
place for the overall response, the peak stress value excepted [Fig. 3(b)] . 

The profiles of strain E and damage n at various times t are plotted in 
Figs. 4(a) and (b) for a mesh of N = 64 elements . The peak stress is 
reached [Fig. 3(b)] at time t = 0.00185 sec (93 time steps), and at t = 0.0019 
sec (95 time steps) the damage has already started to develop and the strain 
profiles begin to exhibit a peak at midlength (x = L/2). It is noteworthy that 
the size (length) of the strain-softening zone is approximately equal to the 
characteristic length l. As it appears , l is . the smallest length on which 
damage can exist [this observation lends further justification to the 
crack-band model ( 1 1 )] .  It may be also observed from the strain and 
damage profiles (Fig. 4) that the strain-softening zone gradually expands up 
to a size approximately 21. At the same time, damage accumulates within 
the entire strain-softening zone. Failure occurs for a high number of time 
steps in the damaged part of the bar. 

The differences between local and nonlocal solutions are best revealed 
by Figs. 5(a)-(d) . It shows the strain and damage profiles at time 3 x 10-5 

sec for different m1mbers of elements ,  N. The strain profiles obtained for 
the local formulation [Fig, 5(b)] conspicuously display progressively 
sharper localization of the strain-softening damage zone, which apparently 
exhibits physically incorrect convergence to a Dirac delta function. By 
contrast, the nonlocal solution obviously converges [Figs . 5(a) and (c)] to 
a distribution with a finite-size strain-softening damage zone. This behav­
ior is of the same type as previously achieved with the nonlocal imbricate 
continuum, in which the nonlocal concept was applied not only to damage 
but to total strains (7). The corresponding stress profiles are shown in Figs. 
5(e) and (j), and again convergence to a strain-softening zone of finite size 
may be noted. The comparison in Fig. 5 provides the most compelling 
argument for the nonlocal approach to strain-softening damage. 

In comparison to the previous nonlocal solution for the same problem 
based on the imbricate continuum model (7), it may be observed from the 
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Stress and Strain Histories for Mesh Refinements stress profiles at various times in Figs . 5(e) and (f) that the numericalsolution behaves better near the boundary. In the previous solution, stressprofiles near the boundary showed poor convergence, exhibited muchnumerical noise, and their boundary slopes were especially scattered. Nodoubt this was due to the difficulty in imposing physically reasonableboundary conditions when the total strain, including the elastic one, is treatedin a nonlocal manner. In the present solution, characterized by local treatmentof the elastic part of the strain, convergence and general behavior of thesolution near the boundary is as good as it is in the interior of the bar. The most important aspect of strain-softening damage is energy dissipa­tion. According to Ref. 7 (Eq. 34), the total energy dissipated in the bar, W,may be calculated from the equation

N h W(tr + 1) = W(tr) + L ....!!. n = l  2 X [crn , r tn , r -crn , r + lEn , r + l + (crn , r  + crn , r + 1)(En , r + l - En , 1)] . . . . . . . .. .  (21)in which subscript n refers to element numbers and subscript r refers todiscrete time tr(r = 1, 2, 3 . . . ). Fig. 6 shows the values of energydissipated up to time t = 3 x 10-5 sec (150 time steps) for both local andnonlocal solutions .  As before (7), we see that for the local solution, W
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FIG. 4. Interference of Constant Strain Waves in Rod: (a), (b) Evolution of Strain 
and Damage Profiles 

decreases as the number of elements N increases, and apparently con­
verges to zero as N - oo. This property is physically unacceptable. By 
contrast, the present nonlocal solution, the same as the imbricate nonlocal 
solution in Refs . 7 and 10, yields about the same energy dissipation values 
for all element subdivisions and converges to a finite value as N - oo. 

As another example (Fig. 7), we solve by finite elements a bar which is 
free at the left end (x = 0) and clamped at the right end (x = L) . We assume 
that L = 21. The boundary condition at x = 0 is a (t) = a0 H(t) where H(t) 
is the Heaviside step function. At the right end, u = 0 at all times .  Material 
properties are the same as in the previous example. 

A wave with a step-function stress profile, with wave-front magnitude 
a0 , propagates toward the clamped end, and is reflected at time t = Liv, at 
which the stress is doubled according to the elastic solution. By choosing 
a0 = 1 .8 MPa, the strain at wave arrival to the clamped end exceeds Ep , 
and strain softening is produced at the clamped end. 

For the local solution, strain-softening damage again does not propagate 
from the clamped end, i .e . , it remains concentrated in a single element, the 
boundary element. Fig. 7(a) shows the histories of displacement u at bar 
midlength (x = L/2) for various element subdivisions N. The nonlocal 
solutions apparently converge as N increases. Fig. 7(b) shows the stress 
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Damage and (e) Stress Profiles; (b), (d), (t) Comparison with Local Solution history in the element at the clamped end for various N. Again, the nonlocal solution apparently converges, including peak stress value. It may be -noted that the present clamped bar responds overall in the same way as one-half - of the bar in the previous example. However, comparison of Fig. 7(b) to Fig. 3(b) shows that for the same element size, peak stress values are different [4.7 MPa in Fig. 3(b) and 3.7 MPa in Fig. 7(b)] , for element leogth 0 .06251. 
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Computations also showed [Fig. 7(d)] that convergence to finite unique values of 11, E, and CT i s  not achieved with the local formulation. Especially , the peak strain strongly depends on the element size . 
STATIC PROBLEM OF BENDING THEORY 

In a previous study ( 1 2 ,  1 3) it was shown that solutions of beams and frames by the layered finite element technique also exhibit physically incorrect convergence and strong spurious sensitivity to element size when the material is assumed to exhibit strain softening and the formulation i s  local. Due to kinematic assumption of the preservation of planeness of cross sections and to Saint Venant ' s  principle , the minimum length of finite clements is not only related to the characteristic length / of the material , but cannot be less than the beam depth h ( 12 ,  13) . This lower bound limitation on the element length may be directly used in a local-type finite element analysis similar to the multidimensional crack-band theory , in which a lower l imit of the element size is imposed (2 ,8 ,  1 1 ) . With such a limitation, however, detailed stress and deflection distribution cannot be resolved, and numerical approximation is mathematically unfounded since the continuum limit at mesh refinement is left undefined. This l imitation may again be circumvented by the present concept of nonlocal damage. In the case of bending theory, however, the definition of spatial averaging (Eq. 6) must be slightly modified . Averaging length needs to be introduced as 
I ' = max ([, h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (22) 
in which / is the previously introduced material characteristic length, and h = beam depth . For concrete, / = 3da where da = maximum aggregate s ize , and since concrete beams are always deeper than three aggregate sizes ,  the beam depth limitation decides , i . e . , /' = h .  Thus , Eq . 16 for averaging of the damage energy release rate Y must be modified as _ 1 lx + h/2 Y(x, z) = -1 Y(�, z) d�, Y(�, z) = ½&2(�, z) . . . . . . . . . . . . . . . . . . . . . . . (23)

I x - h/2 in which x = length coordinate of the beam. Because damage localization in the vertical direction is impossible , due to the constraint of planeness  of the cross section, we ignore averaging over the depth coordinate z . However, to take into account the well-known effect of strain gradient on the apparent strength or yield limit in concrete beams analyzed according to the bending theory (26) , we could also introduce averaging over the depth : _ J lx + l1/2 iz + l/1Y(x, z) = hi Y(�, (,) d(, d� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (24) 
x - /1/2 z - 1/2 

In the present study,  which is concerned only with numerical problems of convergence and not with material properties ,  only the one-dimensional averaging in Eq . 23 has been used . Needless to elaborate , when the averaging length h (or /) protrudes beyond the boundary of the beam, the same treatment as before must be used (i . e . , the averaging domain outside the beam is ignored) . In the layered finite clement model ,  Eq . 23 is applied 
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FIG. 8. Three-Point Bending ; Convergence of Nonlocal Solution for Load-De­
flection Curve to each layer of each beam element, Ybeing assumed constant within eachlayer. For demonstration , we solve one of the examples previously analyzed inRefs. 12 and 13 .  It is a simply supported beam of length 4h , with aconcentrated load at midspan (Fig. 8) and a square cross section. Materialproperties are the same as in our previous examples. Each beam elementis divided into 10 layers. Step-by-step loading technique is used, with aload-point displacement controlled (prescribed) and the load calculated asa reaction. The direct iteration method based on the secant modulus isused ( 1 2, 13). Numerical results for the load-displacement curve of thebeam are plotted in Fig. 8 for various numbers N of elements along thebeam, which all have the same length. We see that the solution convergeswell . By contrast, the local solution ( 12, 1 3) showed a strong dependenceon the number of elements N and produced instabilities of the snap-backtype in the post-peak response, as discussed in Ref. 13. The occurrence ofthese instabilities depended on element size , not on beam properties. Inthe present solution, snap-back instability can occur only as a function ofthe L/h ratio, when its value is sufficiently high. 
ALTERNATIVE VIEWPOINT: MEAN FRACTURING STRAIN Among various possibilities of spatial averaging that do not affect elasticstrain, another is to average the fracturing strain. This strain, imagined torepresent the cumulative overall contribution of microcrack openings , wasused as the basis of the crack band model ( 1 1 ) and similar formulations(41 ,44,45). The use of fracturing strain offers a simpler alternative toanisotropic damage in which the oriented aspect of damage due to crackingcan be taken into account. Assuming all cracks to be parallel and denotingtheir normal direction as z, we write: 
Ez = e:1 + e{' ... . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . .... . . . ... . . . . . . .... . . . . . . . . . . . . (25a)(25b)
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in which E� 1 = elastic strain determined from stresses crx , cry , and er, andF{r = mean fracturing strain in the z-direction, specified as a function of strain (possibly also stress and internal variable) , and i = mean specific fracturing strain . Strains Ey and Ex in the directions parallel to the crack are elastic . According to the basic idea advanced here , :Y(x) is obtained by spatial averaging : y(x) = ! f 112 y(x + s) ds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (26)l - 112 
By choosing 
y(x) = G &;y for loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (27a)

for unloading and reloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (27b) 
the formulation becomes in one dimension identical to the foregoing damage model (Eq . 16). Indeed the damage model used in our examples yields for monotonic loading (and constant E) the uniaxial stress-strain relation EE(x) 
cr

(x) = 1 + {;l E f 112 [i;(x + s)] 2 ds}" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (28)
- 1/2 

and Eqs. 25-27 reduce for uniaxial stress to the same equation . By contrast , the classical local approach is equivalent, for monotonic loading, to the stress-strain relation EE(x) cr(x) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (29) 1 + [:1 &2(x)J
Alternatively , if the expression of the mean fracturing strain 'Y is a linear function of E ,  averaging 'Y is equivalent to averaging the total strain E ,  and so Eq. 28 is equivalent to : &(x) o(x) - I + {!1 e[f,'.:(x + ,) a,Jr . . . . . . . . . . . . . . . . . . . (30)
Fig . 9 shows for the dynamic example treated (Figs . 2-6) , the result of this strain-averaging method. With the same overall material behavior , we find that the response diagrams are graphically undistinguishable from those obtained with the energy-averaging formulation .  Instead of  Eq .  27 , the expression for el; may be taken as  linear, which corresponds to the triangular stress-strain relation used in the. original crack-band model [Fig. l (a)J . By  introducing the function 'Y = exp[-kE1] -1 in which k, n = constants , we obtain for er (x) a function which generalizes the local stress-strain relation a = EE exp(-kE") also used in the past for the crack-band model . 
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FIG. 9. Strain-Averaging Solution: (a) Convergence of Displacement History, (b), 
( c) Strain and Damage ProfilesFinally, we should comment on the failure mode. The true failure modein tension no doubt consists of unstable (runaway) crack propagation. Inthe multiaxial analysis just illustrated, the transverse crack propagationcannot be modeled; however, by ensuring that l(J a de) = fracture energyof the material , our approach is equivalent to the fracture mechanicsapproach at least in the sense of total . energy balance, which is mostimportant. In local continuum softening analysis, energy balance is incor­rect as dissipated energy vanishes. Compression failures can be describedby our uniaxial analysis only to the extent that l(f u de) approximates theenergy dissipated by axial splitting and shear cracks localized into asegment of specimen length. Such localization ·can occur only in long
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compression specimens. A detailed analysis of compression failure must,of course, be three-dimensional. 
CONCLUSIONS 1. Although existing imbricate nonlocal formulation for strain-softeningmaterials does insure proper convergence and eliminates spurious meshsensitivity, it has two inconvenient features: ( I )  All the behavior isformulated as nonlocal , including the elastic part of strain; and (2) anoverlay with a local continuum must be introduced to suppress certainperiodic zero-energy modes . These inconveniences are circumvented bythe present nonlocal damage theory. 2. The key idea is that nonlocal treatment should be applied only tothose variables that cause strain softening, and not to the elastic behavior.Thus, nonlocal theory should reduce to a local theory when the responseis purely elastic. (The treatment of the plastic-hardening part of theresponse could no doubt also be local if this is convenient to do) . 3. Among various constitutive models which can describe strain soft­ening, the continuum damage mechanics appears ideal for the presentpurpose since all strain softening is controlled by a single variable, thedamage. The essential attribute of the presently proposed nonlocal damagetheory is that the damage energy release rate is averaged over therepresentative volume of the material whose size is a characteristic of thematerial. However, an alternative formulation in which spatial averaging isapplied to the fracturing part (i .e . ,  damage part) of the strain works equallywell and may be just as efficient. 4. The characteristic length l (size of the representative volume) is amaterial property which must be determined by experiments and should becorroborated by micromechanics methods. No doubt, length / is related tothe size of material inhomogeneities. However, when nonlocal damagetheory is applied to beams, the assumption of preservation of the planenessof cross section requires that the averaging length not be smaller than thebeam depth. 5. Numerical finite element computations indicate that nonlocal damagetheory avoids spurious mesh sensitivity and that the calculated distribu­tions of strain, stress, damage, and displacement exhibit proper conver­gence as the finite element subdivision is refined. Most importantly, theenergy dissipated due to strain-softening damage converges to a finitevalue, while for the usual local finite element codes with strain softeningthis energy converges to zero as the mesh is refined, which is physicallymeaningless and unrealistic. 6. Since averaging is required by the present theory only in thosedomains of the structure that exhibit strong nonlinear behavior, thecomputation is more efficient than with previous imbricate nonlocalformulations. Averaging of damage can be easily introduced in anynonlinear finite element code with a strain-softening model.
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