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Abstract

Background

Ewing sarcoma (EwS) is a rare, aggressive solid tumor of childhood, adolescence and

young adulthood associated with pathognomonic EWSR1-ETS fusion oncoproteins altering

transcriptional regulation. Genome-wide association studies (GWAS) have identified 6 com-

mon germline susceptibility loci but have not investigated low-frequency inherited variants

with minor allele frequencies below 5% due to limited genotyped cases of this rare tumor.

Methods

We investigated the contribution of rare and low-frequency variation to EwS susceptibility in

the largest EwS genome-wide association study to date (733 EwS cases and 1,346 unaf-

fected controls of European ancestry).

Results

We identified two low-frequency variants, rs112837127 and rs2296730, on chromosome 20

that were associated with EwS risk (OR = 0.186 and 2.038, respectively; P-value < 5×10−8)

and located near previously reported common susceptibility loci. After adjusting for the most

associated common variant at the locus, only rs112837127 remained a statistically signifi-

cant independent signal (OR = 0.200, P-value = 5.84×10−8).

Conclusions

These findings suggest rare variation residing on common haplotypes are important contrib-

utors to EwS risk.

Impact

Motivate future targeted sequencing studies for a comprehensive evaluation of low-fre-

quency and rare variation around common EwS susceptibility loci.

Background

Ewing sarcoma (EwS) is a rare bone or soft tissue tumor predominantly occurring in the sec-

ond decade of life [1]. The specific cells of origin leading to EwS tumors are unknown, with

current evidence indicating EwS likely arises from mesoderm- or neural crest-derived mesen-

chymal stem cells [2,3]. The overall age-adjusted incidence of EwS is 0.128 per 100,000 popula-

tion with individuals of European ancestry at a 9-fold risk relative to African Americans and

Asian/Pacific Islanders (0.155 in White, 0.017 in Asians/Pacific islanders, and 0.017 in African

Americans) [4]. The reported disparity in EwS incidence by ancestry suggests the importance

of germline susceptibility to EwS risk.
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A defining feature of EwS tumors is the somatically acquired translocation between EWSR1
(22q12) and a member of the ETS transcription factor family, most commonly FLI1 (11q24)

(85% of cases) [5–7]. The resulting fusion oncoprotein produces aberrant and strong tran-

scriptional regulators that bind to GGAA microsatellites and ETS-like motifs, which are

thereby converted into potent enhancers, to promote cellular transformation by deregulating

key target genes in cell cycle control, migration and apoptosis pathways [7–12]. Aside from

recurrent EWSR1-ETS fusions, most EwS tumors display remarkably low somatic mutation

rates [1,13–16].

The presence of EwS EWSR1-ETS fusions provides a molecularly distinct phenotype for

genomic characterization, despite small case sample sizes. Previous genome-wide association

studies (GWAS) have identified 6 common genetic susceptibility loci associated with EwS risk

(1p36.22, 6p25.1, 10q21, 15q15, 20p11.22 and 20p11.23) [17]. The number of identified suscep-

tibility loci are notable given small samples, suggesting a homogenous phenotype as defined by

the fusion oncoprotein may aid in identifying germline associations. Effect estimates for vari-

ants at these loci exhibit elevated odds ratios (OR> 1.7), which is high for cancer GWAS and

striking in light of the rarity of EwS in familial cancer predisposition syndromes [18]. Most EwS

susceptibility loci reside near GGAA microsatellites and may disrupt local binding of EWS-

R1-ETS fusion oncoproteins to these microsatellites, suggesting germline-somatic interactions

could be important for EwS susceptibility. As a proof-of-concept such germline-somatic inter-

action has been demonstrated for the chr10 EwS susceptibility gene EGR2 [11].

Despite recent efforts to characterize the genetic architecture of EwS, thus far, no study has

investigated the contribution of low-frequency variants (minor allele frequencies (MAF) <

0.05) to EwS risk. The high locus-to-case discovery ratio of previous EwS GWAS and large

effect sizes of common EwS susceptibility loci led our group to revisit whether current series of

EwS cases would be sufficient to detect associations between rare or low-frequency variants

and EwS risk. We systematically scanned across the genome for well-imputed, low-frequency

variants associated with EwS susceptibility in the largest collection of genotyped EwS cases to

date (733 EwS cases and 1,346 controls) [17].

Materials and methods

Study populations

The study population for the current association analysis has been described previously [17]. In

brief, EwS cases were obtained from five sources: a study published by Postel-Vinay et al. [19],

the Institut Curie, the Childhood Cancer Survivor Study (CCSS), the Center for Cancer Research

(CCR) at the National Cancer Institute (NCI), and the NCI Bone Disease and Injury Study [20].

Ancestry of these EwS cases was estimated using SNPWEIGHTS based on SNPs found to be

suitable for inferring population structure [21]. EwS cases with less than 80% European ancestry

were excluded resulting in a combined set of 733 EWS cases. A total of 1,346 principal-compo-

nent-matched, cancer-free controls were selected from the NCI Prostate Lung Colorectal and

Ovarian Cancer Screening trial [22], American Cancer Society Cancer Prevention Study II [23],

and the Spanish Bladder Cancer Study [24] for the final analysis and included with controls pre-

viously used by Postel-Vinay et al [19]. Each study participant provided informed consent, and

approval to conduct this research was granted by the Institution Review Board of Institut Curie,

National Cancer Institute, as well as 26 participating institutions for CCSS.

Genotyping and quality control

For the Postel-Vinay study, DNA from tumor tissue, blood, and bone marrow was isolated

using proteinase K lysis followed by phenol chloroform extraction. Genomic DNA was
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genotyped by 610 Quadevl arrays (Illumina). For CCSS samples, blood DNA was isolated

using the Gentra PureGene Blood kit (QIAGEN) and saliva DNA was extracted using the Ora-

gene kit (DNA Genotek). Whole genome amplification (WGA) was performed for samples

without sufficient DNA. For CCSS samples, genotyping was performed at the NCI Cancer

Genomics Research Laboratory (CGR) on the Infinium Human Omni5Exome array (Illu-

mina). The remainder of NCI and Institut Curie samples were genotyped by CGR using the

OmniExpress-24 v1.1 array (Illumina).

All genotyping was performed according to standard manufacturer protocols. In brief,

WGA was performed on 400 ng DNA, and the amplified DNA was fragmented, precipitated,

resuspended, and hybridized to the designated arrays. Single-base extension of probes using

captured DNA as template was subsequently carried out with fluorophore-conjugated nucleo-

tides. Arrays were then scanned by iScan (Illumina) and SNPs called by GenomeStudio (Illu-

mina). Our downstream quality control included filtering out samples with abnormal

heterozygosity rate, sex discordance, <95% completion rates, and unexpected relatedness

(IBD > 10%).

Genotype imputation was performed in three sets: (1) the Postel-Vinay study, (2) the CCSS

EwS cases and matched controls, and (3) all remaining NCI and Institut Curie samples. All

samples were pre-phased using SHAPEIT [25] and imputed using IMPUTE2 [26]. The 1,000

Genomes Phase 3 was used as the reference [27] resulting in 16,367,531 SNPs. Among these

SNPs, 10,216,839 were low-frequency variants with MAF < 0.05.

PCR validation of genotypes

Imputed genotypes for the three EwS-associated low-frequency or rare variants (rs78119607,

rs112837127, rs2296730) were validated by allele-specific TaqMan assay (Thermo Fisher Scien-

tific) at CGR following standard manufacturer protocols. The 325 samples used for validation

were selected based on imputed genotype, study, and amount of available DNA.

Statistical analysis

For each variant, we report an estimate of the odds ratio (OR), 95% confidence interval (CI),

and P-value (pMH) using a Mantel-Haenszel Test where subjects are stratified by study (e.g.

CCSS, Postel-Vinay, etc.), and, when stated, the genotype at linked neighboring variant(s).

Because we focused on less common variants, we used a dominant model (i.e., genotype

defined as presence versus absence of rare variant) and an exact, conditional test (mantelhaen.

test(exact = T)) [28,29]. We used pMH < 5 × 10−8 to define initial GWAS significance and pMH

< 0.05/1684 = 1.09×10−5 for conditional tests, where 1,684 is the number of SNPs with

MAF < 0.05 and R2 > 0.004 with one of 6 previously identified SNPs. Potential interaction

between low frequency SNPs and common SNPs were examined by logistic regression models

with case-control status as outcome, low frequency and common SNPs as well as an interac-

tion term between them as predictors. All statistical tests were two-sided and performed in R

v.3.6.2 [28]. We did not investigate associations with significant variants and clinical data as

limited clinical data were available for the participating EwS cases.

Results

Our analysis identified evidence for associations of three putative low frequency (MAF < 0.05)

imputed variants associated with EwS risk, which we advanced to validation studies described

below. The variants were located at 1q23.3, 20p11.23, and 20p11.22 (Table 1, Fig 1 and S1 Fig)

and tagged by rs78119607, rs112837127, and rs2296730, respectively. The MAF among con-

trols of European ancestry ranged from 0.001 for rs78119607 to 0.046 for rs2296730 with
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minor allele effect sizes ranging from 0.18 to 16.64 (Table 2). The odds ratio for the minor A

allele of rs112837127 suggested a potentially protective effect (OR = 0.18) indicating that in

some instances low-frequency variation could reduce susceptibility to EwS.

To validate the imputed genotypes of the three associated low-frequency and rare variants,

we first examined the imputation quality score (S1 Table) and distribution of alleles (S2 Table)

across three studies populations, and we did not observe significant heterogeneity among the

study populations. To further confirm the findings, an allele-specific TaqMan assay was

designed for the three variants and carried out in a subset of 325 samples from the EwS GWAS

with available remaining DNA. As shown in S2 Fig, we were able to replicate the imputed

genotypes for rs112837127 and rs2296730 with 98.46% and 100% concordance rate. The

imputed genotype for rs78119607 did not replicate as no minor alleles were called by the Taq-

Man assay, suggesting poor imputation of this variant using the 1000 Genomes Project refer-

ence set despite imputation scores of over 0.43 (S1 Table).

The two validated low frequency variants, rs112837127 and rs2296730, associated with EwS

on chromosome 20 are in proximity to two previously identified EwS common susceptibility

variants, rs6106336 and rs6047482. The identified low-frequency variants were tested for link-

age disequilibrium (LD) with the common variants in 1000 Genomes Project European popu-

lations using the LDmatrix tool in LDlink (Fig 2) [30,31]. rs112837127 did not display

evidence for LD with either the nearby common variant (R2
EUR rs6106336 = 0.005, R2

EUR

rs6047482 = 0.023) or the other low-frequency variant (R2
EUR rs2296730 = 0.003). However,

rs2296730 displayed evidence for moderate levels of LD with the common rs6106336 variant

(R2
EUR = 0.311), but not the common rs6047482 variant (R2

EUR = 0.006). Estimates of D0, a

measure of allelic transmission, suggest the two associated low-frequency variants

(rs112837127 and rs2296730) are transmitted on haplotypes of the common rs6106336 variant

(S3 Fig), with the minor A allele of rs112837127 being transmitted with the major T allele of

rs6106336 (D0EUR = 1.0) and the minor G allele of rs2296730 being transmitted with the minor

G allele of the rs6106336 (D0EUR = 0.772).

To further test if the two low-frequency variants tagged independent EwS association sig-

nals, odds ratios and P-values for the association with EwS were calculated with and without

conditioning on the neighboring common variants. Conditional analyses indicated that

rs112837127 was statistically associated with EwS (OR = 0.20, 95%CI = 0.09–0.40, P-

value = 5.84×10−8; Table 2) independent from neighboring common variants. As in the R2

analyses, the low-frequency rs22966730 variant demonstrated evidence for a correlation with

the common rs6106336 variant as observed in the attenuated odds ratio estimate and increase

in p-value in the conditional analysis (OR = 1.61, 95%CI = 1.16–2.24, P-value = 3.50×10−3;

Table 2). Finally, we examined potential interaction between rs2296730 and rs6106336

(p = 0.568), rs2296730 and rs6047482 (p = 0.319), as well as rs6106336 and rs112837127

(p = 0.538) and found no significant evidence for SNP-SNP interactions.

Table 1. Genome-wide significant associations (P-value< 5×10−8) for identified low-frequency and rare variants with EwS susceptibility using a dominant model

stratified by study.

Region Coordinate Variant Alleles Minor Allele Counts (Frequency) MH P-value

Major Minor Controls N = 1,346 EwS Cases N = 733

1q23.3 163530987 rs78119607 G A 4 (0.001) 31 (0.021) 2.38×10−11

20p11.23 21063508 rs112837127 G A 87 (0.032) 9 (0.006) 6.90×10−9

20p11.22 21367741 rs2296730 A G 123 (0.046) 133 (0.091) 4.92×10−8

https://doi.org/10.1371/journal.pone.0237792.t001
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Discussion

We report an analysis of well-imputed low-frequency variants based on common genotyped

variants in a large EwS case series to investigate the contribution of low-frequency variants

to the underlying genetic architecture of EwS susceptibility. We found evidence for associa-

tions of two low-frequency variants (rs112837127 and rs22966730) with EwS risk, and one

of the variants, rs112837127, demonstrated an association independent of a nearby com-

mon germline susceptibility variant. Our findings suggest that in addition to common

germline susceptibility variants, low-frequency variants are important for genetic suscepti-

bility to EwS. Germline variants associated with lower cancer risk are less commonly

reported, but not unheard of. Previously, three SNPs located near base excision repair genes

were found to be negatively associated with Wilms tumor risk [32]. SNPs in the vitamin D

receptor gene have also been linked to decreased risk in prostate cancer in African Ameri-

can men [33] and rs1866074 near the thymine DNA glycosylase gene were reported to be

correlated with lower colorectal cancer risk [34]. The minor allele of rs112837127 is most

prevalent in British and Finnish populations where the allele frequency could be > 5%

while no African or east Asian population carries this allele [35]. This SNP is located in a

long terminal repeat region 2.7 Kb upstream of a non-coding RNA, LINC00237, which has

been found to drive self-renewal of tumor initiating cells by binding and promoting stability

of β-catenin [36]. Interestingly, the activation of Wnt/β-catenin pathway has been shown to

antagonize transcription activities of EWS/ETS fusion gene in Ewing sarcoma cells [37].

Whether the minor allele of rs112837127 tags a haplotype with modified LINC00237

expression remains to be investigated.

As EwS is a rare sarcoma of young people, it is not unexpected that low-frequency variation

contributes to EwS susceptibility. Although EwS may be an exceptional case of a rare, well-

defined malignancy with high associated odds ratios, our study suggests that efforts to examine

low-frequency and rare germline associations in existing samples of rare cancer sets could be

fruitful, even despite limited sample sizes. Additionally, our study provides an example in

which common germline susceptibility loci discovered by GWAS may harbor synthetic associ-

ations with rare and low-frequency variants [28]. These synthetic associations may be of par-

ticular importance for EwS susceptibility as it is plausible common, low-frequency and rare

variation at GGAA microsatellites may interact to impact binding of EWSR1-FLI1 fusion

oncoproteins and alter regulation of downstream genes in core EwS regulatory pathways. In

the case of EwS, common variant associations may highlight important EwS germline suscepti-

bility regions where low-frequency and rare variation have important roles altering EwS risk.

Fig 1. Manhattan plots of analyses for all variants (A) and low-frequency and rare variants (MAF< 0.05) (B). Plotted p-values are for allelic tests

by chromosome.

https://doi.org/10.1371/journal.pone.0237792.g001

Table 2. Estimated odds ratio (OR) for EwS rare variants adjusting for different model covariates.

Wald method (unadjusted) Mantel-Haenszel (study) Mantel-Haenszel (study and

variant1)

Rare SNP Common SNP OR (95% CI) Fisher’s P-value OR (95% CI) P-value OR (95% CI) P-value

rs112837127 rs6106336 0.19 (0.10 to 0.39) 1.64×10−8 0.18 (0.08 to 0.37) 6.90×10−9 0.20 (0.09 to 0.40) 5.84×10−8

rs2296730 rs6106336, rs6047482 2.04 (1.58 to 2.69) 9.78×10−9 2.11 (1.60 to 2.77) 4.92×10−8 1.61 (1.16 to 2.24) 3.50×10−3

Models use a dominant allele coding for minor alleles with each individual as the analysis unit.
1Adjustment for contributing study and nearby common SNP(s).

https://doi.org/10.1371/journal.pone.0237792.t002
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A limitation of our study is the lack of validation in an independent cohort as well as a lack of

regional EwS sequencing of the relevant region to identify potential causal variants which can

be functionally examined through in vitro experiments. Another limitation is the absence of

clinical and demographic data which limited our ability to describe possible associations with

the variants identified. As EwS is a rare tumor, few large case series exist for genomic investiga-

tion. Larger study populations will be essential for further confirmation of this new associa-

tion. As future germline association studies investigate the genetic architecture of EwS,

improved efforts to systematically interrogate low-frequency variant associations through a

variety of sequencing and statistical methods are essential for accelerating understanding of

the underlying genetic architecture of EwS susceptibility.

Fig 2. Patterns of Linkage Disequilibrium (LD) for rare, low-frequency and common variants associated with EwS at the chromosome 20p11.22–23 susceptibility

locus. R2 values are in shades of red while D’ values are in shades of blue, with darker values indicating higher degree of LD. All LD measures were estimated in LDlink

using 1,000 Genomes Project European populations as the reference panel.

https://doi.org/10.1371/journal.pone.0237792.g002
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