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0
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0
1), a regular language whose associated omega-power is complete for this

class.
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1 Introduction

In the sixties, in order to prove the decidability of the monadic second order theory of one suc-
cessor over the integers, Büchi studied acceptance of infinite words by finite automata with the now
called Büchi acceptance condition, see [Büc62]. Since then, a lot of work has been done on regular
ω-languages, accepted by Büchi automata, or by some other variants of automata over infinite words,
like Muller or Rabin automata, see [Tho90, Sta97, PP04].

The class of regular ω-languages, those accepted by Büchi or Muller automata, is the ω-Kleene
closure of the class of regular finitary languages. Let Σ be a finite alphabet, and L be a finitary
language over Σ. The ω-power L∞ of L is the set of infinite words constructible with L by concate-
nation, i.e., L∞ :={w0w1 . . .∈Σω | ∀i∈ω wi∈L }. The ω-Kleene closure of a class C of languages
of finite words over finite alphabets is the class of ω-languages of the form

⋃
1≤j≤n Kj · L∞j , where

n is a natural number and the Kj’s and the Lj’s are in C. We denote here by L∞ the ω-power of L, as
in [Lec05, FL09] and the recent survey paper [FL20], while it is usually denoted by Lω in theoretical
computer science papers, as in [Sta97, Fin01, Fin03, FL07].

Moreover, the operation of taking the ω-power of a finitary language also appears in the character-
ization of the class of context-free ω-languages as the ω-Kleene closure of the family of context-free
finitary languages, see [Sta97].

This shows that the ω-power operation is a fundamental operation over finitary languages in the
study of ω-languages, which naturally leads to the question of its complexity. Since the set Σω of
infinite words over the finite alphabet Σ can be equipped with the usual Cantor topology, the question
of the topological complexity of ω-powers of finitary languages naturally arises, and was asked by
Niwinski [Niw90], Simonnet [Sim92], and Staiger [Sta97].

Then the ω-powers have been studied from the perspective of Descriptive Set Theory in several
recent papers [Fin01, Fin03, Fin04, Lec05, DF07, FL07, FL09, FL21, FL20].

As noticed by Simonnet in [Sim92], the ω-powers are always analytic sets. It has been proved
in [Fin03] that there exists a finitary language L accepted by a one counter automaton such that the
ω-power L∞ is analytic and non Borel. Moreover, we proved in [FL09] that, for every non-null
countable ordinal ξ, we can find Σ0

ξ-complete ω-powers, as well as Π0
ξ-complete ω-powers. This

shows that, surprisingly, the ω-powers can be very complex. Moreover, some results have been
obtained in [FL09] about the Wadge degrees of ω-powers, indicating the location of some ω-powers
inside the Wadge hierarchy, which is a great refinement of the Borel hierarchy, see [Wad83].

On the other hand, there were very few results about the Wadge degrees of ω-powers of very low
Borel rank. We fill this gap in this paper, studying the ω-powers in the class ∆0

2.

Our main result is the following:

Theorem. Let n be a natural number.

(a) We can find a regular language L⊆2<ω such that L∞ is complete for the class Dn(Σ0
1), and

another one for Ďn(Σ0
1).

(b) We can find a regular language L⊆ 2<ω with the property that L∞ is complete for the class
D0(Σ

0
1)⊕ Ď0(Σ

0
1), and another one for D2n+1(Σ

0
1)⊕ Ď2n+1(Σ

0
1).
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Up to our knowledge, the ω-powers we get are the first examples having these topological com-
plexities, even in the non-necessarily regular case (except, for (a) when n≤ 2 and Ď3(Σ

0
1), and for

(b) when n=0, see [Lec05]).

Moreover, our ω-powers are ω-powers of regular finitary languages. The ω-powers of this kind
have been studied by Litovsky and Timmerman in [LT87], where they proved that if a regular ω-
language L is an ω-power, then there is a regular finitary language L such that L=L∞.

The topological complexity of regular ω-languages is well known. Every regular ω-language is a
finite boolean combination of Π0

2 (and hence Borel) sets, and is in particular a ∆0
3 set. The trace of the

Wadge hierarchy on the ω-regular languages is called the Wagner hierarchy. It has been completely
described by Wagner in [Wag79], see also [Sta97, Sel98, Sel08]. Its length is the (countable) ordinal
ωω.

In particular, a regular ω-language is in the class ∆0
2 iff it is in the hierarchy of finite differences

of Σ0
1 sets. Our main result implies that, for any Wagner class Γ 6= Γ̌ with Γ ⊆∆0

2, we can find
L⊆2<ω regular such that L∞ is complete for Γ. As a consequence, we determine the Wadge-Wagner
hierarchy of non self-dual ∆0

2 regular ω-powers.

2 Preliminaries

We assume that the reader has a knowledge of basic notions of descriptive set theory, which can
be found in [Kec95]. We use in this paper usual notations in this field. In the sequel, Γ, Λ will be
classes of subsets of Polish spaces. The class of complements of elements of Γ is defined, when X is
a Polish space, by Γ̌(X) :={X\A | A∈Γ(X)}.

We set Σ0
1 :={O | O is an open subset of a Polish space X}. If ξ≥1 is a countable ordinal, then

Π0
ξ :=Σ̌0

ξ and ∆0
ξ :=Σ0

ξ ∩Π0
ξ . If ξ≥2 and X is a Polish space, then, inductively,

Σ0
ξ(X) :=

{ ⋃
n∈ω

An | ∀n∈ω An∈
⋃
η<ξ

Π0
η(X)

}
.

The classes Σ0
ξ and Π0

ξ form the Borel hierarchy. This hierarchy can be refined, using the classes of
differences. If ζ is a countable ordinal and O :=(Oη)η<ζ is an increasing sequence of subsets of a set
X , then Dζ(O) := {x∈X | ∃η < ζ parity(η) 6= parity(ζ) ∧ x∈Oη \(

⋃
θ<η Oθ)}. If X is a Polish

space, then Dζ(Γ)(X) :={Dζ(O) | ∀η<ζ Oη∈Γ(X)}. The classes Dζ(Σ
0
ξ) and Ďζ(Σ

0
ξ) form the

Lavrentieff hierarchy. We set

(Γ⊕Λ)(X) :={(A ∩ C) ∪ (B\C) | C∈∆0
1(X) ∧A∈Γ(X) ∧B∈Λ(X)}.

By [Wag79], the Wagner hierarchy of ∆0
2 sets is made of the classes Dn(Σ0

1), Ďn(Σ0
1), as well as

Dn(Σ0
1)⊕Ďn(Σ0

1), where n∈ω, and starts as follows:

D0(Σ
0
1)={∅} D1(Σ

0
1)=Σ0

1 D2(Σ
0
1) . . .

D0(Σ
0
1)⊕Ď0(Σ

0
1)=∆0

1 Σ0
1⊕Π0

1

Ď0(Σ
0
1) Ď1(Σ

0
1)=Π0

1 Ď2(Σ
0
1) . . .
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We will also consider the class defined, when X is a Polish space, by

(Γ uΛ)(X) :={A ∩B | A∈Γ(X) ∧B∈Λ(X)}.

Recall that A∈Γ(2ω) is Γ-complete if, for any B∈Γ(2ω), we can find f : 2ω→2ω continuous such
that B = f−1(A). Intuitively, this means that A is part of the most complex sets in Γ. The Wadge
class associated withA is {f−1(A) | f continuous}, which by inclusion of classes defines the Wadge
hierarchy mentioned in the introduction, which refines the Lavrentieff hierarchy. In particular, the
Lavrentieff classes have complete sets. By Theorem 22.10 in [Kec95] and its proof, if Γ 6= Γ̌, then
A⊆2ω is Γ-complete exactly when A∈Γ\Γ̌.

We now turn to basic notions of automata theory and formal language theory in theoretical com-
puter science, see for instance [Sta97, PP04]. Let Σ be a finite alphabet. Then Σ<ω is the set of finite
words over Σ. If w :=a1 · · · al∈Σ<ω, then |w|= l is the length of w.

Definition 2.1 A (finite) automaton is a 5-tupleA :=(Q,Σ, δ, q0, F ), whereQ is a finite set of states,
Σ is a finite alphabet, δ :Q×Σ→2Q is a map, q0∈Q is the initial state, and F ⊆Q is the set of final
states.

Let w :=a1 · · · al∈Σ<ω be a finite word over Σ. A run of A on σ is a sequence r :=(qi)1≤i≤l+1

of states with q1 = q0 and, for each 1 ≤ i ≤ l, qi+1 ∈ δ(qi, ai). The language accepted by A is
L(A) := {w ∈ Σ<ω | ∃r ∈ Q|w|+1 r is a run of A on w with ql+1 ∈ F}. A language L ⊆ Σ<ω is
regular if L=L(A) for some automaton A.

Definition 2.2 A Büchi automaton is a 5-tupleA :=(Q,Σ, δ, q0, F ), whereQ is a finite set of states,
Σ is a finite alphabet, δ :Q×Σ→2Q is a map, q0∈Q is the initial state, and F ⊆Q is the set of final
states.

Let σ :=a1a2 · · ·∈Σω. A run of A on σ is a sequence r :=(qi)i≥1 of states with q1 =q0 and, for
each i≥ 1, qi+1∈ δ(qi, ai). We set In(r) := {q∈Q | ∃∞i≥ 1 qi = q}. The ω-language accepted by
A is L(A) :={σ∈Σω | ∃r∈Qω r is a run of A on σ with In(r) ∩ F 6=∅}. An ω-language L⊆Σω is
ω-regular if L=L(A) for some Büchi automaton A.

The usual concatenation of two finite words v and w is denoted v ·w, sometimes just vw. This
concatenation is extended to the concatenation of a finite word w and an ω-word σ. The infinite
word w ·σ is then the ω-word such that (w ·σ)(k) =w(k) if k ≤ |w|, and (w ·σ)(k) = σ(k−|w|) if
k> |w|. The concatenation can be extended in an obvious way to infinite sequences of finite words.
The concatenation of a set L of finite words with a set L of infinite words is the set of infinite words
L ·L := {w ·σ | w ∈ L and σ ∈ L}. The prefix relation is denoted by ⊆: a finite word v is a prefix
of a finite word w (respectively, an infinite word σ), denoted v ⊆ w, if and only if there exists a
finite word w′ (respectively, an infinite word σ′), such that w= v ·w′. The ω-Kleene closure of the
family of regular languages is the class of ω-languages of the form

⋃
1≤j≤n Kj·L∞j , for some regular

languages Kj and Lj , 1≤ j≤n. As mentioned in the introduction, the class of ω-regular languages
is the ω-Kleene closure of the family of regular languages (see [PP04]).
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Theorem 2.3 (Büchi) Let Σ be a finite alphabet, and L⊆Σω be an ω-language. The following are
equivalent:

(a) L is ω-regular,
(b) we can find n ∈ ω and regular languages Kj , Lj ⊆ Σ<ω, 1≤ j ≤ n, with the property that

L=
⋃

1≤j≤n Kj ·L∞j .

3 The proof of the main result

We first give an inductive construction of the difference hierarchy.

Lemma 3.1 Let Γ be a class of subsets of Polish spaces closed under finite intersections and finite
unions, and k be a natural number.

(a) Ďk(Γ) u Γ=Dk+1(Γ).
(b) Ď2k(Γ) u Γ̌=Ď2k+1(Γ).
(c) Ď2k(Γ) u Ď2(Γ)=Ď2k+2(Γ).
(d)
(
D2k+1(Γ)⊕ Ď2k+1(Γ)

)
u Ď2(Γ)=D2k+3(Γ)⊕ Ď2k+3(Γ).

Remark 3.2 The anonymous reviewer of this paper indicated us that “items (a), (b), (c) of Lemma
3.1 were known for quite some time. Namely, they are particular cases of Proposition 8 in Section
5 of [Sel85] about the difference hierarchy over arbitrary bounded distributive lattice. Moreover, the
proof of Proposition 8 is essentially the same as even earlier proof for the particular case of difference
hierarchy over the c.e. sets in Section 3, Proposition 2 of [Ers68]”.

However, in order to keep the paper as self contained as possible for the reader, and because these
results are used later in the sequel, we have kept our proofs of items (a), (b), (c), and give them below.

Proof. Fix a Polish space X .

(a) Let U := (Uη)η<k be an increasing sequence of subsets of X in Γ, A :=X \Dk(U), and V be a
subset of X in Γ. We set, for η <k, Oη :=Uη ∩ V , and Ok :=V . Then (Oη)η<k+1 is an increasing
sequence of subsets of X in Γ, and

x∈A ∩ V ⇔
(
x /∈
⋃
η<k Uη ∨ ∃η<k

(
parity(η)=parity(k) ∧ x∈Uη\(

⋃
θ<η Uθ)

))
∧ x∈V

⇔ x∈Dk+1(O),

proving that A ∩ V ∈Dk+1(Γ).

Conversely, assume that Dk+1(O)∈Dk+1(Γ). We set V :=Ok and, for η <k, Uη :=Oη, which
implies that U is an increasing sequence of subsets of X in Γ, Dk(U) ∈ Dk(Γ), V is in Γ, and
Dk+1(O)=

(
X\Dk(U)

)
∩ V by the previous computation.

(b) Let U :=(Uη)η<2k be an increasing sequence of subsets ofX in Γ,A :=X\D2k(U), V be a subset
of X in Γ, and B :=X\V . We set O0 :=V and, for η<2k, Oη+1 :=V ∪ Uη, so that (Oη)η<2k+1 is
an increasing sequence of subsets of X in Γ, and

x∈A ∩B⇔
(
x /∈
⋃
η<2k Uη ∨ ∃j<k x∈U2j\(

⋃
θ<2j Uθ)

)
∧ x /∈V

⇔ x /∈D2k+1(O),

proving that A ∩B∈Ď2k+1(Γ).
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Conversely, assume that D2k+1(O)∈D2k+1(Γ). We set B :=X\O0 and, for η<2k, Uη :=Oη+1,
which implies that U is an increasing sequence of subsets of X in Γ, D2k(U)∈D2k(Γ), B is in Γ̌,
and X\D2k+1(O)=

(
X\D2k(U)

)
∩B by the previous computation.

(c) The key fact is that (C1\C0) ∪ (D1\D0)=(C1 ∪D1)\(C0 ∩D0) if C1⊆D0 and D1⊆C0. We
may assume that k>0.

LetU :=(Uη)η<2k be an increasing sequence of subsets ofX in Γ,A :=X\D2k(U), V :=(Vη)η<2

be an increasing sequence of subsets of X in Γ, and B := X \D2(V ). We set O0 := V0 ∩ U0,
O1 :=V1 ∩ U1, O2j :=(V0 ∩ U2j) ∪ U2j−2 ∪ (V1 ∩ U2j−1) and

O2j+1 :=(V1 ∩ U2j+1) ∪ U2j−1

if 0<j<k, O2k :=V0 ∪ U2k−2 ∪ (V1 ∩ U2k−1) and O2k+1 :=V1 ∪ U2k−1, so that (Oη)η<2k+2 is an
increasing sequence of subsets of X in Γ, and

x∈A∩B⇔
(
x /∈U2k−1 ∨ ∃j<k x∈U2j\(

⋃
θ<2j Uθ)

)
∧ x∈

(
V0 ∪ (X\V1)

)
⇔x∈V0\U2k−1 ∨ ∃j<k x∈(V0 ∩ U2j)\(

⋃
θ<2j Uθ) ∨ x /∈V1 ∪ U2k−1 ∨
∃j<k x∈U2j\(V1 ∪

⋃
θ<2j Uθ)

⇔x∈V0∩U0 ∨ ∃j∈(0, k) x∈
(
(V0∩U2j)\U2j−1

)
∪
(
U2j−2\(V1∪

⋃
θ<2j−2 Uθ)

)
∨x∈

(
V0\U2k−1 ∪ U2k−2\(V1 ∪

⋃
θ<2k−2 Uθ)

)
∨ x /∈V1 ∪ U2k−1

⇔x∈V0∩U0 ∨ ∃j∈(0, k) x∈
(
(V0∩U2j) ∪ U2j−2

)
\
(
(V1∩U2j−1)∪

⋃
θ<2j−2 Uθ

)
∨x∈(V0 ∪ U2k−2)\

(
(V1 ∩ U2k−1) ∪

⋃
θ<2k−2 Uθ

)
∨ x /∈V1 ∪ U2k−1

⇔x /∈D2k+2(O),

proving that A ∩B∈Ď2k+2(Γ).

Conversely, assume that D2k+2(O) ∈D2k+2(Γ). We set, for η < 2k, Uη := Oη, which implies
that U is an increasing sequence of subsets of X in Γ and D2k(U) ∈ D2k(Γ). We also set, for
η < 2, Vη := O2k+η, which implies that V is an increasing sequence of subsets of X in Γ and
D2(V )∈D2(Γ). Moreover,X\D2k+2(O)=

(
X\D2k(U)

)
∩
(
X\D2(V )

)
by the previous computation.

(d) We first check that (Γ ⊕ Γ̌) u Ď2k(Γ) =D2k+1(Γ) ⊕ Ď2k+1(Γ). Let C be a clopen subset of
X , A be a subset of X in Γ, B be a subset of X in Γ̌, and E be a subset of X in Ď2k(Γ). Then(
(A ∩ C) ∪ (B \C)

)
∩ E =

(
(E ∩ A) ∩ C

)
∪
(
(E ∩ B)\C

)
, showing one inclusion by (a) and

(b). Conversely, let D be a subset of X in D2k+1(Γ), and F be a subset of X in Ď2k+1(Γ). By
(a), we can find a subset E0 of X in Ď2k(Γ) and a subset A of X in Γ with D =E0 ∩ A. By (b),
we can find a subset E1 of X in Ď2k(Γ) and a subset B of X in Γ̌ with F = E1 ∩ B. Note that
(D∩C)∪ (F\C)=

(
(E0∩A)∩C

)
∪
(
(E1∩B)\C

)
=
(
(A∩C)∪ (B\C)

)
∩
(
(E0∩C)∪ (E1\C)

)
,

showing the other inclusion. Indeed, (E0 ∩ C) ∪ (E1\C)∈ Ď2k(Γ) is true if k∈2, and for k>2 by
induction, using (c) and this formula again.

From this and (c) we deduce that(
D2k+1(Γ)⊕ Ď2k+1(Γ)

)
u Ď2(Γ)=(Γ⊕ Γ̌) u Ď2k(Γ) u Ď2(Γ)

=(Γ⊕ Γ̌) u Ď2k+2(Γ)=D2k+3(Γ)⊕ Ď2k+3(Γ),

finishing the proof. �
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Examples. Here are three fundamental examples.

- If L :={w∈2<ω | 0⊆w ∨ ∃p∈ω 10p1⊆w}, then L∞=2ω\{10∞} is D1(Σ
0
1)-complete.

- If L :={0}, then L∞={0∞} is Ď1(Σ
0
1)-complete.

- If L :={w∈2<ω | w⊆0∞ ∨ ∃p, q∈ω 0p10q1⊆w}, then

L∞={α∈2ω | α=0∞ ∨ ∃p 6=q α(p)=α(q)=1}

is Ď2(Σ
0
1)-complete. Indeed, it is enough to see that L∞ is not D2(Σ

0
1). In order to see that, we

argue by contradiction, which gives O open and C closed with L∞=O∩C. Then C must be 2ω, and
thus L∞ is open. The sequence (0n10∞)n∈ω gives the desired contradiction.

Notation. We set, for α∈ 2ω and ε∈ 2, (α)ε := (α(ε), α(ε+2), α(ε+4), · · · ). Similarly, if w∈ 2<ω

has even length 2l and ε∈ 2, then we set (w)ε :=
(
w(ε), w(ε+2), w(ε+4), · · · , w(ε+2l−2)

)
. We

set, for L⊆2<ω, L∗ :={w1· · ·wl | l∈ω ∧ ∀i<l wi+1∈L}, and

- L0 :=
{
w∈2<ω | |w| is even ∧ (w)0∈L∗ ∧ (0⊆(w)1 ∨ ∃q∈ω 10q1⊆(w)1)

}
,

- L1 :=
{
w∈2<ω | |w| is even ∧ (w)0∈L∗ ∧ (w)1⊆0∞

}
,

- L2 :=
{
w∈2<ω | |w| is even ∧ (w)0∈L∗ ∧

(
(w)1⊆0∞ ∨ ∃p, q∈ω 0p10q1⊆(w)1

)}
.

Lemma 3.3 Let L⊆2<ω be a regular language. Then L0, L1 and L2 are also regular.

Proof. Recall first that the class of regular finitary languages over an alphabet Σ={a1, a2, · · · , an} is
the closure of the class containing the emptyset and the singletons {ai} consisting of a single word of
length 1 (we identify here the letter ai with the word of length 1 containing this single letter), under
the operations of union, concatenation, and the star operation L 7→L∗ over finitary languages. Then
the class of finitary regular languages is also closed under intersection (and taking complements).
These properties imply that if L⊆2<ω is a regular language, then L0, L1 and L2 are also regular. �

The next lemma shows that the completeness can be propagated in the difference hierarchy.

Lemma 3.4 Let k be a natural number.

(a) If there is L⊆2<ω such that L∞ is Ďk(Σ
0
1)-complete, then L∞0 is Dk+1(Σ

0
1)-complete.

(b) If there is L⊆2<ω such that L∞ is Ď2k(Σ
0
1)-complete, then L∞1 is Ď2k+1(Σ

0
1)-complete.

(c) If there is L⊆2<ω such that L∞ is Ď2k(Σ
0
1)-complete, then L∞2 is Ď2k+2(Σ

0
1)-complete.

(d) If there is L⊆2<ω such that L∞ is complete for the class D2k+1(Σ
0
1)⊕ Ď2k+1(Σ

0
1), then L∞2

is complete for the class D2k+3(Σ
0
1)⊕ Ď2k+3(Σ

0
1).

Proof. (a) Let us check that L∞0 ={α∈2ω | (α)0∈L∞ ∧ (α)1 6=10∞}. Assume that α∈L∞0 , which
gives a sequence (wi)i∈ω of nonempty words in L0 with the property that α=w0w1 · · · . Note that
(α)ε=(w0)ε(w1)ε · · · if ε∈2 since the |wi|’s are even. This implies that (α)0∈L∞ and (α)1 6=10∞.
Conversely, assume that these two properties hold. If (α)1 has finitely many 1’s, then we choose
an initial segment of (α)0 in L∗ starting a decomposition of (α)0 into words of L of length l large
enough to ensure that (α)1|l contains all the 1’s in (α)1, and either (α)1(0) = 0, or we can find p, q
with 0p10q1⊆(α)1|l.
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We set (w0)ε := (α)ε|l for each ε ∈ 2, so that w0 ∈ L0. We then consider the rest of this
decomposition of (α)0 into words of L, which gives (wi+1)0. Setting (wi+1)1 := 0|(wi+1)0|, we get
wi+1 ∈ L0 and α=w0w1 · · · . If (α)1 has infinitely many 1’s, then we construct wi ∈ L0, ensuring
that (wi)0 ∈L∗ is long enough and 0p10q1⊆ (wi)1 for some p, q ∈ω. This proves that α∈L∞0 . By
Lemma 3.1.(a), L∞0 ∈Dk+1(Σ

0
1). Assume now that D is a Dk+1(Σ

0
1) subset of 2ω. Lemma 3.1.(a)

provides C ∈ Ďk(Σ
0
1) and O ∈ Σ0

1 such that D = C ∩ O. Let f0 : 2ω → 2ω be a continuous map
with C = f−10 (L∞), and f1 : 2ω → 2ω be a continuous map with O = f−11 (2ω \{10∞}). Then the
map f : 2ω→2ω defined by

(
f(x)

)
ε
:=fε(x) is continuous and satisfies D=f−1(L∞0 ), showing the

completeness of L∞0 .

(b) Let us check that L∞1 = {α ∈ 2ω | (α)0 ∈ L∞ ∧ (α)1 = 0∞}. Assume that α ∈ L∞1 , which
gives a sequence (wi)i∈ω of nonempty words in L1 with α = w0w1 · · · . Then (α)0 ∈ L∞ and
(α)1 = 0∞. Conversely, assume that these two properties hold. We set (w0)0 := (α)0|l0, where
l0 > 0 and (w0)0 ∈ L starts a decomposition of (α)0 into words of L. We set (w0)1 := 0l0 , so that
w0 ∈ L1. We then continue this decomposition of (α)0 into words of L, which gives (wi+1)0. We
then set (wi+1)1 :=0|(wi+1)0|, we get wi+1∈L1 and α=w0w1 · · · , proving that α∈L∞1 . By Lemma
3.1.(b), L∞1 ∈Ď2k+1(Σ

0
1). Assume now that C is a Ď2k+1(Σ

0
1) subset of 2ω. Lemma 3.1.(b) provides

M ∈ Ď2k(Σ
0
1) and P ∈Π0

1 such that C =M ∩ P . Let f0 : 2ω→ 2ω be a continuous map with the
property that M = f−10 (L∞), and f1 : 2ω→2ω be a continuous map with P = f−11 ({0∞}). Then the
map f : 2ω→2ω defined by

(
f(x)

)
ε
:=fε(x) is continuous and satisfies C=f−1(L∞1 ), showing the

completeness of L∞1 .

(c) Let us check that L∞2 =
{
α∈ 2ω | (α)0 ∈L∞ ∧

(
(α)1 = 0∞ ∨ ∃p 6= q (α)1(p) = (α)1(q) = 1

)}
.

Assume that α∈L∞2 , which gives a sequence (wi)i∈ω of nonempty words in L2 with α=w0w1 · · · .
As (α)ε = (w0)ε(w1)ε · · · if ε∈ 2, (α)0 ∈L∞, and

(
(α)1 = 0∞ or ∃p 6= q (α)1(p) = (α)1(q) = 1

)
.

Conversely, assume that these two properties hold. If (α)1 has finitely many 1’s, then as in (a) we
choose l in such a way that (α)1|l contains all the 1’s in (α)1, and either (w0)1 ⊆ 0∞, or 0p10q1 is
a prefix of (w0)1 for some p, q ∈ω. We conclude as in (a). If (α)1 has infinitely many 1’s, then we
argue as in (a) to see that α∈L∞2 . By Lemma 3.1.(c), L∞2 ∈Ď2k+2(Σ

0
1). We set

O0 :={α∈2ω | ∃p 6=q α(p)=α(q)=1},

and O1 := {α ∈ 2ω | α 6= 0∞}, so that 2ω \D2(O) is Ď2(Σ
0
1)-complete. Assume now that C

is a Ď2k+2(Σ
0
1) subset of 2ω. Lemma 3.1.(c) provides M ∈ Ď2k(Σ

0
1) and S ∈ Ď2(Σ

0
1) such that

C = M ∩ S. Let f0 : 2ω → 2ω be a continuous map with M = f−10 (L∞), and f1 : 2ω → 2ω be a
continuous map with S= f−11

(
2ω\D2(O)

)
. Then the map f : 2ω→ 2ω defined by

(
f(x)

)
ε

:= fε(x)
is continuous and satisfies C=f−1(L∞2 ), showing the completeness of L∞2 .

(d) The proof of (c) shows that

L∞2 =
{
α∈2ω | (α)0∈L∞ ∧

(
(α)1=0∞ ∨ ∃p 6=q (α)1(p)=(α)1(q)=1

)}
.

By Lemma 3.1.(d), L∞2 ∈ D2k+3(Σ
0
1) ⊕ Ď2k+3(Σ

0
1). Assume now that C is a subset of 2ω in

D2k+3(Σ
0
1)⊕Ď2k+3(Σ

0
1). Lemma 3.1.(d) provides a subsetM of 2ω in

(
D2k+1(Σ

0
1)⊕Ď2k+1(Σ

0
1)
)
,

and S∈Ď2(Σ
0
1)(2

ω) such that C=M ∩ S. We conclude as in (c). �
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Proof of the main result. (a) We argue by induction on n. For the class D0(Σ
0
1), we can take L :=∅,

so that L∞ = ∅. For Ď0(Σ
0
1), we can take L := 2<ω, so that L∞ = 2ω. Then, using Lemma 3.3

and inductively, Lemma 3.4.(c) solves our problem for Ď2k+2(Σ
0
1). Then Lemma 3.4.(a) solves our

problem for D2k+1(Σ
0
1), while Lemma 3.4.(b) solves our problem for Ď2k+1(Σ

0
1). Now Lemma

3.4.(a) solves our problem for D2k+2(Σ
0
1).

(b) Note that D0(Σ
0
1) ⊕ Ď0(Σ

0
1) = ∆0

1. For ∆0
1, we can take L := {w ∈ 2<ω | 0⊆ w ∨ 12 ⊆ w},

so that L∞=N0 ∪N12 . Note then that D1(Σ
0
1) ⊕ Ď1(Σ

0
1) =Σ0

1 ⊕Π0
1. For Σ0

1 ⊕Π0
1, we can take

L :={02, 021}∪{w∈2<ω | ∃p∈ω 10p1⊆w}, so that L∞={0∞}∩(
⋃
q∈ω N02q+21)∪(N1\{10∞}).

Then, inductively, Lemmas 3.3 and 3.4.(d) solve our problem for D2n+3(Σ
0
1)⊕ Ď2n+3(Σ

0
1). �

4 Concluding remarks

We proved that, for any natural number n, we can find a language L ⊆ 2<ω such that L∞ is
complete for the class Dn(Σ0

1), and another one for Ďn(Σ0
1). On the other hand the hierarchy of

differences of open sets can be extended to transfinite ranks indexed by countable ordinals, and it is
known that the class ∆0

2 is actually the union of the classes Dξ(Σ
0
1), where ξ is a countable ordinal.

This naturally leads to the question of the existence of ω-powers located at an infinite level of the
hierarchy of differences of open sets.

In the case of ∆0
2 regular ω-powers, Wagner’s study in [Wag79] shows that they are all located

inside the hierarchy of finite differences of open sets. So, in order to determine which Wadge classes
of ∆0

2 sets Γ have the property that we can find L⊆ 2<ω regular such that L∞ is complete for Γ, it
remains to solve the question for the classes of the form D2n+2(Σ

0
1)⊕ Ď2n+2(Σ

0
1), for n∈ω.

Acknowledgments. We thank very much the anonymous reviewer for very useful comments
and for having indicated us the references containing previous proofs of Lemma 3.1 (a), (b), (c).
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[Sta97] L. Staiger. ω-languages. In Handbook of formal languages, Vol. 3, pages 339–387. Springer,
Berlin, 1997.

[Tho90] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theoret-
ical Computer Science, volume B, Formal models and semantics, pages 135–191. Elsevier,
1990.

10



[Wad83] W. Wadge. Reducibility and determinateness in the Baire space. PhD thesis, University of
California, Berkeley, 1983.

[Wag79] K. Wagner. On ω-regular sets. Information and Control, 43(2):123–177, 1979.

11


