

Exploring the complementarity of fast multipulse and multidimensional NMR methods for metabolomics: a chemical ecology case study

Aurore Michaud, Samuel Bertrand, Serge Akoka, Jonathan Farjon, Estelle Martineau, Nicolas Ruiz, Thibaut Robiou Du Pont, Olivier Grovel, Patrick Giraudeau

▶ To cite this version:

Aurore Michaud, Samuel Bertrand, Serge Akoka, Jonathan Farjon, Estelle Martineau, et al.. Exploring the complementarity of fast multipulse and multidimensional NMR methods for metabolomics: a chemical ecology case study. Analytical Methods, 2024, 10.1039/x0xx00000x. hal-04647612

HAL Id: hal-04647612 https://hal.science/hal-04647612v1

Submitted on 15 Jul2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Exploring the complementarity of fast multipulse and multidimensional NMR methods for metabolomics: a chemical ecology case study

Aurore Michaud^{a,b}, Samuel Bertrand^{b,c}, Serge Akoka^a, Jonathan Farjon^a, Estelle Martineau^a, Nicolas Ruiz^b, Thibaut Robiou Du Pont^b, Olivier Grovel^{b**}, Patrick Giraudeau^{a*}

This study investigates the potential and complementarity of high-throughput multipulse and multidimensional NMR methods for metabolomics. Through a chemical ecology case study, three methods are investigated, offering a continuum of methods with complementary features in terms of resolution, sensitivity and experiment time. Ultrafast 2D COSY, adiabatic INEPT and SYMAPS HSQC are shown to provide a very good classification ability, comparable to the reference 1D ¹H NMR method. Moreover, a detailed analysis of discriminant buckets upon supervised statistical analysis shows that all methods are highly complementary, since they are able to highlight discriminant signals that could not be detected by 1D ¹H NMR. In particular, fast 2D methods appear very efficient to discriminate signals located in highly crowded regions of the ¹H spectrum. Overall, the combination of these recent methods within a single NMR metabolomics workflow allows to maximize the accessible metabolic information, and also raises exciting challenges in terms of NMR data analysis for chemical ecology.

Introduction

Nuclear Magnetic Resonance (NMR) spectroscopy is a major analytical tool for the analysis of complex mixtures.^{1–4} It is particularly powerful for metabolomics, where NMR offers exceptional advantages for the profiling of complex biological samples such as plant, cell or bacterial extracts, or biofluids like urine, plasma, etc.⁵ Thanks to its high reproducibility and throughput, and to its ability to provide both structural and quantitative information, NMR metabolomics has found applications in many areas of science, from (pre-)clinical studies to environmental or plant sciences, as well as in microbiology, food authentication, etc.

NMR metabolic profiling studies rely on a well-defined, multi-step workflow which starts by a careful design of the biological study, which aims at maximizing one or several biological differences between sample groups, while limiting confounding factors.⁶ Then, biological samples are prepared for analysis (typically involving an extraction step) and analyzed by high-throughput NMR experiments. After signal processing, analytical data are subjected to statistical analysis steps that aim at observing the variability between sample groups, then identifying the signals that can explain this discrimination, to determine biomarkers of specific biological conditions and/or to better understand metabolic pathways.

The overwhelming majority of NMR metabolomics studies rely on the acquisition of 1D ¹H fingerprints, which are recorded with standard pulse sequences involving solvent signal suppression.^{7–10} 1D ¹H spectroscopy has the advantage of being high-throughput (typically a few minutes per sample) and relatively simple to process. However, 1D ¹H spectra are hampered by severe and ubiquitous peak overlaps arising from the diversity of analytes present in biological samples, associated with a limited frequency range and to the spreading of ¹H multiplets. This issue is further compounded by the peak shifting that occurs within sample groups due to pH, concentration or ionic strength variations, making peak integration a complex task.

Fortunately, the NMR toolbox includes several promising alternatives for the analysis of complex mixtures⁴, and new tools are constantly being developed.^{11–14} The acquisition of ¹³C NMR spectra is an efficient way of improving the separation of overlapped metabolite signals,¹⁵ however, the low sensitivity of ¹³C detection makes it impractical for metabolomics at natural abundance. A modest but significant sensitivity improvement by 3 to 4 can be achieved relying on polarization transfer methods such as INEPT (Insensitive Nuclei Enhanced by Polarization Transfer), whose analytical performance has recently been optimized to yield an efficient profiling tool.¹⁶ In a slightly more distant future, hyperpolarization methods could change the sensitivity paradigm of ¹³C NMR metabolomics, albeit at the price of expensive instrumentation and operating costs.^{13,17} The simplification of ¹H

^{a.} Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France. E-mail : patrick.giraudeau@univ-nantes.fr

^{b.}Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France. E-mail : olivier.grovel@univ-nantes.fr

^{c.} Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France

Supplementary Information available:. See DOI: 10.1039/x0xx00000x

NMR spectral patterns through pure-shift NMR is another promising alternative, whose first applications to metabolomics have been recently reported.^{18,19} However, pure-shift 1D ¹H NMR suffers from a major sensitivity penalty and is also prone to artefacts in the case of strongly coupled spin systems. A more general and versatile alternative is the use of two-dimensional (2D) NMR spectroscopy, which has the advantage of offering an additional spectroscopic dimension compared to 1D NMR, thus offering an improved separation of overlapped peaks.²⁰ Moreover, 2D NMR also offers additional molecular identification capabilities by providing information on atomic connectivities, most often through *J*-couplings. Finally, 2D NMR offers a great variety of homo- or heteronuclear pulse sequences among which one can choose to obtain the best compromise between sensitivity and resolution for a given sample.²¹

On the one hand, 2D NMR has been recognized for decades as a useful structure elucidation tool in metabolomics. It is widely used to determine the structure of unknown metabolites, often after a purification step,²² but also directly in complex mixtures.²³ On the other hand, while it has been shown that 2D NMR can provide improved metabolomics classification upon statistical analysis,24 conventional 2D NMR experiments are rarely used as a profiling tool in untargeted metabolomics workflows, since the acquisition of 2D spectra on an entire sample cohort would take an unreasonable time, contradictory with the high-throughput need of metabolomics studies. This paradigm has been slightly changing since recent years have witnessed an increasing number of examples where fast 2D NMR experiments have been incorporated into such workflows.²⁵ Thanks to accelerated 2D NMR approaches such as non-uniform sampling (NUS), ultrafast (UF) 2D NMR, or fast-pulsing strategies, it has become possible to systematically record 2D data on a series of samples within a reasonable time. For instance, Watermann et al. have shown that the use of ASAP (Acceleration by Sharing Adjacent Polarization) HSQC (Heteronuclear Single Quantum Correlation) combined with NUS provided a good classification and an improved marker identification for the discrimination of the geographical origin of walnut samples.²⁶ NUS HSQC was also used for metabolic flux analysis.²⁷ Marchand et al. developed an untargeted lipidomic fingerprinting workflow relying on two fast homonuclear 2D NMR approaches that helped in the identification of biomarkers in a food chemical safety study.²⁸ In 2020, Féraud et al. reported an untargeted metabolomics study on biofluids with the use of NUS applied to a ¹H COSY pulse sequence.²⁹ Such fast 2D NMR approaches have also been applied to the targeted quantification of metabolites in mixtures,³⁰ and also to isotope profiling, either in enriched samples³¹ or at natural abundance.³²

While the above-mentioned examples demonstrated the potential of advanced NMR pulse sequences to be efficiently incorporated into metabolomics workflows, very few actually compared the classification performance of such methods and their complementarity. In this context, the aim of this study is to evaluate and compare the classification performance of fast multiple pulse and/or multidimensional NMR profiling methods in a metabolomics context. We chose to focus on three of the most recent multiple pulse methods that were previously developed and optimized in terms of precision and rapidity for the analysis of complex mixtures: UF 2D ¹H COSY, ³⁰ adiabatic 1D ¹³C INEPT, ^{33,34} and symmetric adiabatic pure-shift ¹H-¹³C HSQC.^{35,36} These three methods (further referred to as UF COSY, INEPT and SYMAPS HSQC) were chosen based on their potential for the profiling of complex mixtures, and on their complementarity in terms of resolution, sensitivity and throughput. Other methods could have been considered, but the choice was made to keep the overall data acquisition time below 90 min per sample, including pre-acquisition settings. As further described in the manuscript, experiment parameters were thus optimized to yield minimal experiment times for each NMR pulse sequence (10 min, 20 min and 45 min for UF COSY, INEPT and SYMAPS HSQC), offering a continuum of analytical methods that were benchmarked to a standard ¹H 1D NMR experiment recorded in 5 min. A challenging set of samples was chosen to evaluate and compare their performance, stemming from a chemical ecology example aiming at characterizing the variation of the metabolome of an Aspergillus chevalieri fungal strain when it is placed in presence or absence of its original host, the marine sponge Tetilla sp, in the culture medium. Indeed, holobionts such as sponges host microbial communities capable of producing molecules involved in chemical communication and defence against predators or other microbes. The use of environmentally relevant culture conditions applied to marine-sponge-associated fungal strains is a manner of mimicking the natural holobiont system.^{37–39} By tracking changes in the fungal extract profiles, it is possible to identify molecules whose production varies in response of the presence of the sponge. However, while this model raises numerous and interesting biological questions which are out of the scope of this analytical chemistry study, it also provides an impressive spectral complexity to challenge new analytical methods.

Material and methods

General experimental materials and chemicals

Ethyl acetate, dichloromethane and anhydrous sulfate sodium were purchased from Carlo Erba SAS (Val de Reuil, France) and distilled before use. The membrane filters used for extraction were regenerated Cellulose (RC) membrane Filters (0.45 µm, diam. 47 mm, Sartorius, Göttingen, Germany). Deuterated solvents were purchased from Eurisotop (Saint-Aubin, France) and Hexamethylcyclotrisiloxane from Sigma-Aldrich (Darmstadt, Germany).

Cultivation of biological samples

The fungal strain was isolated from the Red Sea sponge *Tetilla* sp. harvested during Marine Science and Technology III campaign (October 1996) and identified as *Aspergillus chevalieri* on the basis of morphological features and molecular method by sequencing DNA partial sequence of β -tubulin (Genbank accession number MW729302.1). The isolated strain is deposited in the ISOMer marine fungal collection under the reference number MMS1599. *A. chevalieri* MMS1599 was cultivated on two media. The first medium, called "Control medium", was prepared by mixing DCA medium (dextrose 40 g, enzymatic digest of casein 10 g, agar 15 g)

together with reef crystal sea salts (36 g) into distilled water (1 L). The second medium, called "Sponge medium", was prepared as the Control medium, but freeze-dried *Tetilla* sponge powder, the original host (10 g/L), was added. Cultures were performed in 250 mL Erlenmeyer flasks containing 50 mL of medium. They were inoculated in 3 points by conidia from an *A. chevalieri* stock culture and incubated at 27°C with natural light variations through a glass door incubator. After 13 days, 6 culture replicates and 2 blank replicates from both Control and Sponge cultures were stopped as described in the extraction subsection. After 20 days, the 4 last replicates of Control and Sponge cultures were stopped and extracted.

Extraction

Fungal cultures were extracted twice using 100 mL of ethyl acetate/dichloromethane (1:1 v/v) under 30 min of sonication. Both extracts were pooled, dried with anhydrous sodium sulfate and filtered again using regenerated cellulose membrane filters, before the solvent being evaporated under vacuum to provide a crude extract.

NMR Sample preparation

Deuterated water was buffered by phosphoric acid (H₂PO₄) to reach pH = 2. Samples were prepared on the day of their analysis by dissolving 60 mg of fungal crude extract into 700 μ L of the solvent mixture (deuterated chloroform/methanol/water 60:35:5 v/v/v). Then 7 μ L of hexamethylcyclotrisiloxane solution (0.6 mM), the reference used for normalization, were added to the solubilized extract to obtain a final concentration of 6 μ M into the analyzed solution. The solution was filtered on cotton to remove any particle and put into a 4-inch long NMR tube sealed by a ball.

A quality control (QC) sample were prepared to ensure that the analytical variations were much smaller than the biological variations. The QC was prepared from a DCA medium culture extract, obtained after the samples of interest, which has been prepared according to the same protocol as the samples of interest and which has been run several times in the analysis sequence. The resulting analyses of this reference sample were used to verify that this sample gave points which were grouped on the Principal Component Analysis (PCA) score plot (Supplementary Figure SI1).

NMR acquisition pulse sequences and parameters

General NMR acquisition parameters. All the spectra were automatically recorded using IconNMR (Bruker Biospin) on a 16.4 T Bruker Avance-III HD spectrometer operating at a ¹H frequency of 700.13 MHz, equipped with an inverse ¹H/¹³C/¹⁵N/²H cryogenically cooled probe. The sample temperature was set at 293 K and a SampleJet auto-sampler set at 293 K without light, requiring 4-inches long NMR tubes in 96-well plates, was used. The pulse lengths were calibrated at the beginning of the batch, autoshim was applied during analysis of the sample cohort.

1D ¹**H pulse sequence.** 1D ¹H NMR spectra were recorded by applying a pulse-acquire sequence with the following acquisition parameters: 64 scans (NS) and 4 dummy scans (DS), a 20 ppm spectral width

centered at 6.3 ppm, an acquisition time of 2 s and a recovery delay of 3 s. The experiment time was 5 min per spectrum.

The number of scans was adjusted to obtain a sufficient SNR (SNR > 3 on the smallest peak around 12 ppm) in a duration compatible with high-throughput screening as in metabolomics.

1D ¹³C adiabatic INEPT pulse sequence. ¹³C NMR adiabatic INEPT spectra were recorded using the pulse sequence described in Ref. ³³ with adiabatic proton decoupling.⁴⁰ Typical acquisition parameters were as follows: ¹³C and ¹H offsets were set at 80 ppm and 9 ppm, respectively, 90° ¹H and ¹³C high power pulse width were 10 µs and 11 µs respectively. For INEPT acquisitions, 192 scans were accumulated with a repetition time of 5.8 s (5 s of recovery delay and 0.8 s of acquisition time). The polarization transfer delay was adjusted to 2.4 ms and the refocusing delay to 1.5 ms. Adiabatic full passage pulses were generated using Mathcad 8 (MathSoft, Inc.). They were designed with a cosine amplitude modulation of the RF field (ω_2^{max} = 157.1 kHz or 93.89 kHz for ¹³C or ¹H, respectively) and an offset independent adiabaticity (OIA) by optimizing the frequency sweep ΔF (ΔF = 39 kHz or 17 kHz for ¹³C or ¹H, respectively) according to the procedure published in Ref. ⁴⁰. For inversion pulses, adiabatic full passage pulses were used.³³ For refocusing pulses, composite adiabatic pulses were used.41 The experiment time was 20 min per spectrum.

2D UF COSY pulse sequence. Ultrafast COSY spectra were recorded following a multiple scan pulse sequence already described in the literature,⁴² completed with an interleaved acquisition scheme to increase the observable spectral width.⁴³ A constant-time spatial encoding scheme was used thanks to a pair of 15 ms smoothed chirp encoding pulses with a 15 kHz sweep range. For the spatial encoding, the gradient amplitude was set to ±1.6 G/cm and for the mixing period, opposite coherence-selection gradients were used (sine shape; 50.1 G/cm, 1 ms). For the echo-planar spectroscopic imaging acquisition, 32 gradients pairs were applied for 799 µs with an amplitude of 40.7 G/cm. Sixteen Free Induction Decays (FID) were recorded – with 8 scans each and a repetition delay of 5 s – while incrementing a pre-acquisition delay, then processed in an interleaved fashion to yield a COSY spectrum with a ca. 10 x 10 ppm apparent spectral width. The experiment time was 10 min per spectrum.

2D SYMAPS HSQC pulse sequence. For the symmetric adiabatic HSQC with a pure-shift acquisition (SYMAPS HSQC),^{35,44} 16 scans per increment and 8 dummy scans were recorded in the indirect dimension. For the adiabatic INEPT blocks, the ¹J coupling evolution delay was $\Delta = 2$ ms. For inversion pulses, adiabatic full-passage pulses were used. For refocusing pulses, adiabatic composite pulses were applied,³³ these RF pulses were the same as those used for INEPT acquisitions. ¹³C decoupling was performed using an optimized phase cycle and adiabatic full-passage RF pulses with a cosine square amplitude modulation ($\omega_{max}^2 = 110.6$ kHz) and offset-independent adiabaticity with an optimized frequency sweep ($\Delta F = 14$ kHz) as described in Ref. ⁴⁵.

The pure shifting of the acquisition for homodecoupling the $^{1}\mathrm{H}$ dimension of the SYMAPS HSQC was performed with 13 chunks of 38 ms and BIRD/180° elements were used to ensure the absence J_{HH}

evolution during the acquisition time (492 ms).³⁵ The 2D HSQC maps of 11 x 65 ppm were recorded with 7568 \times 128 data points.

For the NUS version of the SYMAPS HSQC experiment, 50% of the t_1 increments (64) were acquired. The experiment time was 45 min per spectrum.

NMR pre-processing methods

The NMR data processing workflow (Supplementary Figure SI2) was divided into different steps. First, spectra pre-processing was carried out on TopSpin 4.0.5 (FID apodisation, Fourier transform, phasing, baseline correction and calibration). Then bucketing was applied to 1D spectra with NMRProcflow software (INRA UMR 1332 BFP, Bordeaux Metabolomics Facility, France, https://nmrprocflow.org/)⁴⁶ and with TopSpin for 2D spectra.

1D ¹**H.** The FID were processed with the Bruker TopSpin software, version 4.0.5. Before Fourier Transform, data were weighted with a trapezoidal function with a left limit at 0 and a right limit at 30% of the FID total length, then zero filled to 131072 points. The spectra underwent zero and first order manual phase correction followed by a degree 2 polynomial automatic baseline correction. The chemical shifts were finally referenced on all spectra to the hexamethylcyclotrisiloxane singlet at 0.165 ppm, which was used as an internal standard.

¹³C adiabatic INEPT. For each ¹³C NMR spectrum, before Fourier Transform, data were weighted with a trapezoidal function with a left limit at 0 and a right limit at 0.4, then zero filled to 524288 points. Spectra were phased, the baseline was corrected automatically by a polynomial function of zero order. Spectra were calibrated on the CDCl₃ signal at 77 ppm.

UF COSY. The processing was carried out thanks to a home-written algorithm in TopSpin 4.0.5, as described in Ref. ⁴⁷. It uses an optimized Gaussian weighting function for spatial apodization in the spatially encoded dimension⁴⁸ and a sine-bell weighting function in the conventional dimension. Spectra were processed in magnitude mode. Due to the specificities of UF experiments, the chemical shift was finally calibrated using two diagonal signals: the 1.25 ppm and the 6.78 ppm peaks.

SYMAPS HSQC. Before Fourier Transform, sinusoidal apodization functions (SSB = 2) were applied in dimension F2 and F1. The data matrices were zero-filled to 16384 points in F2 and 1024 points in F1. Spectra were processed in magnitude mode. An automatic polynomial baseline correction (n 2) was applied in both dimensions. Calibration was adjusted on the hexamethylcyclotrisiloxane singlet at 0.165 ppm in F2 and 9.904 ppm in F1 (internal standard). Reconstruction of the 2D spectrum was performed using the compressed sensing algorithm (irls) within TopSpin.⁴⁹ Forward complex linear prediction was applied with 16 coefficients and 128 predicted points.

Signal integration

1D ¹**H spectra.** After application of the pre-processing workflow in TopSpin, 1D ¹H and ¹³C spectra were uploaded on the local installation of the software NMRProcflow.⁴⁶ An adaptative intelligent bucketing algorithm was applied on the entire pre-processed spectra

in NMRProcflow. Data matrices were downloaded from NMRProcflow in a csv format and exported to Microsoft Excel for further statistical analysis.

2D spectra. 2D spectra were manually bucketed in TopSpin. An integration pattern was drawn and applied to all spectra. Data matrices were manually created by gathering 2D integration data and putting it together in an Excel table for further statistical analysis.

Statistical analysis

Data matrices from TopSpin or NMRProcflow were successively normalized i) by the reference area (buckets between -0.0036 and 0.2847 ppm for ¹H, buckets between -1.008 and -0.794 ppm for adiabatic ¹³C INEPT, bucket between 0.4839 and -0.2594 ppm in F1 and between 0.5420 and -0.2805 ppm in F2 for UF COSY, between 13.1459 and 7.8273 ppm in F1 and between 0.2404 and 0.0373 ppm in F2 for SYMAPS HSQC), ii) by the extract mass of the replicate and iii) by the mass used to prepare the sample for NMR analysis to ensure comparability of the samples.

Statistical analyses were performed on MetaboAnalyst 5.0 (www.metaboanalyst.ca) ^{50,51} by using Principal Component Analysis (PCA) (Figure 3, Supplementary Figure SI3), Orthogonal Projection to Latent Structures Discriminant Analysis (OPLS-DA) (Supplementary Figures SI4, SI5, SI6, SI7) after Pareto scaling.⁵² The OPLS-DA model robustness (R²X, R²Y, Q² of principal components) were evaluated with permutation tests (n = 2000) with *p*-value < 5 x 10⁻⁴ (Supplementary Table SI1). Variable (chemical shifts) selection, using the OPLS-DA models, was performed through the Variable Importance in the Projection (VIP) score, and the top-100 buckets were considered (Supplementary Tables SI2 to SI13).

Comparison between NMR techniques (¹H, ¹³C INEPT adiabatic, UF COSY, SYMAPS HSQC) was performed manually to highlight signals corresponding to the same chemical shifts (aligned signals between 1D/2D NMR).

Results and discussion

To assess the performance and complementarity of the abovementioned multiple pulse and multidimensional NMR methods for metabolomics, we chose a chemical ecology case study consisting of four groups of complex marine-fungal extracts. These samples were initially designed to study the biological interaction between a marine fungus, A. chevalieri, and its original host, the red sea sponge Tetilla sp. Indeed, sea sponges host complex communities of microorganisms and are widely exploited for their ability to provide original molecules including active pharmaceutical compounds.39 These extracts offer a great spectral complexity, well-suited to assess the ability of NMR methods to separate overlapped spectral fingerprints. Note that the chemical characterization of these extracts, whose diversity remains largely unknown, is out of the scope of this analytical study, as well as the subsequent spectral annotation. This work has an analytical chemistry goal which consists in characterizing the ability of the NMR methods to highlight

statistically relevant spectral features, and their complementarity with conventional ¹H NMR.

¹H NMR spectral fingerprints

Figure 1 illustrates such spectral complexity by showing the 1D 1 H spectra for 4 different extracts pertaining to different sample groups. Control and Sponge samples correspond respectively to extracts from *A. chevalieri* cultivated without or with the presence of *Tetilla*

sp. These two conditions were monitored at two different time points (T1 = 13 days and T2 =20 days) in order to increase the chemical complexity of extracts and to challenge our NMR methods, as it has been shown that the metabolic richness of fungal extracts is a function of the incubation time.⁵³ Extracts were highly concentrated (just below the solubility limit of extracts), therefore ¹H NMR spectra were acquired in only 5 min at high field (700 MHz), a duration compatible with high-throughput metabolomics.

Figure 1. ¹H NMR spectra of 4 representative extracts from *Aspergillus chevalieri* cultivated at two different time points (T1 = 13 days and T2 = 20 days), without (Control) or with (Sponge) the presence of *Tetilla* sp. Spectra were acquired in 5 min at 293 K on a 700 MHz spectrometer equipped with a cryogenically cooled probe.

The spectra presented in Figure 1 show a continuous and complex spectral fingerprint, exhibiting numerous major signals between 1 and 8 ppm, but also smaller peaks at high chemical shifts. A noticeable feature of these spectra is the diversity of signal intensities (Supplementary Table 2): the signal-to-noise ratio (SNR) is lower than 10 for 8% of the signals, while the maximum SNR reaches 24,000, illustrating the challenged posed by such samples to the dynamic range of the NMR receiver. It should be noted that temperature, pH and NMR solvents were finely tuned to obtain the sharpest possible peaks, resulting in a mixture of NMR solvents (CDCl₃/MeOD/D₂O 60:35:5 at pH = 2). We chose not to suppress NMR signals from residual protonated solvents to avoid impacting nearby peaks of interest.

The comparison of spectra from the 4 sample groups in Figure 1 did not reveal any striking difference between the culture times, thus motivating further statistical analyses. The continuous spectral fingerprint, associated with the unavoidable chemical shift variations between samples, justified the need for adaptative intelligent bucketing procedures.⁴⁶ The bucketing of ¹H spectra performed with such an intelligent bucketing approach included in the NMRProcFlow software, resulted in 901 buckets spread over the entire spectrum (Supplementary Table SI14 and Figure SI8). The majority of these buckets (> 90%) had an SNR higher than 10, highlighting the good sensitivity of the ¹H approach.

NMR methods to improve signal dispersion

The challenging complexity encountered in 1D ¹H NMR justified the need for NMR methods that could better separate overlapped signals while maintaining a reasonable experiment duration. Figure 2 shows how recent multiple pulse and/or multidimensional methods have the potential to provide such separation. The three methods evaluated in this study were chosen because they were specifically tailored, in previous studies, to yield an optimal analytical performance in terms of repeatability – a crucial feature for intersample comparison in metabolomics. In this study, they are benchmarked to the conventional 1D ¹H NMR approach presented above.

Adiabatic ${}^{13}C$ INEPT (Figure 2A) relies on polarization transfer from ${}^{1}H$ to ${}^{13}C$ to benefit from the greater spectra dispersion of ${}^{13}C$

spectroscopy. It provides an improved sensitivity compared to direct ¹³C spectra, and an optimum repeatability thanks to optimized adiabatic pulses.⁵⁴ The larger ¹³C spectral range, associated with the singlet character of all the peaks thanks to ¹H decoupling, considerably reduces peak overlap compared to ¹H NMR, as visible in Figure 2A. The repetition time between two scans is dictated by ¹H relaxation, which makes it possible to preserve a reasonable experiment time (20 min here). However, the polarization transfer mechanism involved in this pulse sequence makes quaternary carbon signals invisible on INEPT spectra, which is not necessarily critical assuming that the overwhelming majority of metabolites will

involve at least one protonated carbon atom. The intelligent bucketing of the 13 C spectrum resulted in 411 buckets (Supplementary Table SI15 and Figure SI9) versus 901 for 1 H, which was consistent with the greater sparsity of the 13 C spectrum. However, a significant proportion (approx. 60%) of those buckets had an SNR lower than 10, which could be related to the low sensitivity of the experiment relying on the natural abundance of 13 C nuclei (1.1%).

Figure 2. ¹³C adiabatic INEPT (A), UF COSY (B) and SYMAPS HSQC (C) NMR spectra of an *Aspergillus chevalieri* extract, acquired in 20 min (A), 10 min (B) and 45 min (C) at 293 K on a 700 MHz spectrometer equipped with a cryogenically cooled probe.

Ultrafast COSY (Figure 2B) spreads ¹H resonances over two orthogonal dimensions while providing information on ¹H-¹H through-bond connectivities. UF COSY, which relies on a spatial encoding approach derived from imaging, was shown to be more repeatable than conventional COSY for the analysis of metabolic mixtures.⁴² Although slightly less sensitive than conventional ¹H spectroscopy, UF COSY provides spectra devoid of t_1 noise contrary to conventional COSY, which makes it a valuable tool for the analysis of samples with a great diversity of metabolite concentrations. When samples are concentrated enough, UF COSY provides a rich metabolic fingerprint in a short time (10 min here), with an improved spectral dispersion. UF COSY also has specific features, such as the need to compromise between spectral width and resolution⁴⁷ – a compromise that was optimized here thanks to the use of an interleaved acquisition approach. This explains why the acquisition of COSY spectra was limited to the 0-8 ppm spectral range in this study. Attempts to record UF COSY spectra over a full spectral width showed no detectable signal in the upper chemical shift range, while deteriorating the resolution in the 0-8 ppm range. The bucketing of the UF COSY spectra was performed manually, because no tool was found adapted to the bucketing of such 2D NMR metabolomics datasets with a diversity of peak patterns and shapes, and residual artefacts associated with the interleaving procedures would have been challenging to identify for an automated algorithm. Manual bucketing resulted in 1056 buckets spread across the entire spectrum (Supplementary Figures SI10 and SI11).

SYMAPS HSQC (Figure 2C) offers an even higher level of spectral dispersion by spreading the ¹H peaks along an orthogonal ¹³C

dimension. It shares similarities with INEPT, such as the polarization transfer mechanism that prevents the detection of quaternary carbons and the ¹H-dependent repetition times, but it also has an increased sensitivity compared to INEPT since ¹H are both the excited and detected nuclei in the pulse sequence. SYMAPS HSQC relies on a conventional 2D acquisition scheme which requires a longer experiment time. However, the pulse sequence was here accelerated by relying on non-uniform sampling (NUS), spectral aliasing and variable recycling time (VRT); resulting in a total experiment time of 45 min. Variable recycling time consists in a progressive reduction of the recycling time throughout successive t_1 increments.^{35,55} Both

sensitivity and resolution were improved by a pure-shift acquisition procedure in the F₂ dimension, turning all ¹H multiplets into singlets. As for the INEPT pulse sequence, the use of adiabatic pulses was important to reduce variability sources, hence leading to an optimized repeatability. Note that the use of spectral aliasing may require additional care in the interpretation of spectral data,⁵⁶ although we ensured that aliased spectral regions did not overlap (Supplementary Figure SI12). As for UF COSY, the bucketing was performed manually, yielding a number of buckets (441) similar to INEPT and spread over the entire spectrum (Supplementary Figures SI13 and SI14).

Figure 3. 3D PCA score plots obtained from NMR data acquired on *Aspergillus chevalieri* extracts cultivated at two different time points (T1 = 13 days and T2 = 20 days), without (Control) or with (Sponge) the presence of *Tetilla* sp. Data obtained from (A) ¹H spectra, (B) adiabatic INEPT spectra, (C) UF COSY spectra and (D) SYMAPS HSQC spectra. Color code is as follows: Green: Control T1; Yellow: Control T2; Red: Sponge T1; Blue: Sponge T2.

Unsupervised statistical analysis

To assess the classification performance of the above-mentioned NMR methods, data were first subjected to a conventional NMR metabolomics processing workflow (Supplementary Figure SI2). As

mentioned above, 1D ¹H and ¹³C INEPT spectra were subjected to an intelligent bucketing approach, while bucketing was performed manually for 2D spectra. The processing workflow deliberately did not include any spectral alignment procedure (which would have been available only for 1D data), to avoid an additional and tedious

processing step and to facilitate the comparison between the four methods. All the data matrices were subjected to a triple normalization procedure to i) the NMR internal reference compound, ii) the mass of each replicate and iii) the mass used to prepare the NMR tube. Normalized data were subjected to Pareto scaling⁵² and analyzed with MetaboAnalyst.

Figure 3 shows PCA score plots obtained with the four NMR methods. The choice was made to represent 3D score plots, since 2D plots showed apparent superposition between groups, making it more difficult to compare methods (Supplementary Figure SI3). The 3D PCA score plots clearly highlight the ability of the four methods to efficiently separate the four sample groups. The sum of variances expressed on the three first components of the PCA was high in all cases (>80%). The score plots also highlighted the relatively high intra-group variability, which seemed more pronounced for the sponge groups. Moreover, the time factor (T1 *vs* T2) separated the groups slightly better than the medium factor (Control *vs* Sponge).

Supervised statistical analysis

To further evaluate the performance and complementarity of the four NMR methods, we chose to apply supervised statistical analysis through OPLS-DA (Orthogonal Projection to Latent Structures Discriminant Analysis) traditionally used in metabolomics studies,^{57,58} focusing on the medium effect (Control *vs* Sponge). Score plots obtained for the four methods are shown in Supplementary Figures SI4 to SI7, with associated model parameters in Supplementary Table SI1. Model parameters showed that all models were reliable (*p*-value ≤ 5 %, Q² \geq 0.5 and absence of overfitting – Q² < R²Y),⁵⁹ with SYMAPS HSQC spectra containing more significant signals as revealed by the highest explained variance (R²X). The comparison of Q² values showed that models obtained from homonuclear data (UF COSY) provided a more robust classification than those built from heteronuclear data (HSQC).

To investigate the complementarity and the potential redundancy of the spectroscopic information provided by the four NMR methods, we performed a detailed study of the 100 most discriminant variables (VIPs, determined by their Variable Importance in the Projection score) contributing to the OPLS-DA models. Figure 4 provides a summary of this investigation (a detailed list of the VIPs is provided in Supplementary Tables SI2-13). Reading Figure 4 makes it possible to understand how many buckets are shared between two methods, and how many are specific of each method.

Let us first compare the results obtained in homonuclear 2D NMR (UF COSY) versus ¹H NMR. Figure 4B (example case h) shows that 16 VIP buckets were specific to UF COSY and were not present among the ¹H NMR 100 most discriminant buckets, nor in the 100 ¹H VIP buckets that follow, excluding a threshold effect. A detailed analysis of the spectral data showed that for most of them, these 16 buckets corresponded to signals in heavily crowded regions that were too heavily overlapped in 1D NMR to be detected. Specific examples are highlighted in Figure 5. These results clearly highlight the benefit of using 2D NMR in metabolomics workflow, as the additional dimension makes it possible to reveal discriminating signals that were invisible in 1D NMR.

Conversely, Figure 4A also highlights that 18 of the 100 most discriminant VIP buckets in 1D ¹H NMR did not show any correspondence in UF COSY (example case d). A detailed analysis showed that these buckets either corresponded to signals whose intensity is below the limit of detection of UF COSY, while others lied outside of the detected 0-8 ppm spectral range, as could be expected from the known limitations of UF COSY. Overall, UF COSY appears complementary to 1D ¹H spectroscopy, with a better ability to highlight relevant signals in crowded regions, while 1D ¹H spectroscopy is best suited to detect signals close to the limit of detection of NMR. Moreover, UF COSY shows that homonuclear 2D spectra remain quite overlapped in some regions –which can be problematic when trying to identify discriminant signals– justifying the need for heteronuclear techniques.

The results obtained for SYMAPS HSQC (Figure 4E) showed that 9 among the 100 most important VIP buckets did not have any correspondence with a 1D technique (example case o). Corresponding buckets were present in the VIP list of 1D ¹H data, but beyond the 100 first ones (threshold effect), while they were not present in the adiabatic ¹³C INEPT data, owing to a too low SNR. Moreover, 33 among the 100 most important HSQC buckets showed a correspondence in ¹³C INEPT data only (example case p). As for UF COSY, all these buckets corresponded to buckets in regions which were too heavily overlapped to be discriminated based on 1D ¹H data alone. Finally, 9 VIP buckets were present in both HSQC and 1D ¹H most important buckets, but not in the ¹³C INEPT data (example case m). These buckets corresponded to signals with a mediumrange SNR that can be detected with HSQC but not with INEPT, highlighting the better sensitivity of 2D HSQC among heteronuclear methods. Still, data analysis for adiabatic INEPT (Figure 4D) showed that 9 among the 100 most important VIPs for this method were not reflected in HSQC data (example case I). These buckets corresponded to signals in crowded regions of HSQC. In such cases, the high resolution of INEPT (which is better than the ¹³C resolution of HSQC in the ¹³C dimension) helped to better separate overlapped signals.

Finally, as for UF COSY, 1D ¹H NMR showed ability to highlight signals that could not be detected with heteronuclear 2D NMR (example case j – Fig. 4C). In most cases, these buckets corresponded to signals with low intensity, that were below the limit of detection of HSQC at natural ¹³C abundance. Overall, HSQC buckets that appeared among the 100 most discriminant VIPs were those with a sufficient SNR. While less sensitive than 1D ¹H spectroscopy, HSQC provides a greater peak dispersion at the cost of a *ca*. 100 times lower sensitivity per unit time. In cases where sensitivity is sufficient and where peak overlap is important, the excellent resolution of adiabatic INEPT can allow the detection of additional relevant signals.

Figure 4. Number of VIP buckets (among the 100 most discriminant VIPs) in common between the OPLS-DA models built from the four different NMR methods (¹H, adiabatic ¹³C INEPT, UF COSY, SYMAPS HSQC). **(A)** VIP from ¹H spectra in common with the F2 and/or F1 dimensions of UF COSY; **(B)** VIP from the F2 and/or F1 dimensions of UF COSY spectra in common with ¹H spectra; **(C)** VIP from ¹H spectra in common with the F2 dimension of SYMAPS HSQC; **(D)** VIP from adiabatic ¹³C INEPT in common with the F1 dimension of SYMAPS HSQC; **(E)** VIP from SYMAPS HSQC spectra in common with 1D ¹H or ¹³C adiabatic INEPT spectra. Small letters in the "example" column refer to the situations reported in the spectra placed on the right side of the figure. As an example, Figure 4E should be understood as follows: among the 100 most discriminant VIP buckets of the SYMAPS HSQC model, 33 of them also appear in the 100 most discriminant VIPs of the 1D adiabatic ¹³C INEPT spectrum, 9 also appear in the 100 most discriminant VIPs of the 1D ¹H or none (meaning that these VIPs are specific to the SYMAPS HSQC model). The correspondence between the different methods was made based on the chemical shifts of the buckets.

Figure 5. Example of discriminant buckets that are highlighted among the first 100 VIPs of UF COSY data but are not reflected in ¹H data due to strong peak overlaps. Spectrum recorded in 10 min on an *Aspergillus chevalieri* extract belonging to the Sponge T1 group, on a 700 MHz spectrometer equipped with a cryogenically cooled probe.

Conclusions

The results described in this chemical ecology case study highlight the performance and the complementarity of advanced NMR methods for untargeted metabolomics of extracts, in particular in such a complex chemical composition. First, all the three methods show a great classification ability equivalent to 1D ¹H NMR with a reasonable experiment time that remains compatible with highthroughput data acquisitions. Classification results highlight that UF COSY, adiabatic INEPT and SYMAPS HSQC have reached a sufficient level of maturity and robustness to be routinely incorporated in metabolomics workflows. Second, a detailed analysis of discriminating signals upon supervised statistical analysis reveals that each method has an interesting degree of specificity. Indeed, multi-pulse and multi-dimensional methods, thanks to their ability to separate overlapped resonances, have the potential to highlight relevant signals in regions which are too crowded to be efficiently exploited in 1D ¹H NMR. Conversely, these advanced methods should be seen as complementary to 1D ¹H NMR, since the latter retains a major sensitivity advantage. Therefore, one could easily figure out the relevance of combining several techniques in a single untargeted

NMR metabolomics workflow, to maximize the accessible metabolic information. Although part of the information is redundant between the different methods, such redundancy should be an asset in the determination of potential biomarkers from NMR data. The highthroughput character of the NMR methods that were employed is an important characteristic towards such applications, since the results described above would not have been obtained with conventional, time-consuming, 2D NMR methods.

This study also raises further practical questions for further application of multinuclear and multi-dimensional methods in metabolomics workflows. Future work will consider the implementation and use of more automated tools for the bucketing of 2D datasets.⁶⁰ Indeed, manual bucketing may complicate the routine implementation of such methods. Peak matching methods may also help improving the quality of 2D data analysis.⁶¹ Moreover, the correlation between buckets from different datasets (which was done manually here) could benefit from approaches capable of integrating NMR datasets of different nature (1D and 2D, ¹H and ¹³C) in an automated way. These would include multi-block statistics^{62,63} to combine data matrices from different datasets in a single model, but also the use of correlation tools such as STOCSY ⁶⁴ or

dereplication approaches such as MADByTE⁶⁵ to better reveal synergies between multiple datasets. Such perspectives will be investigated in future studies.

Author contributions

Aurore Michaud: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Writing - original draft; Samuel Bertrand: Conceptualization; Data curation; Formal analysis; Writing - review & editing; Serge Akoka: Conceptualization; Methodology; Investigation; Writing - review & editing; Jonathan Farjon: Methodology; Investigation; Writing - review & editing; Estelle Martineau: Investigation; Writing - review & editing; Nicolas Ruiz: Investigation; Writing - review & editing; Thibaut Robiou Du Pont: Investigation; Olivier Grovel: Conceptualization; Funding acquisition; Methodology; Project administration; Supervision; Writing - review & editing; Patrick Giraudeau: Conceptualization; Funding acquisition; Investigation; Methodology; Project administration; Supervision; Writing - original draft

Conflicts of interest

There are no conflicts to declare.

Data availability

Data supporting this article have been included as part of the Supplementary Information, which includes full details of the 100 first VIPs for each method. All spectral data used for this manuscript has been deposited online at <u>https://doi.org/10.57745/N87KTD</u>. Programs to implement and process ultrafast COSY experiments are available from <u>https://madoc.univ-</u>

nantes.fr/course/view.php?id=24710§ion=1

Acknowledgements

This work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement SUMMIT no. 814747). The authors acknowledge the French National Infrastructure for Metabolomics and Fluxomics MetaboHUB-ANR-11-INBS-0010 (www.metabohub.fr) and the Corsaire metabolomics core facility (Biogenouest). This work includes NMR experiments carried out on the CEISAM NMR platform.

References

- 1 J.-L. Wolfender, J.-M. Nuzillard, J. J. J. van der Hooft, J.-H. Renault and S. Bertrand, *Anal. Chem.*, 2019, **91**, 704–742.
- 2 J. Wist, Magn. Reson. Chem., 2017, 55, 22–28.
- 3 R. M. Borges, G. de A. Ferreira, M. M. Campos, A. M. Teixeira, F. das N. Costa, F. O. das Chagas and M. Colonna, *Phytochem. Anal.*, 2023, 34, 385–392.
- 4 J.-N. Dumez, Chem. Commun., 2022, 58, 13855–13872.
- 5 A.-H. Emwas, R. Roy, T. R. McKay, L. Tenori, E. Saccenti, A. N. G. Gowda, D. Raftery, F. Alahmari, L. Jaremko, M. Jaremko and S. D. Wishart, *Metabolites*, 2019, **9**, 123.

- 6 P. G. Takis, V. Ghini, L. Tenori, P. Turano and C. Luchinat, *TrAC Trends Anal. Chem.*, 2019, **120**, 115300.
- 7 M. G. Fernand, C. Roullier, Y. Guitton, J. Lalande, S. Lacoste, J. Dupont, N. Ruiz, Y. F. Pouchus, C. Raheriniaina and E. Ranaivoson, *Aquaculture*, 2017, **479**, 750–758.
- M. Halabalaki, S. Bertrand, A. Stefanou, K. Gindro, S. Kostidis, E. Mikros, L. A. Skaltsounis and J.-L. Wolfender, *Phytochem. Anal.*, 2014, 25, 350– 356.
- 9 P. Giraudeau, V. Silvestre and S. Akoka, *Metabolomics*, 2015, **11**, 1041– 1055.
- S. Goulitquer, M. Croyal, J. Lalande, A.-L. Royer, Y. Guitton, D. Arzur, S. Durand, C. Le Jossic-Corcos, A. Bouchereau, P. Potin, S. Akoka, J.-P. Antignac, M. Krempf, V. Ferchaud-Roucher, P. Giraudeau and L. Corcos, *Cell. Death. Dis.*, 2018, **9**, 745.
- 11 E. K. Nawrocka, M. Urbańczyk, K. Koziński and K. Kazimierczuk, RSC Adv., 2021, 11, 35321–35325.
- 12 N. Harvey, P. G. Takis, J. C. Lindon, J. V. Li and B. Jiménez, *Anal. Chem.*, 2023, **95**, 3147–3152.
- 13 V. Ribay, A. Dey, B. Charrier, C. Praud, J. Mandral, J.-N. Dumez, M. P. M. Letertre and P. Giraudeau, *Angew. Chem. Int. Ed.*, 2023, 62, e202302110.
- 14 Z. Wang, S. Pisano, V. Ghini, P. Kadeřávek, M. Zachrdla, P. Pelupessy, M. Kazmierczak, T. Marquardsen, J.-M. Tyburn, G. Bouvignies, G. Parigi, C. Luchinat and F. Ferrage, J. Am. Chem. Soc., 2021, 143, 9393–9404.
- 15 C. S. Clendinen, B. Lee-McMullen, C. M. Williams, G. S. Stupp, K. Vandenborne, D. A. Hahn, G. A. Walter and A. S. Edison, *Anal. Chem.*, 2014, **86**, 9242–9250.
- 16 N. Merchak, T. Rizk, V. Silvestre, G. S. Remaud, J. Bejjani and S. Akoka, Food Chem., 2018, 245, 717–723.
- 17 A. Dey, B. Charrier, E. Martineau, C. Deborde, E. Gandriau, A. Moing, D. Jacob, D. Eshchenko, M. Schnell, R. Melzi, D. Kurzbach, M. Ceillier, Q. Chappuis, S. F. Cousin, J. G. Kempf, S. Jannin, J.-N. Dumez and P. Giraudeau, *Anal. Chem.*, 2020, **92**, 14867–14871.
- 18 J. M. Lopez, R. Cabrera and H. Maruenda, *Sci Rep*, 2019, **9**, 6900.
- 19 X. Chen, C. Caradeuc, A. Montagne, V. Baud, G. Bertho, C. Lucas-Torres and N. Giraud, *Anal. Chem.*, 2022, **94**, 14974–14984.
- 20 J. Marchand, E. Martineau, Y. Guitton, G. Dervilly-Pinel and P. Giraudeau, *Curr. Op. Biotechnol.*, 2017, 43, 49–55.
- 21 E. Martineau, J.-N. Dumez and P. Giraudeau, *Magn. Reson. Chem.*, 2020, 58, 390–403.
- 22 E. A. Mahrous and M. A. Farag, J Adv Res, 2015, 6, 3–15.
- 23 K. Bingol, D.-W. Li, B. Zhang and R. Brüschweiler, *Anal. Chem.*, 2016, **88**, 12411–12418.
- 24 Q. N. Van, H. J. Issaq, Q. Jiang, Q. Li, G. M. Muschik, T. J. Waybright, H. Lou, M. Dean, J. Uitto and T. D. Veenstra, J. Proteome Res., 2008, 7, 630–639.
- 25 E. Martineau and P. Giraudeau, Methods Mol. Biol., 2019, 365–383.
- 26 S. Watermann, C. Schmitt, T. Schneider and T. Hackl, *Metabolites*, 2021, **11**, 39.
- 27 M. Jeeves, J. Roberts and C. Ludwig, Magn. Reson. Chem., 2021, 59, 287–299.
- 28 J. Marchand, E. Martineau, Y. Guitton, B. Le Bizec, G. Dervilly-Pinel and P. Giraudeau, *Metabolomics*, 2018, **14**, 60.
- 29 B. Féraud, E. Martineau, J. Leenders, B. Govaerts, P. de Tullio and P. Giraudeau, *Metabolomics*, 2020, **16**, 42.
- 30 T. Jézéquel, C. Deborde, M. Maucourt, V. Zhendre, A. . Moing and P. Giraudeau, *Metabolomics*, 2015, **11**, 1231–1242.
- 31 P. Giraudeau, S. Massou, Y. Robin, E. Cahoreau, J.-C. Portais and S. Akoka, Anal. Chem., 2011, 83, 3112–3119.
- 32 N. Merchak, V. Silvestre, L. Rouger, P. Giraudeau, T. Rizk, J. Bejjani and S. Akoka, *Talanta*, 2016, **156–157**, 239–244.
- 33 C. Thibaudeau, G. Remaud, V. Silvestre and S. Akoka, Anal. Chem., 2010, 2010, 5582–5590.
- 34 N. Merchak, J. Bejjani, T. Rizk, V. Silvestre, G. S. Remaud and S. Akoka, *Anal. Methods*, 2015, **7**, 4889–4891.
- 35 J. Farjon, C. Milande, E. Martineau, S. Akoka and P. Giraudeau, Anal. Chem., 2018, 90, 1845–1851.
- 36 I. Timári, C. Wang, A. L. Hansen, G. Costa dos Santos, S. O. Yoon, L. Bruschweiler-Li and R. Brüschweiler, Anal. Chem., 2019, 91, 2304–2311.
- 37 M. K. Wooster, O. Voigt, D. Erpenbeck, G. Wörheide and M. L. Berumen, in *Coral Reefs of the Red Sea*, eds. C. R. Voolstra and M. L. Berumen, Springer International Publishing, Cham, 2019, pp. 91–122.

- 38 V. J. Paul, C. J. Freeman and V. Agarwal, Integr. Comp. Biol., 2019, 59, 765–776.
- 39 D. Varijakzhan, J.-Y. Loh, W.-S. Yap, K. Yusoff, R. Seboussi, S.-H. E. Lim, K.-S. Lai and C.-M. Chong, *Mar. Drugs*.
- 40 E. Tenailleau and S. Akoka, J Magn Reson, 2007, 185, 50–58.
- 41 T.-L. Hwang, P. C. M. Van Zijl and M. Garwood, *J. Magn. Reson.*, 1997, **124**, 250–254.
- 42 A. Le Guennec, I. Tea, I. Antheaume, E. Martineau, B. Charrier, M. Pathan, S. Akoka and P. Giraudeau, *Anal. Chem.*, 2012, **84**, 10831– 10837.
- 43 L. Rouger, B. Charrier, M. Pathan, S. Akoka and P. Giraudeau, J. Magn. Reson., 2014, 238, 87–93.
- 44 L. Haddad, S. Renou, G. S. Remaud, T. Rizk, J. Bejjani and S. Akoka, *Anal. Bioanal. Chem.*, 2021, **413**, 1521–1532.
- 45 E. Tenailleau and S. Akoka, J Magne Reson, 2007, 185, 50–58.
- 46 D. Jacob, C. Deborde, M. Lefebvre, M. Maucourt and A. Moing, Metabolomics, 2017, 13, 36.
- 47 C. Lhoste, B. Lorandel, C. Praud, A. Marchand, R. Mishra, A. Dey, A. Bernard, J.-N. Dumez and P. Giraudeau, *Prog. Nucl. Magn. Reson. Spectrosc.*, 2022, **130–131**, 1–46.
- 48 P. Giraudeau and S. Akoka, Magn. Reson. Chem., 2011, 49, 307–313.
- 49 A. S. Stern and J. C. Hoch, *Magn. Reson. Chem.*, 2015, **53**, 908–912.
- 50 Z. Pang, G. Zhou, J. Ewald, L. Chang, O. Hacariz, N. Basu and J. Xia, *Nat. Protoc.*, 2022, **17**, 1735–1761.
- 51 Z. Pang, J. Chong, G. Zhou, D. A. de Lima Morais, L. Chang, M. Barrette, C. Gauthier, P.-É. Jacques, S. Li and J. Xia, *Nucleic Acids Res.*, 2021, **49**, W388–W396.
- 52 R. van den Berg, H. C. J. Hoefsloot, J. A. Westerhuis, A. K. Smilde and M. J. van der Werf, *BMC Genomics*, , DOI:10.1186/1471-2164-7-142.
- 53 C. Roullier, S. Bertrand, E. Blanchet, M. Peigné, T. Robiou du Pont, Y. Guitton, Y. F. Pouchus and O. Grovel, *Mar. Drugs*, , DOI:10.3390/md14050103.
- 54 U. Bussy, C. Thibaudeau, F. Thomas, J.-R. Desmurs, E. Jamin, G. Remaud, V. Silvestre and S. Akoka, *Talanta*, 2011, **85**, 1909–1914.
- 55 S. Macura, J. Am. Chem. Soc., 2009, 131, 9606–9607.
- 56 D. Jeannerat, Magn Reson Chem, 2003, 41, 3–17.
- 57 M. Bylesjö, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes and J. Trygg, J. Chemom., 2006, 20, 341–351.
- 58 P. S. Gromski, H. Muhamadali, D. I. Ellis, Y. Xu, E. Correa, M. L. Turner and R. Goodacre, Anal. Chim. Acta, 2015, 879, 10–23.
- 59 L. Eriksson, J. Trygg and S. Wold, J. Chemom., 2008, 22, 594–600.
- 60 D.-W. Li, A. L. Hansen, C. Yuan, L. Bruschweiler-Li and R. Brüschweiler, *Nat. Commun.*, 2021, **12**, 5229.
- 61 H. Du, X. Gu, J. Chen, C. Bai, X. Duan and K. Hu, *Anal. Chem.*, 2023, **95**, 3195–3203.
- 62 V. Cariou, E. M. Qannari, D. N. Rutledge and E. Vigneau, *Sensometrics* 2016 Sensometrics---Sea, 2018, **67**, 27–34.
- 63 C. Palaric, S. Pilard, J.-X. Fontaine, J. Boccard, D. Mathiron, S. Rigaud, D. Cailleu, F. Mesnard, Y. Gut, T. Renaud, A. Petit, J.-Y. Beaumal and R. Molinié, *Metabolomics*, 2019, **15**, 107.
- 64 O. Cloarec, M.-E. Dumas, A. Craig, R. H. Barton, J. Trygg, J. Hudson, C. Blancher, D. Gauguier, J. C. Lindon, E. Holmes and J. Nicholson, *Anal. Chem.*, 2005, **77**, 1282–1289.
- 65 L. Flores-Bocanegra, Z. Y. Al Subeh, J. M. Egan, T. El-Elimat, H. A. Raja, J. E. Burdette, C. J. Pearce, R. G. Linington and N. H. Oberlies, *J. Nat. Prod.*, 2022, **85**, 614–624.

SUPPORTING INFORMATION

Exploring the complementarity of fast multipulse and multidimensional NMR methods for metabolomics: a chemical ecology case study

Aurore Michaud^{1,2}, Samuel Bertrand^{2,3}, Serge Akoka¹, Jonathan Farjon¹, Estelle Martineau¹, Nicolas Ruiz², Thibaut Robiou Du Pont², Olivier Grovel^{2**}, Patrick Giraudeau^{1*}

¹Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.

*Email: patrick.giraudeau@univ-nantes.fr

²Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France

**Email: <u>olivier.grovel@univ-nantes.fr</u>

³Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France

Figures

Figure SI 1 - 2D PCA score plots with QC: (A) ¹ H; (B) ¹³ C; (C) UF COSY; (D) SYMAPS HSQC	. 3
Figure SI 2 - NMR data processing workflow	. 4
Figure SI 3 - 2D PCA score plots: (A) ¹ H; (B) ¹³ C; (C) UF COSY; (D) SYMAPS HSQC	. 5
Figure SI 4 - ¹ H OPLS-DA score plot: medium effect	. 6
Figure SI 5 - ¹³ C INEPT OPLS-DA score plot: medium effect	. 7
Figure SI 6 - UF COSY OPLS-DA score plot: medium effect	. 8
Figure SI 7 - SYMAPS HSQC OPLS-DA score plot : medium effect	. 9
Figure SI 8 - Distribution of the 100 first VIPs and all ¹ H buckets: the upper part reports the 100 first VIP bucket.	S
highlighted by OPLS-DA analysis; the lower part reports all ¹ H buckets. Color code corresponds to bucket densit	ty
in the spectrum range, from low amount (blue), to medium (white) and high (red)	10
Figure SI 9 - Distribution of the 100 first VIP and all 13C INEPT buckets: the upper part reports the 100 first VIP	
buckets highlighted by OPLS-DA analysis; the lower part reports all ¹³ C buckets. Color code corresponds to	
bucket density in the spectrum range, from low amount (blue), to medium (white) and high (red)	10
Figure SI 10 - Spectral distribution of UF COSY buckets. Color code corresponds to bucket density in the spectru	т
range, from low amount (blue), to medium (white) and high (red)	11
Figure SI 11 - Spectral distribution of the first 100 VIP in UF COSY. Color code corresponds to bucket density in	
the spectrum range, from low amount (blue), to medium (white) and high (red)	12
Figure SI 12 - SYMAPS HSQC with ¹ H and numerically folded ¹³ C INEPT spectra as projections: on the top, 1D ¹ H	
spectrum with their 100 first OPLS-DA VIP buckets in red, on the bottom left, 1D ¹³ C INEPT numerically folded	
spectrum with their 100 first OPLS-DA VIP buckets in red, on the bottom right, 2D SYMAPS HSQC spectrum with	h
their 100 first OPLS-DA VIP buckets in red	33
Figure SI 13 - Spectral distribution of SYMAPS HSQC buckets. Color code corresponds to bucket density in the	
spectrum range, from low amount (blue), to medium (white) and high (red).	44
Figure SI 14 - Spectral distribution of the first 100 VIP in SYMAPS HSQC. Color code corresponds to bucket	
density in the spectrum range, from low amount (blue), to medium (white) and high (red)	14

Tables

Table SI 1 - OPLS-DA model parameters for the four NMR methods according the tested parameter (mediun	п,
time effects): "Medium" lines are the OPLS-DA results for Control (T1 + T2) samples versus Sponge (T1 + T2)	
Other lines show the effect time on T1 or T2 samples only. "Time" lines are the OPLS-DA results for T1 (Cont	rol +
Sponge) vs T2 (Control + Sponge). For this study, we concentrate only on the results obtained on Medium lin	ies
to compare NMR methods	15
Table SI 2 - 100 first ¹ H VIP buckets from OPLS-DA (Part 1/3)	16
Table SI 3 - 100 first ¹ H VIP buckets from OPLS-DA (Part 2/3)	17
Table SI 4 - 100 first ¹ H VIP buckets from OPLS-DA (Part 3/3)	18
Table SI 5 - 100 first ¹³ C VIP buckets from OPLS-DA (Part 1/3)	19
Table SI 6 - 100 first ¹³ C VIP buckets from OPLS-DA (Part 2/3)	20
Table SI 7 - 100 first ¹³ C VIP buckets from OPLS-DA (Part 3/3)	21
Table SI 8 - 100 first UF COSY VIP buckets from OPLS-DA (Part 1/3)	22
Table SI 9- 100 first UF COSY VIP buckets from OPLS-DA (Part 2/3)	23
Table SI 10 - 100 first UF COSY VIP buckets from OPLS-DA (Part 3/3)	24
Table SI 11 - 100 first SYMAPS HSQC VIP buckets from OPLS-DA (Part 1/3)	25
Table SI 12 - 100 first SYMAPS HSQC buckets from OPLS-DA (Part 2/3)	26
Table SI 13 - 100 first SYMAPS HSQC VIP buckets from OPLS-DA (Part 3/3)	27
Table SI 14 - Global data for all ¹ H NMR buckets	27
Table SI 15 - Global data for all ¹³ C NMR buckets	28

Figure SI 1 - 2D PCA score plots with QC: (A) ¹H; (B) ¹³C; (C) UF COSY; (D) SYMAPS HSQC

Figure SI 2 - NMR data processing workflow

Figure SI 3 - 2D PCA score plots: (A) ¹H; (B) ¹³C; (C) UF COSY; (D) SYMAPS HSQC

Figure SI 4 - ¹H OPLS-DA score plot: medium effect

Figure SI 5 - ¹³C INEPT OPLS-DA score plot: medium effect

Figure SI 6 - UF COSY OPLS-DA score plot: medium effect

Figure SI 7 - SYMAPS HSQC OPLS-DA score plot : medium effect

100 first VIP buckets

15 to 16 ppm	14 to 15 ppm	13 to 14 ppm	12 to 13 ppm	11 to 12 ppm	10 to 11 ppm	9 to 10 ppm	8 to 9 ppm	7 to 8 ppm	6 to 7 ppm	5 to 6 ppm	4 to 5 ppm	3 to 4 ppm	2 to 3 ppm	1 to 2 ppm	0 to 1 ppm
0	0	0	0	2	3	0	0	12	16	26	2	4	3	14	1
All	ouck	ets													
15 to 16 ppm	14 to 15 ppm	13 to 14 ppm	12 to 13 ppm	11 to 12 ppm	10 to 11 ppm	9 to 10 ppm	8 to 9 ppm	7 to 8 ppm	6 to 7 ppm	5 to 6 ppm	4 to 5 ppm	3 to 4 ppm	2 to 3 ppm	1 to 2 ppm	0 to 1 ppm
1	0	0	9	11	33	19	35	99	111	106	91	98	91	106	90
		Min											Max		

Figure SI 8 - Distribution of the 100 first VIPs and all ¹**H buckets:** the upper part reports the 100 first VIP buckets highlighted by OPLS-DA analysis; the lower part reports all ¹H buckets. Color code corresponds to bucket density in the spectrum range, from low amount (blue), to medium (white) and high (red).

100 first VIP buckets

140 to 150 ppm	130 to 140 ppm	120 to 130 ppn	110 to 120 ppr	100 to n 110 ppr	90 to n 100 p	o 80 to pm ppi	90 70 t m pr	o 80 60 om	to 70 opm	50 to 60 ppm	40 to 50 ppm	30 to 40 ppm	20 to 30 ppm	10 to 20 ppm	0 to 10 ppm
6	3	14	23	3	0	0		1	0	4	1	9	28	8	0
All b	ucket	ts													
140 to 150 ppm	130 to 140 ppm	120 to 130 ppm	110 to 120 ppm ⁻	100 to 110 ppm 1	90 to 00 ppm	80 to 90 ppm	70 to 80 ppm	60 to 7 ppm) 50 to ppr	60 40 to n ppn	50 30 to 4	40 20 to 3 ppm	0 10 to 20 ppm	0 to 10 ppm	-10 to 0 ppm
18	19	82	62	7	1	0	3	6	23	3 20	39	83	40	0	5

Figure SI 9 - Distribution of the 100 first VIP and all ¹³**C INEPT buckets:** the upper part reports the 100 first VIP buckets highlighted by OPLS-DA analysis; the lower part reports all ¹³C buckets. Color code corresponds to bucket density in the spectrum range, from low amount (blue), to medium (white) and high (red).

					F2						
	8 to 9 ppm	7 to 8 ppm	6 to 7 ppm	5 to 6 ppm	4 to 5 ppm	3 to 4 ppm	2 to 3 ppm	1 to 2 ppm	0 to 1 ppm		
32	0	0	0	0	0	4	5	14	9	0 to 1 ppm	
138	1	4	6	22	19	16	26	37	7	1 to 2 ppm	
98	0	0	2	7	12	14	35	23	5	2 to 3 ppm	
120	0	3	5	14	24	38	15	19	2	3 to 4 ppm	
145	1	4	3	7	22	25	38	40	5	4 to 5 ppm	F1
220	16	21	24	53	22	27	24	20	13	5 to 6 ppm	
181	3	11	49	46	16	17	8	26	5	6 to 7 ppm	
95	0	31	21	8	9	9	3	12	2	7 to 8 ppm	
22	2	4	3	0	2	0	0	11	0	8 to 9 ppm	
	23	78	113	157	126	150	154	202	48		
	Mir	ı							Max		

Figure SI 10 - Spectral distribution of UF COSY buckets. Color code corresponds to bucket density in the spectrum range, from low amount (blue), to medium (white) and high (red).

					F2						
_	8 to 9 ppm	7 to 8 ppm	6 to 7 ppm	5 to 6 ppm	4 to 5 ppm	3 to 4 ppm	2 to 3 ppm	1 to 2 ppm	0 to 1 ppm		
0	0	0	0	0	0	0	0	0	0	0 to 1 ppm	
15	0	0	0	2	1	0	5	5	2	1 to 2 ppm	
11	0	0	0	2	0	0	5	4	0	2 to 3 ppm	
9	0	0	0	4	0	4	0	1	0	3 to 4 ppm	
6	0	0	0	1	2	0	1	2	0	4 to 5 ppm	F1
27	3	0	5	13	2	0	3	1	0	5 to 6 ppm	
18	0	0	8	9	0	0	0	0	1	6 to 7 ppm	
13	0	11	1	0	0	0	0	1	0	7 to 8 ppm	
1	1	0	0	0	0	0	0	0	0	8 to 9 ppm	
	4	11	14	31	5	4	14	14	3		
	Mir	1	_						Max		

Figure SI 11 - Spectral distribution of the first 100 VIP in UF COSY. Color code corresponds to bucket density in the spectrum range, from low amount (blue), to medium (white) and high (red).

Figure SI 12 - SYMAPS HSQC with ¹**H and numerically folded** ¹³**C INEPT spectra as projections:** on the top, 1D ¹H spectrum with their 100 first OPLS-DA VIP buckets in red, on the bottom left, 1D ¹³C INEPT numerically folded spectrum with their 100 first OPLS-DA VIP buckets in red, on the bottom right, 2D SYMAPS HSQC spectrum with their 100 first OPLS-DA VIP buckets in red.

						F2							
_	10 to 11 ppm	9 to 10 ppm	8 to 9 ppm	7 to 8 ppm	6 to 7 ppm	5 to 6 ppm	4 to 5 ppm	3 to 4 ppm	2 to 3 ppm	1 to 2 ppm	0 to 1 ppm		
13	0	0	0	2	6	4	0	0	0	1	0	0 to 10 ppm	
79	0	0	0	4	19	11	0	0	6	29	10	10 to 20 ppm	
103	0	0	0	11	6	8	0	31	13	28	6	20 to 30 ppm	
75	0	0	0	0	4	2	0	10	7	45	7	30 to 40 ppm	F1
54	0	0	0	1	0	0	1	4	0	43	5	40 to 50 ppm	
56	0	0	0	0	0	1	4	3	0	43	5	50 to 60 ppm	
61	3	0	0	2	0	0	1	1	0	54	0	60 to 70 ppm	
	3	0	0	20	35	26	6	49	26	243	32		
	M	lin									Max	-	

Figure SI 13 - Spectral distribution of SYMAPS HSQC buckets. Color code corresponds to bucket density in the spectrum range, from low amount (blue), to medium (white) and high (red).

	F2													
-	10 to 11 ppm	9 to 10 ppm	8 to 9 ppm	7 to 8 ppm	6 to 7 ppm	5 to 6 ppm	4 to 5 ppm	3 to 4 ppm	2 to 3 ppm	1 to 2 ppm	0 to 1 ppm			
3	0	0	0	0	3	2	0	0	0	0	0	0 to 10 ppm		
26	0	0	0	2	10	8	0	0	3	7	0	10 to 20 ppm		
47	0	0	0	7	1	4	0	3	5	10	2	20 to 30 ppm		
9	0	0	0	0	1	2	0	0	2	9	0	30 to 40 ppm	F1	
6	0	0	0	0	0	0	0	1	0	4	2	40 to 50 ppm		
7	0	0	0	0	0	0	0	0	0	4	2	50 to 60 ppm		
2	1	0	0	0	0	0	0	0	0	5	0	60 to 70 ppm		
	1	0	0	9	15	16	0	4	10	39	6			
	M	lin									Max			

Figure SI 14 - Spectral distribution of the first 100 VIP in SYMAPS HSQC. Color code corresponds to bucket density in the spectrum range, from low amount (blue), to medium (white) and high (red).

Table SI 1 - OPLS-DA model parameters for the four NMR methods according the tested parameter (medium, time effects): "Medium" lines are the OPLS-DA results for Control (T1 + T2) samples versus Sponge (T1 + T2). Other lines show the effect time on T1 or T2 samples only. "Time" lines are the OPLS-DA results for T1 (Control + Sponge) vs T2 (Control + Sponge). For this study, we concentrate only on the results obtained on Medium lines to compare NMR methods.

		OPLS-DA Models Parameters											
-			p1		Permutation								
Analysis technique	Studied factor	R2X	R2Y	Q2	n/2000	Q2	р	n/2000	R2Y	р			
¹H	Medium	0.344	0.842	0.788	0	0.948	<5.10 ⁻⁴	0	0.981	<5.10 ⁻⁴			
¹ H	Medium at T1	0.534	0.84	0.803	4	0.897	0.002	4	0.989	0.002			
¹ H	Medium at T2	0.533	0.973	0.936	47	0.984	0.0235	47	0.998	0.0235			
¹ H	Time	0.192	0.838	0.74	0	0.954	<5.10-4	0	0.983	<5.10-4			
¹ H	Time on Ctrl	0.583	0.91	0.877	10	0.958	0.005	10	0.995	0.005			
¹ H	Time on Sponge	0.339	0.98	0.885	6	0.964	0.003	6	0.991	0.003			
UF COSY	Medium	0.226	0.832	0.752	0	0.898	< 5.10 ⁻⁴	0	0.988	<5.10 ⁻⁴			
UF COSY	Medium at T1	0.33	0.926	0.835	2	0.877	0.001	2	0.977	0.001			
UF COSY	Medium at T2	0.349	0.898	0.783	60	0.874	0.03	60	0.997	0.03			
UF COSY	Time	0.147	0.844	0.722	0	0.909	<5.10-4	0	0.984	< 5.10 ⁻⁴			
UF COSY	Time on Ctrl	0.278	0.947	0.812	8	0.854	0.004	13	0.99	0.0065			
UF COSY	Time on Sponge	0.247	0.968	0.773	6	0.831	0.003	32	0.995	0.016			
¹³ C	Medium	0.236	0.757	0.644	0	0.877	<5.10-4	12	0.991	0.006			
¹³ C	Medium at T1	0.357	0.76	0.676	7	0.802	0.0035	133	0.997	0.0665			
¹³ C	Medium at T2	0.355	0.93	0.854	61	0.957	0.0305	61	1	0.0305			
¹³ C	Time	0.308	0.989	0.885	1	0.954	<5.10-4	1	0.989	<5.10 ⁻⁴			
¹³ C	Time on Ctrl	0.551	0.895	0.834	9	0.938	0.0045	9	0.998	0.0045			
¹³ C	Time on Sponge	0.369	0.872	0.797	6	0.951	0.003	6	0.995	0.003			
SYMAPS HSQC	Medium	0.391	0.717	0.644	0	0.911	<5.10 ⁻⁴	0	0.983	<5.10-4			
SYMAPS HSQC	Medium at T1	0.6	0.871	0.839	7	0.885	0.0035	10	0.949	0.005			
SYMAPS HSQC	Medium at T2	0.53	0.834	0.755	53	0.942	0.0265	53	0.998	0.0265			
SYMAPS HSQC	Time	0.225	0.582	0.5	0	0.962	<5.10 ⁻⁴	0	0.995	<5.10 ⁻⁴			
SYMAPS HSQC	Time on Ctrl	0.551	0.895	0.834	13	0.938	0.0065	13	0.998	0.0065			
SYMAPS HSQC	Time on Sponge	0.369	0.872	0.797	4	0.967	0.002	4	0.992	0.002			

¹ H VIP Ranking	Bucket	V1	V2	Center [ppm]	Min [ppm]	Max [ppm]	Potential correspondence in F1 in UF COSY	Potential correspondence in F2 in UF COSY	Potential correspondence in F2 in HSQC
1	B7_2997	1.651	0.239	7.300	7.293	7.306	Yes	Yes	Yes
2	B12_1959	1.626	0.182	12.196	12.187	12.205	No	No	No
3	B7_4380	1.611	0.439	7.438	7.431	7.445	Yes	Yes	Yes
4	B5_1073	1.593	0.467	5.107	5.103	5.112	Yes	Yes	Yes
5	B6_0605	1.592	0.467	6.060	6.058	6.063	Yes	Yes	Yes
6	B6_3701	1.591	0.391	6.370	6.368	6.372	No	Yes	No
7	B7_1593	1.587	0.497	7.159	7.154	7.165	Yes	Yes	Yes
8	B6_9771	1.585	0.479	6.977	6.973	6.981	Yes	Yes	No
9	B4_3958	1.579	0.377	4.396	4.393	4.399	No	No	No
10	B3_2907	1.577	0.506	3.291	3.279	3.302	Yes	Yes	Yes
11	B7_5404	1.572	0.352	7.540	7.536	7.545	No	No	No
12	B7_8954	1.569	0.406	7.895	7.889	7.902	No	No	No
13	B6_4305	1.566	0.438	6.430	6.429	6.432	No	Yes	No
14	B5_2933	1.561	0.522	5.293	5.285	5.301	Yes	Yes	Yes
15	B6_6041	1.559	0.419	6.604	6.602	6.606	Yes	Yes	Yes
16	B5_0751	1.559	0.515	5.075	5.071	5.079	Yes	Yes	Yes
17	B6_0410	1.557	0.556	6.041	6.034	6.048	Yes	Yes	Yes
18	B10_0666	1.555	0.526	10.067	10.058	10.075	No	No	Yes
19	B6_8944	1.554	0.450	6.894	6.889	6.900	No	Yes	No
20	B7_1698	1.553	0.560	7.170	7.165	7.175	Yes	Yes	Yes
21	B3_4237	1.551	0.537	3.424	3.414	3.433	Yes	Yes	No
22	B5_0607	1.551	0.512	5.061	5.050	5.071	Yes	Yes	Yes
23	B7_5636	1.550	0.046	7.564	7.559	7.569	No	No	No
24	B5_9981	1.546	0.488	5.998	5.995	6.001	Yes	Yes	Yes
25	B7_7377	1.540	0.406	7.738	7.736	7.739	No	No	No
26	B5_3480	1.538	0.587	5.348	5.342	5.354	Yes	Yes	No
27	B2_5900	1.537	0.446	2.590	2.584	2.596	No	Yes	No
28	B6_0304	1.535	0.550	6.030	6.027	6.034	Yes	Yes	Yes
29	B5_0959	1.535	0.593	5.096	5.089	5.103	Yes	Yes	Yes
30	B5_1211	1.532	0.595	5.121	5.115	5.127	Yes	Yes	Yes
31	B7_1798	1.529	0.609	7.180	7.175	7.185	Yes	Yes	Yes
32	B5_0812	1.528	0.449	5.081	5.079	5.083	Yes	Yes	Yes
33	B7_2179	1.528	0.510	7.218	7.216	7.220	Yes	Yes	No
34	B6_0852	1.526	0.592	6.085	6.082	6.088	Yes	Yes	Yes
35	B5_5211	1.525	0.562	5.521	5.511	5.531	Yes	Yes	Yes
36	B5_5333	1.524	0.529	5.533	5.531	5.535	Yes	Yes	Yes
37	B6_0683	1.519	0.621	6.068	6.063	6.073	Yes	Yes	Yes
38	B5_5422	1.519	0.596	5.542	5.540	5.545	Yes	Yes	Yes
39	B6_0061	1.517	0.605	6.006	6.001	6.011	Yes	Yes	Yes

Table SI 2 - 100 first ¹H VIP buckets from OPLS-DA (Part 1/3)

40	B1_5327	1.515	0.596	1.533	1.527	1.538	Yes	Yes	Yes
41	B7_7332	1.515	0.548	7.733	7.730	7.736	No	No	No
42	B7_7459	1.513	0.596	7.746	7.743	7.748	No	No	No
				a 400 f	. 1	.		/ .)	

Table SI 3 - 100 first ¹H VIP buckets from OPLS-DA (Part 2/3)

¹ H VIP Ranking	Bucket	V1	V2	Center	Min [ppm]	Max [ppm]	Potential correspondence	Potential correspondence	Potential correspondence in
				[pp]	[[[[[[pp]	in F1 in UF COSY	in F2 in UF COSY	F2 in HSQC
43	B6_8274	1.512	0.466	6.827	6.822	6.833	No	Yes	Yes
44	B6_5057	1.511	0.439	6.506	6.504	6.507	Yes	Yes	No
45	B2_4699	1.505	0.626	2.470	2.459	2.481	Yes	Yes	Yes
46	B5_2790	1.501	0.607	5.279	5.273	5.285	Yes	Yes	Yes
47	B1_3410	1.500	0.642	1.341	1.338	1.344	Yes	Yes	Yes
48	B1_3349	1.500	0.635	1.335	1.332	1.338	Yes	Yes	Yes
49	B7_1063	1.499	0.651	7.106	7.101	7.112	No	Yes	Yes
50	B5_1325	1.499	0.643	5.132	5.127	5.138	Yes	Yes	Yes
51	B5_5699	1.499	0.631	5.570	5.564	5.576	Yes	Yes	No
52	B5_3620	1.498	0.642	5.362	5.354	5.370	Yes	Yes	No
53	B5_5806	1.497	0.629	5.581	5.576	5.586	Yes	Yes	No
54	B-0_3424	1.495	0.552	-0.342	-0.346	-0.339	No	No	No
55	B7_0661	1.491	0.608	7.066	7.061	7.072	No	Yes	No
56	B5_4040	1.490	0.664	5.404	5.398	5.410	Yes	Yes	No
57	B7_4522	1.487	0.648	7.452	7.445	7.459	Yes	Yes	Yes
58	B5_2158	1.486	0.668	5.216	5.213	5.219	Yes	Yes	No
59	B10_0452	1.486	0.642	10.045	10.039	10.051	No	No	Yes
60	B5_5595	1.485	0.611	5.560	5.555	5.564	Yes	Yes	No
61	B1_7432	1.485	0.662	1.743	1.727	1.759	Yes	Yes	Yes
62	B10_1628	1.481	0.634	10.163	10.136	10.189	No	No	No
63	B5_5498	1.479	0.624	5.550	5.545	5.555	Yes	Yes	Yes
64	B7_4231	1.477	0.689	7.423	7.415	7.431	Yes	Yes	No
65	B1_5253	1.471	0.673	1.525	1.523	1.527	Yes	Yes	Yes
66	B7_8832	1.471	0.433	7.883	7.878	7.889	No	No	No
67	B1_6921	1.470	0.663	1.692	1.685	1.700	Yes	Yes	Yes
68	B2_9812	1.469	0.673	2.981	2.975	2.987	Yes	Yes	Yes
69	B5_0862	1.468	0.670	5.086	5.083	5.089	Yes	Yes	Yes
70	B6_0546	1.468	0.703	6.055	6.051	6.058	Yes	Yes	Yes
71	B1_3268	1.467	0.677	1.327	1.322	1.332	Yes	Yes	Yes
72	B6_8366	1.465	0.485	6.837	6.833	6.840	No	No	Yes
73	B6_0793	1.461	0.698	6.079	6.076	6.082	Yes	Yes	Yes
74	B6_9982	1.460	0.667	6.998	6.989	7.008	Yes	Yes	No
75	B2_9691	1.459	0.677	2.969	2.963	2.975	Yes	Yes	Yes
76	B-0_3297	1.459	0.531	-0.330	-0.339	-0.320	No	No	No
77	B5_7574	1.458	0.674	5.757	5.752	5.762	Yes	Yes	Yes
78	B3_4054	1.456	0.663	3.405	3.397	3.414	Yes	Yes	No
79	B4_2482	1.455	0.696	4.248	4.243	4.254	Yes	Yes	No
80	B6_8452	1.455	0.523	6.845	6.840	6.850	No	No	Yes
81	B5_5068	1.454	0.646	5.507	5.503	5.511	Yes	Yes	No

82	B1_4388	1.453	0.703	1.439	1.435	1.442	Yes	Yes	Yes
83	B11_8978	1.453	0.391	11.898	11.886	11.909	No	No	No
84	B11_9453	1.453	0.398	11.945	11.935	11.955	No	No	No

Table SI 4 - 100 first ¹H VIP buckets from OPLS-DA (Part 3/3)

¹ H VIP Ranking	Bucket	V1	V2	Center [ppm]	Min [ppm]	Max [ppm]	Potential correspondence in F1 in UF COSY	Potential correspondence in F2 in UF COSY	Potential correspondence in F2 in HSQC
85	B5_5376	1.452	0.619	5.538	5.535	5.540	Yes	Yes	Yes
86	B0_6249	1.452	0.677	0.625	0.614	0.636	No	No	No
87	B5_3913	1.451	0.727	5.391	5.385	5.398	Yes	Yes	No
88	B6_6852	1.451	0.595	6.685	6.682	6.689	Yes	Yes	Yes
89	B1_6594	1.450	0.670	1.659	1.653	1.666	Yes	Yes	Yes
90	B1_3470	1.448	0.716	1.347	1.344	1.350	Yes	Yes	Yes
91	B3_8614	1.448	0.617	3.861	3.857	3.865	No	Yes	No
92	B1_7036	1.447	0.722	1.704	1.700	1.708	Yes	Yes	Yes
93	B1_2969	1.445	0.711	1.297	1.292	1.302	No	Yes	Yes
94	B1_6109	1.445	0.734	1.611	1.605	1.617	No	Yes	Yes
95	B7_1467	1.443	0.724	7.147	7.140	7.154	Yes	Yes	No
96	B6_8849	1.443	0.640	6.885	6.881	6.889	No	No	No
97	B5_5910	1.442	0.709	5.591	5.586	5.596	Yes	Yes	No
98	B4_7440	1.441	0.650	4.744	4.740	4.748	No	No	No
99	B1_2871	1.439	0.722	1.287	1.282	1.292	No	Yes	Yes
100	B5_4208	1.439	0.737	5.421	5.417	5.425	Yes	Yes	No

¹³ C VIP Ranking	Bucket	V1	V2	Center [ppm]	Min [ppm]	Max [ppm]	Potential Correspondence in F1
1	B113_7829	1.821	0.568	113.783	113.748	113.818	Yes
2	B119_9937	1.806	0.654	119.994	119.962	120.026	Yes
3	B143_7794	1.804	0.672	143.779	143.757	143.801	Yes
4	B107_8090	1.795	0.614	107.809	107.782	107.836	Yes
5	B111_5956	1.792	0.585	111.596	111.572	111.620	Yes
6	B28_9028	1.789	0.547	28.903	28.877	28.929	Yes
7	B129_6858	1.763	0.637	129.686	129.670	129.701	Yes
8	B117_8638	1.762	0.717	117.864	117.825	117.903	Yes
9	B111_1731	1.761	0.715	111.173	111.144	111.203	Yes
10	B28_8019	1.749	0.674	28.802	28.782	28.822	Yes
11	B129_8164	1.746	0.642	129.816	129.789	129.844	Yes
12	B118_1131	1.741	0.419	118.113	118.090	118.136	Yes
13	B113_7300	1.723	0.279	113.730	113.712	113.748	Yes
14	B143_8644	1.710	0.734	143.864	143.854	143.875	Yes
15	B27_5577	1.704	0.603	27.558	27.541	27.575	Yes
16	B117_9304	1.699	0.754	117.930	117.903	117.958	Yes
17	B20_3724	1.699	0.608	20.372	20.356	20.389	Yes
18	B101_6241	1.698	0.681	101.624	101.576	101.672	Yes
19	B113_6743	1.697	0.583	113.674	113.637	113.712	Yes
20	B13_2898	1.692	0.750	13.290	13.246	13.334	Yes
21	B26_6971	1.681	0.781	26.697	26.679	26.716	Yes
22	B28_8418	1.672	0.740	28.842	28.822	28.862	Yes
23	B36_5855	1.671	0.661	36.585	36.567	36.604	Yes
24	B112_7543	1.667	0.772	112.754	112.686	112.823	Yes
25	B33_5858	1.665	0.829	33.586	33.562	33.609	Yes
26	B70_5963	1.662	0.685	70.596	70.578	70.614	No
27	B111_6413	1.657	0.823	111.641	111.620	111.663	Yes
28	B32_9499	1.650	0.820	32.950	32.893	33.007	Yes
29	B28_5689	1.640	0.766	28.569	28.540	28.598	Yes
30	B113_4295	1.638	0.356	113.430	113.395	113.464	Yes
31	B30_8279	1.635	0.857	30.828	30.783	30.872	Yes
32	B31_2518	1.628	0.813	31.252	31.195	31.309	Yes
33	B123_2084	1.625	0.805	123.208	123.173	123.244	Yes
34	B19_2220	1.623	0.617	19.222	19.206	19.239	Yes
35	B26_6268	1.622	0.805	26.627	26.608	26.646	Yes
36	B34_1764	1.605	0.843	34.176	34.122	34.231	Yes
37	B26_7396	1.605	0.823	26.740	26.716	26.763	Yes
38	B28_6188	1.584	0.860	28.619	28.598	28.639	Yes
39	B129_3957	1.583	0.885	129.396	129.353	129.438	Yes
40	B113_8888	1.583	0.633	113.889	113.860	113.917	Yes
41	B120_8366	1.582	0.878	120.837	120.803	120.870	Yes
42	B136_6586	1.581	0.863	136.659	136.601	136.717	Yes

Table SI 5 - 100 first ¹³C VIP buckets from OPLS-DA (Part 1/3)

¹³ C VIP Ranking	Bucket	V1	V2	Center [ppm]	Min [ppm]	Max [ppm]	Potential Correspondence in F1
43	B141_0771	1.572	0.905	141.077	141.021	141.134	Yes
44	B18_0579	1.566	0.707	18.058	18.017	18.099	Yes
45	B28_4757	1.566	0.888	28.476	28.461	28.490	Yes
46	B126_9110	1.566	0.825	126.911	126.863	126.959	No
47	B120_1204	1.562	0.899	120.120	120.088	120.152	Yes
48	B13_1803	1.561	0.909	13.180	13.155	13.206	No
49	B119_7879	1.561	0.867	119.788	119.730	119.846	Yes
50	B118_1616	1.560	0.588	118.162	118.136	118.187	Yes
51	B59_6992	1.559	0.289	59.699	59.677	59.721	Yes
52	B124_3739	1.555	0.891	124.374	124.324	124.424	No
53	B28_2444	1.552	0.914	28.244	28.208	28.280	Yes
54	B28_9483	1.550	0.804	28.948	28.929	28.968	Yes
55	B19_3796	1.527	0.715	19.380	19.354	19.405	Yes
56	B21_9970	1.526	0.889	21.997	21.967	22.027	Yes
57	B21_7945	1.525	0.928	21.794	21.758	21.831	Yes
58	B145_1500	1.522	0.520	145.150	145.109	145.191	No
59	B110_3815	1.522	0.878	110.381	110.352	110.411	Yes
60	B125_2562	1.519	0.781	125.256	125.231	125.282	Yes
61	B113_9521	1.510	0.756	113.952	113.917	113.987	Yes
62	B28_6892	1.509	0.857	28.689	28.658	28.721	Yes
63	B24_8313	1.508	0.920	24.831	24.808	24.855	Yes
64	B111_5450	1.505	0.965	111.545	111.518	111.572	Yes
65	B12_8547	1.491	0.926	12.855	12.809	12.901	No
66	B130_7097	1.489	0.888	130.710	130.674	130.746	Yes
67	B143_8842	1.488	0.974	143.884	143.875	143.894	Yes
68	B111_0725	1.479	0.958	111.073	111.043	111.102	Yes
69	B121_0437	1.472	0.930	121.044	120.999	121.088	Yes
70	B111_1227	1.470	0.786	111.123	111.102	111.144	Yes
71	B113_3233	1.467	0.737	113.323	113.291	113.355	Yes
72	B50_7373	1.466	0.947	50.737	50.675	50.799	Yes
73	B33_4582	1.464	0.991	33.458	33.432	33.485	Yes
74	B44_4838	1.457	0.263	44.484	44.467	44.501	No
75	B33_7496	1.456	0.968	33.750	33.719	33.780	Yes
76	B101_5378	1.446	0.600	101.538	101.500	101.576	Yes
77	B26_4658	1.446	0.869	26.466	26.455	26.477	Yes
78	B22_0804	1.440	0.735	22.080	22.056	22.105	Yes
79	B29_0139	1.435	1.001	29.014	28.968	29.060	Yes
80	B119_8680	1.429	0.687	119.868	119.846	119.890	Yes
81	B130_7794	1.426	0.956	130.779	130.746	130.813	Yes
82	B124_4408	1.424	1.018	124.441	124.424	124.458	No
83	B19_6859	1.421	0.998	19.686	19.622	19.750	Yes
84	B17_1152	1.420	0.957	17.115	17.085	17.146	Yes

Table SI 6 - 100 first ¹³C VIP buckets from OPLS-DA (Part 2/3)

¹³ C VIP Ranking	Bucket	V1	V2	Center [ppm]	Min [ppm]	Max [ppm]	Potential Correspondence in F1
85	B21_6387	1.418	1.023	21.639	21.613	21.665	Yes
86	B143_8394	1.415	0.959	143.839	143.825	143.854	Yes
87	B28_6485	1.413	0.969	28.649	28.639	28.658	Yes
88	B120_7122	1.399	1.012	120.712	120.679	120.745	Yes
89	B121_1191	1.388	0.946	121.119	121.088	121.150	Yes
90	B29_0763	1.371	1.042	29.076	29.060	29.093	Yes
91	B114_8669	1.370	0.623	114.867	114.833	114.900	Yes
92	B58_1908	1.366	0.444	58.191	58.171	58.211	Yes
93	B26_6623	1.348	1.046	26.662	26.646	26.679	Yes
94	B125_2064	1.334	0.663	125.206	125.182	125.231	Yes
95	B27_2848	1.326	0.961	27.285	27.249	27.321	Yes
96	B38_7969	1.322	0.618	38.797	38.751	38.843	Yes
97	B26_5584	1.316	1.088	26.558	26.521	26.596	Yes
98	B55_6512	1.312	0.886	55.651	55.628	55.674	No
99	B26_4991	1.304	1.060	26.499	26.477	26.521	Yes
100	B29_2522	1.290	1.001	29.252	29.196	29.308	Yes

Table SI 7 - 100 first ¹³C VIP buckets from OPLS-DA (Part 3/3)

Table SI 8 - 100 first UF COSY VIP buckets from OPLS-DA (Part 1/3)

UF COSY				Center	Start ¹ H	End ¹ H	Center	Start ¹ H	End ¹ H	Potential	Potential
VIP	Nom	V1	V2	F1	F1	F1	F2	F2	F2	correspondence	correspondence
Ranking				[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	in F1	in F2
1	B_1013	2.022	0.448	7.447	7.455	7.434	7.456	7.541	7.370	Yes	Yes
2	B_0998	1.987	0.550	7.145	7.184	7.114	7.434	7.526	7.334	Yes	Yes
3	B_1007	1.960	0.580	7.437	7.477	7.400	7.176	7.266	7.093	Yes	Yes
4	B_0016	1.944	0.728	1.338	1.368	1.307	1.335	1.405	1.261	Yes	Yes
5	B_1004	1.940	0.609	7.279	7.302	7.256	7.084	7.148	7.028	Yes	Yes
6	B_0461	1.934	0.666	5.061	5.095	5.035	5.088	5.176	4.996	Yes	Yes
7	B_0981	1.933	0.658	7.016	7.035	6.999	7.014	7.119	6.902	Yes	Yes
8	B_0627	1.919	0.700	1.705	1.733	1.675	5.644	5.793	5.493	Yes	Yes
9	B_0469	1.918	0.788	5.764	5.810	5.715	6.625	6.804	6.439	Yes	Yes
10	B_1003	1.899	0.738	7.224	7.249	7.201	7.084	7.151	7.014	Yes	Yes
11	B_0542	1.897	0.690	6.071	6.087	6.052	6.086	6.172	6.002	Yes	Yes
12	B_0468	1.894	0.848	5.561	5.609	5.514	5.973	6.126	5.818	Yes	Yes
13	B_0486	1.891	0.422	5.779	5.793	5.760	6.372	6.425	6.323	Yes	Yes
14	B_0526	1.888	0.780	6.051	6.065	6.037	5.132	5.261	4.993	Yes	Yes
15	B_0956	1.885	0.671	6.591	6.602	6.572	6.367	6.443	6.291	Yes	Yes
16	B_0224	1.883	0.398	1.081	1.107	1.054	2.532	2.617	2.448	No	Yes
17	B_0454	1.872	0.795	5.521	5.547	5.496	5.536	5.671	5.396	Yes	Yes
18	B_0148	1.872	0.917	3.383	3.445	3.323	5.358	5.490	5.218	Yes	Yes
19	B_0459	1.863	0.847	5.259	5.313	5.206	5.304	5.415	5.189	Yes	Yes
20	B_0214	1.856	0.867	1.556	1.589	1.529	4.269	4.377	4.152	Yes	Yes
21	B_0127	1.855	0.662	2.284	2.313	2.259	2.090	2.163	2.022	No	No
22	B_0980	1.854	0.868	6.967	6.992	6.938	6.992	7.104	6.880	Yes	Yes
23	B_0473	1.854	0.943	5.140	5.197	5.079	6.108	6.228	5.986	Yes	Yes
24	B_0477	1.853	0.816	5.086	5.099	5.073	5.822	5.871	5.773	Yes	No
25	B_0633	1.853	0.384	2.284	2.320	2.252	5.968	6.024	5.912	No	Yes
26	B_0223	1.851	0.352	1.150	1.166	1.127	2.575	2.667	2.485	No	Yes
27	B_0147	1.847	0.934	3.249	3.319	3.184	5.283	5.424	5.140	Yes	Yes
28	B_0962	1.847	0.919	6.556	6.601	6.503	5.768	5.894	5.643	Yes	Yes
29	B_0463	1.846	0.728	5.091	5.118	5.065	5.369	5.452	5.284	Yes	Yes
30	B_0502	1.844	0.965	5.987	6.017	5.956	5.558	5.658	5.465	Yes	Yes
31	B_1006	1.842	0.599	7.284	7.302	7.267	7.176	7.211	7.149	Yes	Yes
32	B_0991	1.839	0.725	7.180	7.201	7.156	6.976	7.046	6.901	Yes	Yes
33	B_0033	1.836	0.892	2.289	2.317	2.258	1.496	1.572	1.429	No	Yes
34	B_0263	1.833	0.967	4.249	4.294	4.200	1.540	1.636	1.446	Yes	Yes
35	B_0593	1.833	0.983	4.244	4.288	4.198	4.258	4.344	4.175	Yes	Yes
36	B_0226	1.825	0.387	1.046	1.082	1.008	2.235	2.324	2.154	No	No
37	B_0017	1.825	0.935	1.338	1.370	1.307	0.898	1.009	0.789	Yes	No
38	B_0023	1.812	1.001	1.437	1.478	1.398	0.909	0.989	0.838	Yes	No
39	B_0082	1.810	0.958	2.314	2.360	2.266	2.947	3.035	2.865	No	Yes
40	B_0476	1.802	0.676	5.130	5.145	5.109	5.800	5.841	5.763	Yes	No
41	B_1023	1.801	0.747	8.244	8.261	8.225	8.233	8.292	8.172	No	No
42	B_0549	1.800	0.945	6.284	6.306	6.255	5.854	5.972	5.743	No	Yes

Table SI 9- 100 first UF COSY VIP buckets from OPLS-DA (Part 2/3)

UF COSY				Cente	Start	End ¹ H	Center	Start	End ¹ H	Potential	Potential
Ranking	NOM	VI	٧Z	[ppm]	[DDW]	[nnm]	F2 [ppm]	FH FZ	F2 [ppm]	in F1	in F2
43	B 0081	1 799	0 979	2 962	3 002	2 925	2 305	2 400	2 210	Ves	No
43	B 0528	1 796	0.760	5 987	5 992	5 979	5 110	5 225	4 996	No	Ves
45	B 0458	1 792	1 022	5 378	5 435	5 316	5 385	5 497	5 281	Ves	Ves
46	B 0442	1 790	0.782	5 650	5.433	5 630	5 094	5.437	5.042	No	Ves
40	B 0026	1 786	0.990	1 734	1 758	1 713	1 723	1 861	1 588	Ves	Ves
48	B 0781	1 785	0.975	5 784	5 808	5 762	2 300	2 396	2 199	Voc	No
40	B 0103	1 784	0.854	2 962	3 001	2 927	2.500	2.550	2.100	Ves	Ves
50	B 0748	1 784	0.486	7 289	7 311	7 271	1 049	1 122	0 974	Ves	No
51	B 0965	1 779	0 479	6 5 9 6	6 6 1 9	6 573	6 620	6 731	6 504	Ves	Ves
52	B 0783	1 777	0 572	5 804	5 826	5 788	2 090	2 180	1 997	No	No
53	B 0585	1 776	0.823	4 536	4 641	4 4 2 9	4 549	4 679	4 413	No	No
54	B 0957	1 770	1 047	6 680	6 721	6 637	6 340	6 482	6 197	No	Ves
55	B 0028	1 768	0.994	1 452	1 507	1 395	2 095	2 182	2 012	Ves	No
56	B 0699	1 768	0.722	6 957	6.985	6.937	0.725	0.804	0.652	Voc	Voc
57	B 0241	1 768	1 016	3 259	3 309	3 208	1 718	1 839	1 599	Voc	Voc
58	B 0175	1 765	0.671	3 2 7 9	3 296	3 255	3 783	3 862	3 701	Ves	Ves
59	B 0630	1 764	0 747	1 700	1 748	1 654	5 299	5.002	5 181	Ves	Ves
60	B 0771	1 764	1 018	5 269	5 310	5 224	1 718	1 833	1 595	Ves	Ves
61	B 0472	1 757	0 709	5 794	5 815	5 770	5 962	6.022	5 900	No	Ves
62	B 0894	1 753	0 588	5 650	5.623	5 627	8 346	8 415	8 277	No	No
63	B 0539	1 750	0 726	6.036	6 050	6.020	5 833	5 900	5 763	Ves	No
64	B 0516	1.748	0.738	6.041	6.052	6.028	5.385	5.468	5.298	Ves	Ves
65	B 0029	1.746	1.000	1.482	1.529	1.442	2.305	2.392	2.209	Ves	No
66	B 0138	1.745	0.641	2.531	2.564	2.498	1.076	1.141	1.009	No	No
67	B 1005	1.744	0.731	7.294	7.332	7.264	7.332	7.441	7.218	Yes	Yes
68	B 0200	1.735	0.956	3.279	3.303	3.256	3.271	3.392	3.149	Yes	Yes
69	 B 0128	1.734	0.841	2.121	2.148	2.093	1.928	1.986	1.872	No	No
70	_ B 0481	1.733	0.495	5.051	5.072	5.033	6.038	6.133	5.946	Yes	Yes
71	_ B 0151	1.730	0.918	3.596	3.612	3.574	5.407	5.474	5.346	No	Yes
72	B 0525	1.728	1.137	6.091	6.112	6.068	5.148	5.261	5.029	Yes	Yes
73	B_0538	1.727	0.447	6.036	6.046	6.017	6.021	6.126	5.917	Yes	Yes
74	B_0953	1.727	0.924	6.333	6.352	6.318	6.162	6.229	6.097	No	No
75	B_0201	1.725	0.526	3.323	3.342	3.306	3.325	3.463	3.182	No	Yes
76	B_0555	1.721	0.757	6.393	6.411	6.378	6.307	6.343	6.267	No	No
77	B_0598	1.720	1.062	4.620	4.641	4.598	5.461	5.540	5.383	No	Yes
78	B_0004	1.720	1.150	1.502	1.560	1.447	1.523	1.658	1.389	Yes	Yes
79	B_0084	1.719	0.712	2.477	2.501	2.454	2.467	2.559	2.378	Yes	Yes
80	B_0518	1.716	1.005	6.140	6.156	6.117	5.412	5.510	5.311	No	Yes
81	B_0443	1.709	0.767	5.650	5.677	5.630	4.975	5.035	4.908	No	No
82	B_0487	1.703	1.099	5.843	5.884	5.802	6.307	6.408	6.208	No	Yes
83	B_0898	1.701	0.794	5.873	5.918	5.823	8.556	8.624	8.490	No	No
84	B_0434	1.697	1.071	5.432	5.458	5.409	4.630	4.727	4.534	Yes	No

UF COSY VIP Ranking	Nom	V1	V2	Center F1 [ppm]	Start ¹ H F1 [ppm]	End ¹ H F1 [ppm]	Center F2 [ppm]	Start ¹ H F2 [ppm]	End ¹ H F2 [ppm]	Potential correspondence in F1	Potential correspondence in F2
85	B_0268	1.691	0.632	4.422	4.444	4.400	2.063	2.127	1.995	Yes	No
86	B_0203	1.691	0.641	3.427	3.443	3.404	3.406	3.507	3.306	Yes	Yes
87	B_0503	1.688	0.849	6.036	6.050	6.019	5.558	5.622	5.488	Yes	Yes
88	B_0635	1.687	0.901	2.304	2.328	2.280	5.601	5.689	5.512	No	Yes
89	B_0982	1.687	0.422	7.036	7.049	7.026	7.165	7.197	7.129	No	Yes
90	B_0895	1.685	0.816	5.705	5.722	5.681	8.394	8.444	8.338	No	No
91	B_1002	1.682	1.136	7.234	7.262	7.212	7.257	7.357	7.156	Yes	Yes
92	B_0500	1.682	0.974	5.888	5.916	5.859	5.887	5.943	5.828	No	No
93	B_0043	1.681	0.809	1.507	1.537	1.475	1.324	1.368	1.279	Yes	Yes
94	B_0269	1.680	0.982	4.229	4.261	4.200	1.189	1.240	1.136	Yes	No
95	B_0035	1.679	1.163	2.116	2.147	2.081	1.448	1.518	1.372	No	Yes
96	B_0784	1.678	1.038	5.853	5.874	5.829	2.117	2.238	2.002	No	No
97	B_0018	1.677	1.004	1.338	1.356	1.316	1.486	1.533	1.437	Yes	Yes
98	B_1019	1.676	0.472	7.482	7.498	7.466	7.364	7.386	7.348	No	No
99	B_0149	1.676	1.231	3.536	3.568	3.504	5.401	5.546	5.257	No	Yes
100	B_0546	1.671	0.939	6.091	6.114	6.074	5.881	5.923	5.835	Yes	No

Table SI 10 - 100 first UF COSY VIP buckets from OPLS-DA (Part 3/3)

Table SI 11 - 100 first SYMAPS HSQC VIP buckets from OPLS-DA (Part 1/3)

HSQC	Buchest			Center	Start	End	Center	Start	End ¹ H	Potential	Potential
VIP	вискет	VI	V2	F1 [nnm]	¹³ CF1		F2 [nnm]	-HFZ	FZ [nnm]	in ¹³ C folded	correspondence in ¹ H
1	B338	1 5 2 7	0 355	19 360	19 762	18 978	6 605	6 607	6 601	Ves	Ves
2	B352	1.527	0.333	25 928	26.622	25 282	7 301	7 307	7 294	Ves	Ves
3	B332 B411	1 488	0.424	21 708	20.022	21 215	7.301	7 285	7.254	Yes	Yes
4	B355	1.400	0.423	18 504	18 978	17 998	7 161	7.168	7.154	Ves	Ves
5	B290	1 / 81	0.414	38 111	38 737	37 520	5.073	5 092	5.055	Ves	Ves
6	B290	1.401	0.432	38 111	38 694	37.520	5 5 3 1	5 551	5 511	Ves	Ves
7	B353	1 475	0.398	25 864	26 524	25 217	7 287	7 293	7 282	Yes	Yes
8	B413	1 469	0.361	21 772	22 300	21 281	7 185	7 190	7.179	Yes	Yes
9	B35	1 458	0.434	19 202	19 885	18 517	2 472	2 495	2 448	Yes	Yes
10	B327	1 458	0 598	8 541	9 4 4 0	7 611	6 326	6 339	6 313	Yes	No
11	B20	1 454	0.622	33 130	34 352	31 932	2 304	2 362	2 246	Yes	No
12	B3	1.454	0.571	16.759	17.844	15.684	1.679	1.731	1.628	Yes	Yes
13	B326	1.454	0.568	9.715	10.387	9.015	6.263	6.276	6.250	Yes	No
14	B350	1.453	0.443	29.259	29.921	28.647	7.245	7.253	7.237	Yes	No
15	B65	1.453	0.528	16.790	17.709	15.846	1.598	1.619	1.576	Yes	Yes
16	B313	1.447	0.520	8.858	9.375	8.297	6.001	6.008	5.994	Yes	Yes
17	B314	1.446	0.601	8.890	9.407	8.362	5.979	5.988	5.970	Yes	No
18	B357	1.444	0.603	28.561	29.137	27.961	7.440	7.456	7.424	Yes	Yes
19	B296	1.440	0.551	28.022	28.774	27.319	5.129	5.135	5.123	Yes	Yes
20	B200	1.438	0.302	36.525	37.157	35.923	1.353	1.360	1.346	Yes	Yes
21	B312	1.437	0.557	13.840	14.503	13.196	6.019	6.031	6.008	Yes	Yes
22	B21	1.430	0.633	34.050	34.668	33.458	2.120	2.136	2.105	Yes	No
23	B6	1.426	0.603	19.075	19.745	18.415	1.752	1.823	1.681	Yes	Yes
24	B117	1.425	0.594	34.685	35.088	34.243	1.475	1.484	1.465	No	No
25	B421	1.424	0.201	53.118	53.881	52.340	0.831	0.836	0.826	No	No
26	B331	1.421	0.636	19.424	20.121	18.717	6.685	6.696	6.674	Yes	Yes
27	B337	1.421	0.631	19.424	19.860	18.978	6.590	6.595	6.583	Yes	Yes
28	B138	1.417	0.565	50.929	51.543	50.297	1.690	1.698	1.683	Yes	Yes
29	B142	1.417	0.651	57.750	58.960	56.529	1.752	1.770	1.733	Yes	Yes
30	B339	1.413	0.588	31.893	32.501	31.260	6.606	6.616	6.596	Yes	Yes
31	B38	1.412	0.705	24.659	25.567	23.725	2.070	2.106	2.033	Yes	No
32	B51	1.407	0.688	16.886	17.628	16.143	1.947	1.971	1.922	Yes	No
33	B214	1.400	0.471	66.190	66.720	65.680	1.536	1.538	1.533	No	Yes
34	B311	1.397	0.689	13.776	14.307	13.262	6.043	6.053	6.032	Yes	Yes
35	B134	1.394	0.653	49.882	51.045	48.739	1.754	1.772	1.735	Yes	Yes
36	B58	1.390	0.661	21.740	22.757	20.678	1.445	1.460	1.431	Yes	Yes
37	B15	1.386	0.721	30.560	31.353	29.775	1.378	1.433	1.323	Yes	Yes
38	B304	1.384	0.711	13.808	14.283	13.363	6.066	6.078	6.055	Yes	Yes
39	B317	1.383	0.714	11.111	11.563	10.649	5.805	5.811	5.799	Yes	No
40	B23	1.382	0.732	22.977	23.778	22.147	2.987	3.021	2.952	No	Yes
41	B423	1.382	0.609	59.146	59.904	58.409	0.913	0.918	0.908	Yes	No
42	B201	1.379	0.683	47.947	48.335	47.564	1.341	1.346	1.335	No	Yes

				Contor	Start	End	Contor	Start	End ¹ U	Dotontial	Potential
VIP	Bucket	V1	V2	F1	¹³ C F1	¹³ C F1	F2	¹ H F2	F2	correspondence	correspondence
Ranking	Ducket	•-	•-	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	in ¹³ C folded	in ¹ H
43	B14	1.373	0.747	28.720	29.512	27.934	1.353	1.406	1.299	Yes	Yes
44	B365	1.372	0.757	66.317	67.517	65.100	10.053	10.115	9.989	No	Yes
45	B318	1.370	0.707	11.175	11.563	10.812	5.793	5.798	5.788	Yes	No
46	B433	1.369	0.612	20.661	21.431	19.890	0.947	0.955	0.938	Yes	No
47	B300	1.366	0.757	18.789	20.400	17.193	5.280	5.299	5.261	Yes	Yes
48	B224	1.364	0.742	37.572	38.082	37.041	1.275	1.286	1.265	Yes	Yes
49	B310	1.364	0.755	13.808	14.438	13.196	6.089	6.097	6.081	Yes	Yes
50	B330	1.361	0.764	19.392	20.056	18.717	6.567	6.582	6.551	Yes	No
51	B334	1.361	0.723	19.551	19.991	19.076	6.526	6.532	6.519	Yes	No
52	B42	1.360	0.723	24.722	25.514	23.936	2.221	2.252	2.189	Yes	No
53	B315	1.360	0.726	6.542	7.349	5.749	5.833	5.846	5.821	Yes	No
54	B111	1.359	0.729	38.587	39.097	38.105	1.508	1.513	1.503	Yes	No
55	B380	1.357	0.694	25.293	26.046	24.544	2.973	2.983	2.962	Yes	Yes
56	B238	1.355	0.643	39.793	40.510	39.084	1.368	1.377	1.359	No	No
57	B120	1.354	0.716	22.121	22.768	21.445	1.534	1.560	1.508	Yes	Yes
58	B275	1.354	0.320	30.592	31.311	29.923	1.733	1.737	1.729	Yes	Yes
59	B141	1.351	0.751	58.258	59.895	56.592	1.688	1.712	1.665	Yes	Yes
60	B54	1.348	0.784	16.981	17.979	16.008	1.760	1.787	1.733	Yes	Yes
61	B299	1.348	0.761	28.212	28.507	27.913	5.078	5.088	5.069	Yes	Yes
62	B356	1.345	0.772	19.836	20.285	19.337	7.108	7.113	7.103	Yes	Yes
63	B303	1.344	0.784	11.016	11.640	10.393	5.768	5.779	5.758	Yes	No
64	B60	1.339	0.780	24.722	25.349	24.107	1.321	1.333	1.309	Yes	Yes
65	B414	1.338	0.631	43.378	43.982	42.768	0.902	0.907	0.896	No	No
66	B267	1.336	0.770	53.784	54.360	53.199	1.705	1.713	1.696	No	Yes
67	B298	1.326	0.817	28.180	28.804	27.557	5.101	5.111	5.090	Yes	Yes
68	B39	1.325	0.691	26.975	27.724	26.198	2.086	2.120	2.052	Yes	No
69	B46	1.325	0.764	16.790	17.466	16.143	2.031	2.055	2.008	Yes	No
70	B13	1.323	0.849	24.595	25.429	23.746	1.735	1.875	1.594	Yes	Yes
71	B370	1.323	0.667	48.105	49.010	47.231	3.271	3.281	3.261	No	Yes
72	B336	1.321	0.627	19.614	20.056	19.141	6.544	6.549	6.538	Yes	No
73	B405	1.318	0.745	26.911	27.430	26.402	3.569	3.577	3.561	Yes	No
74	B297	1.316	0.800	28.117	28.745	27.468	5.117	5.122	5.112	Yes	Yes
75	B109	1.315	0.765	38.555	39.001	38.067	1.495	1.502	1.488	Yes	No
76	B320	1.313	0.684	11.016	11.465	10.551	5.729	5.734	5.724	Yes	No
77	B129	1.312	0.617	61.145	61.889	60.393	1.478	1.484	1.471	No	No
78	B319	1.311	0.608	11.111	11.498	10.747	5.745	5.749	5.741	Yes	Yes
79	B412	1.311	0.822	21.835	22.370	21.298	7.231	7.237	7.225	Yes	No
80	B345	1.310	0.781	26.277	26.883	25.642	6.842	6.859	6.825	Yes	Yes
81	B393	1.308	0.804	26.753	27.272	26.244	3.753	3.765	3.741	Yes	No
82	B43	1.305	0.625	16.790	17.360	16.255	2.177	2.197	2.157	Yes	No
83	B78	1.305	0.833	10.318	11.358	9.281	1.697	1.750	1.644	Yes	Yes
84	B37	1.300	0.874	24.722	25.672	23.778	1.996	2.031	1.961	Yes	No

Table SI 12 - 100 first SYMAPS HSQC buckets from OPLS-DA (Part 2/3)

HSQC VIP Ranking	Bucket	V1	V2	Center F1 [ppm]	Start ¹³ C F1 [ppm]	End ¹³ C F1 [ppm]	Center F2 [ppm]	Start ¹ H F2 [ppm]	End ¹ H F2 [ppm]	Potential correspondence in ¹³ C folded	Potential correspondence in ¹ H
OP85	B188	1.300	0.819	62.224	62.789	61.710	1.245	1.255	1.235	No	No
86	B63	1.300	0.824	22.152	23.000	21.299	1.342	1.358	1.326	Yes	Yes
87	B410	1.297	0.876	18.916	19.446	18.379	5.237	5.259	5.214	Yes	No
88	B61	1.293	0.880	24.786	25.457	24.134	1.258	1.290	1.225	Yes	Yes
89	B123	1.289	0.880	47.661	48.552	46.744	1.500	1.512	1.489	No	No
90	B280	1.288	0.827	29.608	30.052	29.213	1.641	1.658	1.624	Yes	Yes
91	B435	1.279	0.849	26.689	27.220	26.147	0.957	0.968	0.945	Yes	No
92	B102	1.278	0.607	35.287	35.720	34.861	1.741	1.750	1.731	No	Yes
93	B259	1.278	0.624	66.571	66.974	66.172	1.728	1.732	1.724	No	Yes
94	B199	1.277	0.837	45.884	46.485	45.290	1.250	1.261	1.239	No	No
95	B53	1.277	0.893	16.759	17.736	15.819	1.894	1.917	1.870	Yes	No
96	B32	1.276	0.819	26.626	27.303	25.935	3.457	3.485	3.430	Yes	No
97	B281	1.275	0.900	28.434	28.890	27.986	1.638	1.660	1.616	Yes	Yes
98	B409	1.273	0.853	18.853	19.327	18.379	5.312	5.326	5.299	Yes	No
99	B418	1.272	0.847	43.346	43.842	42.815	0.926	0.929	0.922	No	No
100	B258	1.271	0.764	66.634	67.227	66.088	1.735	1.737	1.732	No	Yes

Table SI 13 - 100 first SYMAPS HSQC VIP buckets from OPLS-DA (Part 3/3)

Table SI 14 - Global data for all ¹**H NMR buckets**: Minimum (MIN), maximum (MAX) and mean SNR were measured for each sample group. To quantify the proportion of data under the limit of detection and quantification, number of buckets with a Signal to Noise Ratio (SNR) under 3 and 10 have been counted.

_	Blank_Ctrl	Blank_Sponge	Control_T1	Control_T2	QC	Sponge_T1	Sponge_T2
MIN	0	0	0	0	0	0	1
MAX	11471	17332	20872	17698	24118	21244	21870
MEAN	117	195	768	706	775	769	802
Number of buckets with a SNR<3	256	167	10	16	12	15	12
% SNR<3	28%	19%	1%	2%	1%	2%	1%
Number of buckets with a SNR<10	400	340	63	65	63	78	65
% SNR<10	44%	38%	7%	7%	7%	9%	7%
Total buckets	901	901	901	900	900	901	901

Table SI 15 - Global data for all ¹³C NMR buckets: Minimum (MIN), maximum (MAX) and mean SNR were measured for each sample group. To quantify the proportion of data under the limit of detection and quantification, number of buckets with a Signal to Noise Ratio (SNR) under 3 and 10 have been counted.

	Blank_Ctrl	Blank_Sponge	Control_T1	Control_T2	QC	Sponge_T1	Sponge_T2
MIN	0	0	0	0	0	1	1
MAX	27	24	253	228	304	272	270
MEAN	2	2	17	17	20	19	20
Number of buckets with a SNR<3	380	338	79	72	77	71	79
% SNR <3	92%	82%	19%	18%	19%	17%	19%
Number of buckets with a SNR<10	396	395	267	262	247	263	258
% SNR <10	96%	96%	65%	64%	60%	64%	63%
Total buckets	411	411	411	411	411	411	411