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NoNLoCAL DAMAGE THEORY

By Gilles Pijaudier-Cabot,’l S. M. ASCE and Zdenék P. BaZant,? F. ASCE

AsstracT: In the usual local finite element analysis, strain softening
causes spurious mesh sensitivity and incorrect convergence when the
element is refined to vanishing size. In a previous continuum formula-
tion, these incorrect features were overcome by the imbricate nonlocal
continuum, which, however, introduced some unnecessary computa-
tional complications due to the fact that all response was treated as
nonlocal. The key idea of the present nonlocal damage theory is to
subject to nonlocal treatment only those variables that control strain
softening, and to treat the elastic part of the strain as local. The
continuum damage mechanics formulation, convenient for separating
the nonlocal treatment of damage from the local treatment of elastic
behavior, is adopted in the present work. The only required modification
is to replace the usual local damage energy release rate with its spatial
average over the representative volume of the material whose size is a
characteristic of the material. Avoidance of spurious mesh sensitivity
and proper convergence are demonstrated by numerical examples,
including static strain softening in a bar, longitudinal wave propagation
in strain-softening material, and static layered finite element analysis of
a beam. In the last case, the size of the representative volume serving in
one dimension as the averaging length for damage must not be less than
the beam depth, due to the hypothesis of plane cross sections. It is also
shown that averaging of the fracturing strain leads to an equivalent
formulation, which could be extended to anisotropic damage due to -
highly oriented cracking.

INTRODUCTION

Progressive damage due to distributed cracking has to be treated in
structural analysis as strain softening. This behavior is typical of concrete
and is observed also in many other brittle heterogeneous materials such as
rocks, stiff clays, two-phase ceramics, various composites, ice, wood and
wood particle board, paper, filled elastomers, polymers and asphalt
concretes, fiber-reinforced concrete, etc. Strain softening can be modeled
by various types of constitutive laws, including endochronic theory,
plastic-fracturing theory, plasticity with decreasing yield limit, bounding
surface theory, and most recently continuum damage theory (4).

Application of these models in finite element programs and other
methods of structural analysis, however, runs into severe difficulties. As
shown rigorously already in 1974 (2), when the stress-strain diagram
exhibits a negative slope, and more generally when the matrix of tangential
moduli ceases to be positive definite, the strain-softening damage tends to
localize in a zone of vanishing volume (a line or a surface). This is true not
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only of statics, but also of dynamics (5,14,15). Because the energy
dissipation per unit volume is finite, the vanishing of the damage zone
volume causes the indicated structure to fail at zero energy dissipation.
This is physically unrealistic, although mathematically the solutions of at
least some structural problems with strain softening do exist and represent
the limit of the finite element solution for a vanishing element size
(4,5,8,10~12). :

The consequence of strain localization due to strain softening is that
finite element solutions exhibit strong spurious mesh sensitivity, becoming
unobjective with regard to the analyst’s choice of the mesh (2). These
features have first been documented by numerical examples for simple
strain-softening constitutive laws (4,8,9,11,16). Recently, however, it has
been shown (12,13) by numerical examples of beams that the same
spurious mesh sensitivity due to strain localization occurs with the models
of continuum damage mechanics (17,26-28,33-38,40,46).

The simplest, but admittedly a crude method to avoid strain localization
and the associated mesh sensitivity is to impose a lower limit on the
element size (2), as introduced in the crack band model (8,9,11,16).
Alternatively, a strain-softening band of a width that is a material property
may be embedded in the finite elements, as is done in the composite
damage models of Pietrusczak and Mréz (41), and Willam, et al. (44,45)
(see also Ref. 4).

Still another possibility is to consider a line of damage (i.e., a crack),
characterized by a stress-displacement rather than stress-strain relation, as
developed for concrete in the model of Hillerborg, et al. (21,22). The
line-crack stress-displacement formulation, however, is not generally
applicable. It cannot cope with problems in which the damage zone does
not localize fully, because the spacing of line cracks is arbitrary and makes
the response of this model unobjective in such situations (4).

A more general and fundamental way to avoid strain localization to a
zero volume and to overcome spurious mesh sensitivity is to adopt a
nonlocal continuum approach (3,6,7,14). The idea of a nonlocal contin-
uum, introduced during the 1960s by Kroéner (29), Kunin (31), Krumhansl
(30), Eringen and Edelen (19), and others (4), is to consider the stress to be
a function of the mean of the strain from a certain representative volume
of the material centered at that point. Introducing certain essential
modifications of the classical nonlocal theory, BaZant, and BaZant, et al.
(3,7,13) developed a nonlocal model that can handle strain softening in
finite element analysis in a consistent manner, while at the same time
avoiding spurious mesh sensitivity and precluding strain localization to a
vanishing volume. The nonlocal formulation, which may be considered as
the limit case of an imbricated system of finite elements (7,13), has
nevertheless two properties that are inconvenient for practical applica-
tions: (1) The behavior is nonlocal for all situations, including the elastic-
or plastic-hardening response; and (2) an overlay with a local continuum
must be introduced in order to avoid certain zero-energy periodic modes of
instability. The objective of the present study is to develop a modified
nonlocal formulation which avoids these two inconvenient properties.

To this end it is useful, although not requisite, to adopt a formulation in
which damage is described by a separate variable, distinct from the
variables that describe the elastic behavior. This convenient feature is



provided by continuum damage mechanics (17,25,27,28,33-37,40,46). The
principal idea of this paper is to use the nonlocal concept only for the
variables that control damage and not for the strains or stresses in the
constitutive relation. Such an approach will represent a basic departure
from the classical formulation of a nonlocal continuum.

The purpose of introducing the nonlocal concept for damage is to limit
the localization of strain softening to a zone of a certain minimum size that
is a material property, i.e., to serve as a localization limiter. A variety of
mathematical formulations have recently been introduced to serve, in
effect, as localization limiters. The simplest formulation of localization
limiters is involved in the crack band model (2,8,9,11,16), as well as in the
composite-damage finite element models (40,44,45). An alternative ap-
proach to localization limiters is to make the material strength or yield limit
a function of the strain gradient. This idea, which was perhaps first
proposed by L’Hermite and Grieu (32) for shrinkage cracking and was
developed to describe the size effect in bending of concrete beams with
assumed plane cross section (26), has recently been adopted for strain
softening in general by Schreyer and Chen (43), Floegl and Mang (20), and
Mang and Eberhardsteiner (39). Since the introduction of strain gradient is
equivalent to comparing to the strength limit the stress value at a certain
small distance from the point, this approach is also essentially nonlocal.
Another variant of the nonlocal approach to localization limiters is to
introduce into the constitutive equation higher-order spatial derivatives,
particularly the Laplacian, which arise from a Taylor series expansion of
the nonlocal averaging integral (3,1). In this study, which is based on a
1986 report (42), we will show that nonlocal damage is a very general and
effective formulation of localization limiters.

ConTinuuM DAMAGE THEORY

For the sake of simplicity, attention will be restricted to isotropic
materials with isotropic damage. Time-dependent material' response
(creep), as well as the effect of temperature and humidity will be neglected.
The material will be assumed incapable of plastic behavior, which implies
that unloading and reloading follow straight lines passing through the
origin. Thus, our formulation of damage theory will be a special case of the
general theory for continuum damage and plasticity (17,33). For the sake of
simplicity, the anisotropic aspect of damage will be neglected, i.e., the
general tensor  will be approximated by the sphericai tensor 2 = Q I,
where () is the scalar and I the identity matrix. The present idea of nonlocal
damage could nevertheless be implemented for anisotropic damage as
well.

In the theory of continuum damage mechanics, first proposed by
Kachanov (25) for creep and applied by Lemaitre, and Lemaitre and
Chaboche (36,37), Krajcinovic (28) and others (17,40,46) to quasi-static
behavior of strain-softening materials, the state of the material is charac-
terized by strain tensor € and damage €} is evaluated at the given point of
the continuum. The strains are assumed to be small. From the thermody-
namic viewpoint, the state of the material may be characterized by its free
energy density {, defined as



in which 'p = mass density; the colon denotes the tensor product con-
tracted on two indices; and ¢ = stress tensor, which may be expressed as

As a result of microcracking, the net resisting area of the material which
transmits stress diminishes. Consequently the true stress &’ in the
undamaged material between the cracks becomes larger than the macro-
scopic stress o, which is in damage theory described by the relation (25):

in which = damage (we use ) instead of the usual notation o because ()
will be later defined as nonlocal while the notation w is reserved for the
usual local damage); () represents an internal (hidden) variable which
can never decrease ({2 = 0), has the initial value ) = 0, and always ) =
1 with Q = 1 representing the idealized asymptotic failure of a homoge-
neously deformed material (¢ — «, o — 0). In practice, failure occurs
earlier, at {} < 1, which is obtained through analysis of localization, such
as crack-tip singularity.

Assuming, for the sake of simplicity, that the strain in the undamaged
matrix of the material is equal to the macroscopic strain, and that the
material exhibits no plasticity, Lemaitre and Chaboche (38) and others
expressed the true stress as

B = Gl oo i 4)
Substituting Eq. 4 into Eq. 3, we have
C=(1 —QC € oioriiiiiiiiii &)
and substituting this into Eq. 1 we obtain

1-Q
pY = > I O - PPN 6)

Since damage comprises the creation and propagation of cracks and
voids, growth of damage dissipates energy. By differentiation of Eq. 6, the
energy dissipation rate is:

_dew) _ _dew) 30 _

= = — et — = Y i e 7
ot o ot @
in which we introduce the quantity:
apy) _1
= ————— =8I0 € i 8
Y aQ 2 ®)

called the damage energy release rate (38). According to the second law of
thermodynamics (or Clausius-Duhem inequality), ¢ = 0. Since Y is a
positive definite function of € and ) = 0, this condition is always verified.



From this definition, however, one must exclude reverse stiffening phe-
nomena such as crack healing. This phenomena could be described by a
second damage variable (31,43).

The damage properties of the material may be generally characterized,
on the basis of experiments, by the damage evolution equation of the form
Q = f1(Q, e:0). Although the present idea can be applied in general, we will
consider, for the sake of simplicity, only the special case where this
evolution equation is integrable for monotonic damage growth and reduces
to the functional form Q = A{Y). Loading and unloading are distinguished
by means of the loading function:

FY) = Y — K(Y) teeeeeeeeee oottt v ©)

in which k(Y) = hardening-softening parameter. Its initial value is given as
Y, . After Y first exceeds Y; , «(¥) is assumed to be equal to the largest
value of Y reached thus far at the given point. The damage evolution at a
point of the continuum for loading and unloading may then be defined as
follows:

If F(Y)=0 and F(Y)=0, then Q=f(Y) ..ccvvrvrrve... ceeern (102)
If F(Y)<O, orif F(Y)=0 and F(Y)<0, then £ =0... (10b)

It must be emphasized that Eqs. 5 and 8-10 serve only as a simple
prototype of damage formulation. Obviously, more complicated damage
evolution laws and damage loading functions are required to distinguish
between damage in tension and compression, or in other triaxial states
(33,46).

NonLocAL ConTiNuum DAMAGE

The foregoing standard formulation of damage theory is local. It has
been demonstrated (2,5-10,12,13) that, in a local theory, the damage or
strain softening can, and often does, localize into a zone of vanishing
volume. Since o is finite, the total energy dissipation rate in this volume
tends to zero, i.e. '

BN [ @ dV =0 et 11)

V=0 JV

In particular, the dynamic failure due to wave propagation in a material
represented by the tensile stress-strain curve shown in Fig. 1(g) occurs
right at the start of softening (i.e., at the maximum stress point), without
any stable progressive accumulation of damage before failure and without
any dissipation of energy (5). This physically unrealistic property is also
borne out by numerical finite element computations when the finite
element subdivision of the structure is refined (5,14). As already men-
tioned, it is proposed to circumvent this problem by defining damage in a
nonlocal manner. This can be done by replacing the local definition, {2 =
AY), with the nonlocal definition:

in which Y represents the mean of ¥ over the representative volume V, of
the material centered around the given point and €} the nonlocal damage.
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We will use

R |

Y=— D} 2 R 13
vl (13)

More generally, a weighting function could be introduced in the integrand
of this equation, the same as in Ref. 3. The loading function for damage
must also be formulated in terms of nonlocal quantities, i.e., Eq. 9 is
replaced by

FOY)=F —k(Y) oo (14)

and Y is replaced by Y in Eq. 10. The representative volume in one, two,
or three dimensions may be taken as a line segment of length /, or a circle
or sphere of diameter / where ! = characteristic length of the material. That
spatial averaging becomes physically realistic if we note that the macro-
scopic equivalence between our assumed continuum with damage and the
real heterogeneous material such as concrete cannot be achieved within a
domain smaller than a few aggregate sizes. The material parameter / cannot
be identified from tests of specimen whose strain is (or-is assumed to be)



homogeneous. Identification of ! will require both tests in which the
damage localizes (as in fracture tests) and tests in which damage does not
localize. This problem is beyond the scope of this paper.

Due to spatial averaging, a special treatment is required for points
located at the boundary or so close to it that a part V* of the material
representative volume V, protrudes outside the boundary. For such points,
which occupy a boundary layer of a certain characteristic thickness that is
a material property, Eq. 13 must be modified as

_ 1
Y= ——— YAV oo, T (15)
Ve =V*) Jy—va ‘

This means that the protruding part of the representative volume is
chopped off and averaging is carried out only through the part of the
representative volume that lies inside the body. The existence of a
boundary layer is an inevitable consequence of the nonlocal continuum
concept.

SpeciaL UniAXIAL FORMULATION

In one dimension, the representative volume reduces to a line segment
whose length is the characteristic length, I/, provided that no weighting
function is used. The mean damage energy release rate is defined as
o 1 *2 1
Y(x) = —— —Ee2(X) dX oot (16)

(2 —x1) )iy 2

where E = initial Young’s elastic modulus. If the one-dimensional bar
occupies the interval 0 = x = L such that L > [, the limits of the
characteristic length are defined as

Xy=x—=12,x,=x+1/2 if x;=0; else x;,=0,x,=x+1/2....... (17a)
Xp=x—12, %, =x+12 if x,<L; else xg=x—12,x3=L..... (17b)

The imbricate finite element scheme developed before to treat the
nonlocal behavior could be chosen to calculate averages directly from
nodal displacements. This approach, however, would be less efficient
numerically since averaging, required only for computation of damage, can
here be explicitly implemented with the usual, nonimbricated mesh on the
basis of local strains.

To obtain a realistic shape of the stress-strain diagram with strain-
softening, we use the following definition of damage evolution:

- .- 1
If F(Y)=0 F(Y) = t =1 - (18
(Y) and F(Y) 0,. hen Q 1Y — Yy (18)

If F(Y)<0, or F(¥)=0 and F(7)<0, then Q=0 ....(19)

in which b, n, and Y, represent the material damage parameters, Y; being
the damage threshold. In numerical computations, different thresholds,
Y, , were used for tension and compression (¢ > 0 or ¢ < 0). The
parameters for tension were b = 9.27 X 1073 , ¥; = 180.5 MPa, n = 1, and
for compression b = 2.05 X 1075, ¥; = 8540 MPa, n = 1. Note that



generalization of Eq. 18 to multiaxial stress states would require certain
precautions analyzed elsewhere (17,33).

It may be noted that, according to Eq. 18, the area under the complete
uniaxial stress-strain diagram o = (1 — §)) Ee up to £ — «isinfinite if n =
1, and finite if » > 1. For the modeling of complete failure due to
distributed cracking, the stress-strain diagram should be integrable, how-
ever for the present purpose of demonstrating objectivity of the theory this
condition is unimportant, and n = 1 has been used for the sake of
simplicity. The formula in Eq. 18 for n = 1 has the advantage that its
parameters b and E can be identified from given test data by linear
regression if /o is plotted versus ¥ — Y, ; the slope of the regression line
of this plot is b/E, and its vertical axis intercept is 1/E.

Obtained from Eq. 18, the stress versus mean strain (displacement
divided by length) of a homogeneously deformed specimen of length / and
a united cross-sectional area in tension and compression are shown Figs.
1(b) and (c). The shapes of these curves are obviously quite realistic for
concrete.

To verify proper convergence of nonlocal damage formulation, various
one-dimensional problems have been solved by finite elements. Only
constant-strain finite elements have been used, for two reasons: (1) The
numerical implementation of damage averaging is simpler than for higher-
order elements; and (2) large higher-order elements cannot represent the
discontinuities due to cracking as well as small constant-strain elements.
The center of the averaging line segment having characteristic length / is
made to coincide with the center of each element, whose coordinate is x¢.
To implement the averaging, we need to first determine the numbers n(, j),
j=1,..., n() of all finite elements which lie entirely or partly within the
characteristic length /, and their total number n.(i). We also compute the
portion A; ; of the element length 4., which lies within the characteristic
length, i.e., within the interval (x{ — /2, x§ + 1/2), x§ being the coordinate
of the center of the element number i. For elements that lie entirely within
the characteristic length, k; ; = h. . At each loading step or time step of the
computation, the mean value Y; of Yis calculated for each element number
i from the following averaging formula:

ne(i)

Y, = jzlg,.' Ty e, e ... (20a)
neti)
ai= zhl.j O P (Zob)
j=1
h,- i
Bi, 5= T (20c)

which is applicable in general, whether or not the characteristic length
reaches beyond the boundary. It is, of course, again advantageous to
calculate the values of #; ; and a; at the beginning of the computation and
store them, provided that the computer’s storage capacity is not over-
taxed.

The averaging rule in Eqgs. 20a—c has been implemented in a nonlinear
finite element code based on continuum damage theory. First the tension



or compression of a bar consisting of N elements has been calculated for
various element subdivisions of constant element size, with N = 8, 64, 128.
The bar length is L = 2/ and the characteristics length is given as/ = 1. For
the nonlocal approach, calculated curves of stress versus mean strain in
the bar are the same for various N [Figs. 1(b) and (c¢)]. For comparison,
computations were also made for the classical local approach. In that case,
it is found that at a certain point of the descending branch [the branching
points in Fig. 1(d)], uniform deformation of the bar becomes unstable and
further softening localizes into a single element whereas the other elements
unload. The subsequent unstable portion of the response curve is numer-
ically obtained by prescribing the strain into the softening element while
the remaining part of the structure still behaves elastically. (According to
Ref. 2, softening must localize into a single element if the formulation is
local.) After the branching point (bifurcation point), only the response
curve which descends sharply is possible. For sufficiently small elements,
this curve exhibits snap-back [see Fig. 1(d); calculated for compression].
The fact that element subdivisions N = 8, 64, 128 give very different results
confirms that local damage theory is unobjective with regard to element
choice, i.e., it exhibits spurious mesh sensitivity and improper conver-
gence, as established in Refs. 2 and 8. For the nonlocal solution [the
smooth curve in Fig. 1(d)], no instability develops for this beam, which is
relatively short compared to the characteristic length [. Note also that
when the beam is loaded through a spring, which is typical of the situation
in a testing machine, then instability (bifurcation) occurs earlier. and the
response curve after the critical point shifts to the left.

LoNGITUDINAL WAVE IN STRAIN-SOFTENING MATERIALS

An instructive example to study dynamic strain localization due to strain
softening is the interference of two longitudinal waves propagating in
opposite directions (4). Consider a bar of length L = 4/, and beginning with
the instant ¢+ = 0 we impose as the boundary conditions constant outward
velocities it = —c at left boundary point x = 0 and # = c at right boundary
point x = L (¢ > 0). Velocities are such that the initial inward waves are
elastic, consisting of a step of strain of magnitude ¢ = ¢/v, where v =
(E/p)'? = elastic wave velocity and p = mass per unit length. = 2,500
kg/m? . At time ¢t = L/2v, the two elastic waves meet at midlength (x = L/2),
which causes strain to instantly double if the behavior remains elastic.
However, we assume the boundary velocities to be sufficiently large so
that superposition of the two wave fronts at midlength would produce
strain softening at the midlength point. In particular, we consider that cis
such that ¢ = c/v = 0.75¢, (g, strain at peak stress).

For local behavior, this problem has an exact solution (5), which is
unique and may be used for a convergence check of the finite element
solution. We solve the problem with a uniform finite element subdivision,
using both local and nonlocal damage models. The explicit algorithm, as
stated in detail in Refs. 7 and 12, is used, with time step At = 0.2 X 107
sec. For numerical calculations we assume Y; = 180.5 MPa, ¢, = 107*, E
= 32,000 MPa, ¢ = 8.5 mm/s.

- Fig. 2 shows a comparison of nonlocal finite element solutions for different
numbers N of finite elements with the exact local solution (5). A good
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convergence may be noted. This is further apparent from Fig. 3, which shows
the strain and stress histories at midlength for the nonlocal finite element
solution, compared to the exact analytical solution. Despite large numerical
noise, which is inevitable in this type of problem with a step wave front, the
histories in Figs. 3(a) and (b) again indicate that convergence may be taking
place for the overall response, the peak stress value excepted [Fig. 3(b)].

The profiles of strain € and damage () at various times ¢ are plotted in
Figs. 4(a) and (b) for a mesh of N = 64 elements. The peak stress is
reached [Fig. 3(b)] at time ¢t = 0.00185 sec (93 time steps), and at ¢ = 0.0019
sec (95 time steps) the damage has already started to develop and the strain
profiles begin to exhibit a peak at midlength (x = L/2). It is noteworthy that
the size (length) of the strain-softening zone is approximately equal to the
characteristic length /. As it appears, [ is the smallest length on which
damage can exist [this observation lends further justification to the
crack-band model (11)]. It may be also observed from the strain and
damage profiles (Fig. 4) that the strain-softening zone gradually expands up
to a size approximately 2/. At the same time, damage accumulates within
the entire strain-softening zone. Failure occurs for a high number of time
steps in the damaged part of the bar.

The differences between local and nonlocal solutions are best revealed
by Figs. 5(a)—(d). It shows the strain and damage profiles at time 3 X 1073
sec for different numbers of elements, N. The strain profiles obtained for
the local formulation [Fig. 5(b)] conspicuously display progressively
sharper localization of the strain-softening damage zone, which apparently
exhibits physically incorrect convergence to a Dirac delta function. By
contrast, the nonlocal solution obviously converges [Figs. 5(a) and (c)] to
a distribution with a finite-size strain-softening damage zone. This behav-
ior is of the same type as previously achieved with the nonlocal imbricate
continuum, in which the nonlocal concept was applied not only to damage
but to total strains (7). The corresponding stress profiles are shown in Figs.
5(e) and (f), and again convergence to a strain-softening zone of finite size
may be noted. The comparison in Fig. 5 provides the most compelling
argument for the nonlocal approach to strain-softening damage.

In comparison to the previous nonlocal solution for the same problem
based on the imbricate continuum model (7), it may be observed from the

10
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FIG. 3. Interference of Constant Strain Waves in Rod: (a), (b) Convergence of
Stress and Strain Histories for Mesh Refinements

stress profiles at various times in Figs. 5(e) and (f) that the numerical
solution behaves better near the boundary. In the previous solution, stress
profiles near the boundary showed poor convergence, exhibited much
numerical noise, and their boundary slopes were especially scattered. No
doubt this was due to the difficulty in imposing physically reasonable
boundary conditions when the total strain, including the elastic one, is treated
in anonlocal manner. In the present solution, characterized by local treatment
of the elastic part of the strain, convergence and general behavior of the
solution near the boundary is as good as it is in the interior of the bar.

The most important aspect of strain-softening damage is energy dissipa-
tion. According to Ref. 7 (Eq. 34), the total energy dissipated in the bar, W,
may be calculated from the equation

N oh

Wit ) = W)+ ) 3
n=1

X [Gn.ran.r - Gn, r+ len. r+1 + (on, r + 0'", r+ 1)(en,r+1 - an, 1)] ---------- (21)

in which subscript n refers to element numbers and subscript r refers to
discrete time f(r = 1, 2, 3...). Fig. 6 shows the values of energy
dissipated up to time ¢t = 3 X 1077 sec (150 time steps) for both local and
nonlocal solutions. As before (7), we see that for the local solution, W

11
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FIG. 4. Interference of Constant Strain Waves in Rod: (a), (b) Evolution of Strain
and Damage Profiles

decreases as the number of elements N increases, and apparently con-
verges to zero as N — o, This property is physically unacceptable. By
contrast, the present nonlocal solution, the same as the imbricate nonlocal
solution in Refs. 7 and 10, yields about the same energy dissipation values
for all element subdivisions and converges to a finite value as N — .

As another example (Fig. 7), we solve by finite elements a bar which is
free at the left end (x = 0) and clamped at the rightend(x = L). We assume
that L = 2/. The boundary condition at x = 0is o (f) = oo H(t) where H(f)
is the Heaviside step function. At the right end, # = 0 at all times. Material
properties are the same as in the previous example.

A wave with a step-function stress profile, with wave-front magnitude
oy, propagates toward the clamped end, and is reflected at time ¢ = L/v, at
which the stress is doubled according to the elastic solution. By choosing
oy = 1.8 MPa, the strain at wave arrival to the clamped end exceeds ¢, ,
and strain softening is produced at the clamped end.

For the local solution, strain-softening damage again does not propagate
from the clamped end, i.e., it remains concentrated in a single element, the
boundary element. Fig. 7(a) shows the histories of displacement « at bar
midlength (x = L/2) for various element subdivisions N. The nonlocal
solutions apparently converge as N increases. Fig. 7(b) shows the stress
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history in the element at the clamped end for various N. Again, the
nonlocal solution apparently converges, including peak stress value.

It may be noted that the present clamped bar responds overall in the
same way as one-half of the bar in the previous example. However,
comparison of Fig. 7(b) to Fig. 3(b) shows that for the same element size,
peak stress values are different [4.7 MPa in Fig. 3(b) and 3.7 MPa in Fig.

7(b)], for element length 0.0625!.
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Computations also showed [Fig. 7(d)] that convergence to finite unique
values of u, €, and ¢ is not achieved with the local formulation. Especially,
the peak strain strongly depends on the element size.

StATICc PROBLEM OF BENDING THEORY

In a previous study (12,13) it was shown that solutions of beams and
frames by the layered finite element technique also exhibit physically
incorrect convergence and strong spurious sensitivity to element size when
the material is assumed to exhibit strain softening and the formulation is
local. Due to kinematic assumption of the preservation of planeness of
cross sections and to Saint Venant’s principle, the minimum length of finite
elements is not only related to the characteristic length / of the material,
but cannot be less than the beam depth A4 (12,13). This lower bound
limitation on the element length may be directly used in a local-type finite
element analysis similar to the multidimensional crack-band theory, in
which a lower limit of the element size is imposed (2,8,11). With such a
limitation, however, detailed stress and deflection distribution cannot be
resolved, and numerical approximation is mathematically unfounded since
the continuum limit at mesh refinement is left undefined.

This limitation may again be circumvented by the present concept of
nonlocal damage. In the case of bending theory, however, the definition of
spatial averaging (Eq. 6) must be slightly modified. Averaging length needs
to be introduced as

P=max (L h) ..o (22)

in which [ is the previously introduced material characteristic length, and
h = beam depth. For concrete, [ = 3d, where d, = maximum aggregate
size, and since concrete beams are always deeper than three aggregate
sizes, the beam depth limitation decides, i.e., I' = h. Thus, Eq. 16 for
averaging of the damage energy release rate Y must be modified as

x+h/2

- 1
Y(x,z) = P f Y 2)dE, Y(§,2) =4Be®(€,2) ..ooevvveeinnenninns (23)

—h/2

in which x = length coordinate of the beam. Because damage localization
in the vertical direction is impossible, due to the constraint of planeness of
the cross section, we ignore averaging over the depth coordinate z.
However, to take into account the well-known effect of strain gradient on
the apparent strength or yield limit in concrete beams analyzed according
to the bending theory (26), we could also introduce averaging over the
depth:

N | (x+W2 pz+i2
Y(x, z) = 7 J f YE O dbdg ............. SO PRI (24)

x—h/i2 Jz—12

In the present study, which is concerned only with numerical problems of
convergence and not with material properties, only the one-dimensional
averaging in Eq. 23 has been used. Needless to elaborate, when the
averaging length 4 (or /) protrudes beyond the boundary of the beam, the
same treatment as before must be used (i.e., the averaging domain outside
the beam is ignored). In the layered finite element model, Eq. 23 is applied
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to each layer of each beam element, Y being assumed constant within each
layer.

For demonstration, we solve one of the examples previously analyzed in
Refs. 12 and 13. It is a simply supported beam of length 4k, with a
concentrated load at midspan (Fig. 8) and a square cross section. Material
properties are the same as in our previous examples. Each beam element
is divided into 10 layers. Step-by-step loading technique is used, with a
load-point displacement controlled (prescribed) and the load calculated as
a reaction. The direct iteration method based on the secant modulus is
used (12,13). Numerical results for the load-displacement curve of the
beam are plotted in Fig. 8 for various numbers N of elements along the
beam, which all have the same length. We see that the solution converges
well. By contrast, the local solution (12,13) showed a strong dependence
on the number of elements N and produced instabilities of the snap-back
type in the post-peak response, as discussed in Ref. 13. The occurrence of
these instabilities depended on element size, not on beam properties. In
the present solution, snap-back instability can occur only as a function of
the L/h ratio, when its value is sufficiently high.

ALTERNATIVE VIEWPOINT: MEAN FRACTURING STRAIN

Among various possibilities of spatial averaging that do not affect elastic
strain, another is to average the fracturing strain. This strain, imagined to
represent the cumulative overall contribution of microcrack openings, was
used as the basis of the crack band model (11) and similar formulations
(41,44,45). The use of fracturing strain offers a simpler alternative to
anisotropic damage in which the oriented aspect of damage due to cracking
can be taken into account. Assuming all cracks to be parallel and denoting
their normal direction as z, we write:
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in which ¢! = elastic strain determined from stresses o, , o, , and o, and
& = mean fracturing strain in the z-direction, specified as a function of
strain (possibly also stress and internal variable), and ¥y = mean specific
fracturing strain. Strains e, and e, in the directions parallel to the crack are
elastic. According to the basic idea advanced here, ¥(x) is obtained by
spatial averaging:

1 12 .
¥(x) =~ J VOO 4 8) S e (26)
l =12
By choosing
b n
v(x) = (5 Eei) for loading .......coveriiiiiniii e (27a)
y=0 for unloading and reloading ...............ccooveviviinninnne, (27b)

the formulation becomes in one dimension identical to the foregoing
damage model (Eq. 16). Indeed the damage model used in our examples
yields for monotonic loading (and constant E) the uniaxial stress-strain
relation

E
o(x) = — /f(x) e (28)
1+ {— E Ce(x + $)]? ds}
2l )y

and Eqgs. 25-27 reduce for uniaxial stress to the same equation. By
contrast, the classical local approach is equivalent, for monotonic loading,
to the stress-strain relation

Ee(x)

b _, I
1+|—Ee
Bl
Alternatively, if the expression of the mean fracturing strain vy is a linear

function of €, averaging vy is equivalent to averaging the total strain ¢, and
so Eq. 28 is equivalent to:

Eg(x)

b /2 2n
]

Fig. 9 shows for the dynamic example treated (Figs. 2-6), the result of
this strain-averaging method. With the same overall material behavior, we
find that the response diagrams are graphically undistinguishable from
those obtained with the energy-averaging formulation.

Instead of Eq. 27, the expression for &/ may be taken as linear, which
corresponds to the triangular stress-strain relation used in the original
crack-band model [Fig. 1(a)]. By introducing the function y = exp[—ke%] —
1 in which k, n = constants, we obtain for o (x) a function which
generalizes the local stress-strain relation o = Ee exp(—ke”) also used in
the past for the crack-band model.

o(x) =

o(x) =

17
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Finally, we should comment on the failure mode. The true failure mode
in tension no doubt consists of unstable (runaway) crack propagation. In
the multiaxial analysis just illustrated, the transverse crack propagation
cannot be modeled; however, by ensuring that I(f o de) = fracture energy
of the material, our approach is equivalent to the fracture mechanics
approach at least in the sense of total energy balance, which is most
important. In local continuum softening analysis, energy balance is incor-
rect as dissipated energy vanishes. Compression failures can be described
by our uniaxial analysis only to the extent that /(' o de) approximates the
energy dissipated by axial splitting and shear cracks localized into a
segment of specimen length. Such localization can occur only in long
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compression specimens. A detailed analysis of compression failure must,
of course, be three-dimensional.

CoNcLUSIONS

1. Although existing imbricate nonlocal formulation for strain-softening
materials does insure proper convergence and eliminates spurious mesh
sensitivity, it has two inconvenient features: (1) All the behavior is
formulated as nonlocal, including the elastic part of strain; and (2) an
overlay with a local continuum must be introduced to suppress certain
periodic zero-energy modes. These inconveniences are circumvented by
the present nonlocal damage theory.

2. The key idea is that nonlocal treatment should be applied only to
those variables that cause strain softening, and roft to the elastic behavior.
Thus, nonlocal theory should reduce to a local theory when the response
is purely elastic. (The treatment of the plastic-hardening part of the
response could no doubt also be local if this is convenient to do).

3. Among various constitutive models which can describe strain soft-
ening, the continuum damage mechanics appears ideal for the present
purpose since all strain softening is controlled by a single variable, the
damage. The essential attribute of the presently proposed nonlocal damage
theory is that the damage energy release rate is averaged over the
representative volume of the material whose size is a characteristic of the
material. However, an alternative formulation in which spatial averaging is
applied to the fracturing part (i.e., damage part) of the strain works equally
well and may be just as efficient.

4. The characteristic length / (size of the representative volume) is a
material property which must be determined by experiments and should be
corroborated by micromechanics methods. No doubt, length / is related to
the size of material inhomogeneities. However, when nonlocal damage
theory is applied to beams, the assumption of preservation of the planeness
of cross section requires that the averaging length not be smaller than the
beam depth.

5. Numerical finite element computations indicate that nonlocal damage
theory avoids spurious mesh sensitivity and that the calculated distribu-
tions of strain, stress, damage, and displacement exhibit proper conver-
gence as the finite element subdivision is refined. Most importantly, the
energy dissipated due to strain-softening damage converges to a finite
value, while for the usual local finite element codes with strain softening
this energy converges to zero as the mesh is refined, which is physically
meaningless and unrealistic.

6. Since averaging is required by the present theory only in those
domains of the structure that exhibit strong nonlinear behavior, the
computation is more efficient than with previous imbricate nonlocal
formulations. Averaging of damage can be easily introduced in any
nonlinear finite element code with a strain-softening model.
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