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Résumé :  
 

Pour augmenter les possibilités du logiciel Abaqus, nous proposons une stratégie permettant d’activer 
les degrés de liberté cachés du logiciel, et d’inclure des phénomènes couplés supplémentaires. À titre 
d’illustration, nous appliquons cette approche à la simulation d’un processus de diffusion-réaction, le 
modèle de Gray-Scott, qui génère des structures spatio-temporelles complexes. Plusieurs 
configurations ont été calculés et comparées aux résultats de la littérature afin d’analyser le potentiel 
de notre stratégie et d'Abaqus à permettre la prise en compte de phénomènes complexes dans Abaqus. 

 

Abstract :  
 

To increase the Abaqus software capabilities, we propose a strategy to force the software to activate 
hidden degrees of freedom and to include extra coupled phenomena. As an illustration, we apply this 
approach to the simulation of a reaction diffusion process, the Gray-Scott model, which exhibits very 
complex patterns. Several setups have been considered and compared with available results to analyze 
the abilities of our strategy and to allow the inclusion of complex phenomena in Abaqus. 

 
Mots clefs : reaction-diffusion, finite elements, user subroutines, Gray-Scott 

model 

 

1 Introduction  
 

Simulating the effect of impurities on the integrity of structures leads to account for several 

interactions between, e.g., the mechanical fields, the impurities transport and trapping, the thermal 

fields, etc. The simulation of all these phenomena simultaneously is a complex task, especially when 

strong couplings are involved or investigated: in the hydrogen embrittlement of metals [1], or in the 

hydrolysis of polymers [2,3], for instance, mobile species are adsorbed, transported through the 

material, and trapped on specific sites whose density is time and space dependent [4,5] (e.g,, through 
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the development of plasticity for hydrogen in metals [6]). Furthermore, mechanical fields can be 

affected by these species because of induced deformations or through modifications of mechanical 

properties [7,8].  

Numerous studies account for such interactions in finite element codes, in various application fields 

(metal/hydrogen, water/polymer, metal/lithium ions, see [9-17] among others), but very few 

developments include several phenomena in the computations [18,19], especially in the commercial 

finite element codes, due to their inherent limitations in terms of available degrees of freedoms at each 

node. Such an inclusion may, however, be of importance, e.g., to model the behavior of structures in 

the presence of both impurities and evolving thermal boundary conditions [20]. The aim of this work 

is thus to introduce some developments performed in Abaqus to solve coupled mechanical-

multidiffusion finite element problems. This paper is limited to a reaction-diffusion process between 

two species, which is solved by using a coupled mechanical-diffusion scheme (‘coupled temp-

displacement’ in Abaqus) that allows further developments to account for the mechanical fields as 

well. First, the multidiffusion implementation strategy is presented, and then an application to the 

Gray-Scott reaction-diffusion model is presented to illustrate the new capabilities [21,22]. 

 

2 Introduction of a multidiffusion process in Abaqus 

 

In order to solve a complex problem with mechanics and multidiffusive fields in a finite element (FE) 

software, it is mandatory (i) to have a finite element formulation that includes as many degrees of 

freedom (DOFs) per node as the number of unknown fields, and (ii) to introduce the correct weak 

formulation for all of these DOFs for solving the problem. Introducing extra DOFs is complex; one 

may exploit the unused mechanical DOFs (rotations, numbered from 3 to 6, or the third displacement 

component in 2D problems), or add extra features to the elements (see [23,24] for phase field 

implementation in Abaqus) through a user element (UEL) routine [25]. One approach of particular 

interest has been proposed by Chester [26] to solve coupled thermo-chemo-mechanical problems in 

polymers (this work has been applied in [27] for a simple adsorption process). In this work, a UEL has 

been developed that activated an extra DOF (not numbered between 1 and 6, for displacements and 

rotations, nor NT11), in addition to the introduction of a relevant weak formulation as specified in 

[25]. Such DOFs are included by default in the Abaqus element library for ‘coupled temp-

displacement’ procedures, but they are hidden and cannot be accessed through the CAE interface or 

input files1. These DOFs, numbered from 12 to 30, correspond to NT (for ‘Nodal Temperature’) 

variables. Once activated by the UEL routine, their boundary conditions can be imposed in the input 

file and their values (NT, HFL, etc.) can be required in the output database file. 

It is worth noting that all the studies mentioned above, where an UEL was used to redefine the 

problem, have also superimposed additional layers of elements taken from the Abaqus library in order 

to visualize the results. As demonstrated in [29], it is possible to go further and extend the Abaqus 

finite element formulation by superimposing a user element to an Abaqus element: the terms that are 

not included by default in the formulation are introduced through the UEL routine and the Abaqus 

material library. The approach chosen in the present study combines the advantages of keeping the 

features of the Abaqus libraries (materials, elements, etc.) and of adding extra terms and DOFs in the 

finite element formulation by using a superimposed UEL. Thus, the implementation work is optimized 

because the mechanical behavior needs not being redefined. Even if a multidiffusion process only is 

considered here, the ultimate goal of a fully coupled mechanical-multidiffusion problem has been kept 

in mind during the developments. 
 

3 Implementation process 

 

Our strategy is presented in Figure 1: several element layers sharing the same nodes are defined, and a 

‘coupled temp-displacement’ procedure is used. In this example, the three UEL layers have the same 

                                                             
1
 Their presence can be inferred from [28], sections 28.3.6 and 28.6.5, in the ‘Output’ subsection. 
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numbers of DOFs and, assuming that DOFs 11, 12, and 13 represent diffusion DOFs between which a 

reaction may occur, all user elements layers share the same UEL routine with different parameters. 

Each layer, in this example, has a specific role: 

(i) Layer 1: the Abaqus element (with mechanical DOFs 1 to 3, and 11) involves the mechanical 

behavior, one diffusion phenomenon (related to DOF 11), and its effects on the mechanical 

behavior. The problem is strongly coupled (i.e., the diffusion and the mechanical problems are 

solved simultaneously), but no effect of mechanics on diffusion is possible here (except with 

developments beyond the scope of this work). 

(ii) Layer 2: this UEL layer activates DOF 12 through its related weak formulation (here, 

diffusion, but it could be any other physical or chemical process), and the coupling between 

mechanics and DOF 11 (for no complete strong thermo-mechanical coupling is included by 

default in Abaqus). 

(iii) Layer 3 has the same role as layer 2, but for DOF 13. 

(iv) Layer 4 defines only the relation between DOFs 12 and 13. 

 

Figure 1. Principle of the implementation of a multidiffusion process. 

It is worth noting that other approaches can be considered in the superimposition process (for instance, 

a single UEL can be used to activate DOFs 12 and 13, and to introduce all the ingredients needed in 

Abaqus). Each element layer leads to the computation of a specific stiffness matrix, performed either 

by Abaqus or by the UEL, as shown below: 

 

 

(1) 
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In the case presented in Figure 1, the stiffness matrices are 16×16 and 20×20 for the Abaqus element 

and for the UEL, respectively. At the end of the superimposition process, the stiffness matrix of the 

global problem is 24×24: due to the activation of the extra nodes, the initial Abaqus element stiffness 

matrix has increased significantly, without any other user manipulation than the activation of hidden 

DOFs. 

This strategy is applied below, where only DOFs 12 and 13 are considered, for illustration. The 

transient ‘coupled temp-displacement’ procedure is used, even if there is no coupling between DOFs 

(12,13) and (1,2,3,11) in the present work. 

 

4 Application 

 
The Gray-Scott model is considered here as a test reaction-diffusion process to be implemented. 
 

4.1 The Gray-Scott model 

 

The Gray-Scott (GS) reaction-diffusion model represents a particular case of Turing systems [30], 

where the reactions of three chemical species are focused on. These species, 𝑈, 𝑉, and 𝑃, define an 

autocatalytic system so that [21,22] 

 

 𝑈 + 2𝑉 → 3𝑉

𝑉 → 𝑃
 

 (2) 

 

The space-time evolution of species 𝑈 and 𝑉 can be obtained by solving the following system of 

differential equations:  

 

 

𝜕𝑢

𝜕𝑡
= 𝐷!∆𝑢 − 𝑢𝑣

!
+ 𝐹 1 − 𝑢

𝜕𝑣

𝜕𝑡
= 𝐷!∆𝑣 + 𝑢𝑣

!
− 𝐹 + 𝑘 𝑣

 
(3) 

 

where 𝑢 and 𝑣 denote the concentrations of species 𝑈 and 𝑉, respectively, 𝐷! and 𝐷! represent their 

diffusion coefficients, 𝐹 is the feed rate for 𝑈 and 𝑘 the kill rate for 𝑉. This reaction has been widely 

studied as a simple model to reproduce the patterns observed in several chemical reactions (not to 

speak of natural patterns [31]), as illustrated in Figure 2. 

 

CIMA (chlorite-iodide-

malonic acid) reaction in 

various experimental 

conditions [32]. 
 

FIS (ferrocyanide-iodate-

sulfite) reaction in various 

experimental conditions 

[33]. 
 

10. Sequence of patterns
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CDIMA (chlorine dioxide, 

iodine, malonic acid) 

reaction after 12, 20, 35 and 

52 minutes [34]. 
 

Belousov–Zhabotinsky 

(BZ) reaction [35] 

 

Figure 2. Examples of chemical patterns. 

 

4.2 Numerical implementation 

 

The patterns induced by the GS model have been the subject of numerous studies from the seminal 

work by Pearson [36] (see, e.g., [37-42]), including many for entertainment purposes
2
, and a 

classification of the GS patterns has been proposed (see Figure 3), depending on the (𝐹, 𝑘) values. 

Consequently, many implementations of the GS reaction can be found, based on finite differences and 

forward Euler integration scheme for efficiency reasons ([43-45], among others, and the very complete 

webpage of R. Munafo [46]), mainly in 2D. Very few [47-49] apply the finite element method, 

especially Abaqus. One study [50] includes mechanical coupling, but no indication on the 

implementation process is given, nor if extra DOFs have been introduced, unfortunately.  

We have implemented the GS reaction in Abaqus by introducing DOFs 12 and 13; the details of the 

RHS vector and of the AMATRX matrix have been adapted from [48] by considering constant 

diffusion coefficients, in particular. Computations have been performed with the ‘coupled temp-

displacement’ procedure, even if no mechanical nor temperature field is computed. In order to 

evaluate the ability of our implementation to simulate a GS process accurately, all the results are 

compared with those given by the Python script written by D. Bennewies [44]. 

 

  

 

(a) (b) 

Figure 3. (a) Types of patterns obtained with the GS reaction, and (b) their position in the (𝐹, 𝑘) plane (using 

𝐷! = 2𝐷! = 2×10
!!) as defined in [36]. For (𝐹, 𝑘) points where no pattern is specified, a constant 

homogeneous field for 𝑢 as well as for 𝑣 is expected. 

 

                                                             
2
 For instance, ‘Gray-Scott reaction diffusion’ keywords in YouTube gives 779 results. 
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the entire grid was affected by the initial 
square perturbation. The propagation was 
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red representing U = 1 and blue represent- 
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indicate the pattern found at that point in 

parameter space. There are two additional 
symbols in Fig. 3, R and B, indicating 
spatially uniform red and blue states, respec- 
tively. The red state corresponds to (U = 
l,V = 0) and the blue state depends on the 
exact parameter values but corresponds 
roughly to (U = 0.3,V = 0.25). 
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Fig. 1. Phase diagram of the reaction kinetics. 
Outside the region bounded by the solid line, 
there is a single spatially uniform state (called 
the trivial state) (U = 1, V = 0) that is stable for 
all (F, k). Inside the region bounded by the solid 
line, there are three spatially uniform steady 
states. Above the dotted line and below the 
solid line, the system is bistable: There are two 
linearly stable steady states in this region. As F 
is decreased through the dotted line, the non- 
trivial stable steady state loses stability through 
Hopf bifurcation. The bifurcating periodic orbit 
is stable for k < 0.035 and unstable for k > 
0.035. No periodic orbits exist for parameter 
values outside the region bounded by the solid 
line. 

. Ig. 2. The key to the map. The patterns shown in the figure are designated by Greek letters, which 
are used in Fig. 3 to indicate the pattern found at a given point in parameter space. 

Flg. 3. The map. The Greek letters 
indicate the location in parameter 
space where the patterns in Fig. 2 
were found; B and R indicate that 
the system evolved to uniform blue 

0.06 
and red states, respectively. 
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4.3 Configuration studied 

 

The configuration studied is a square domain 2.5×2.5 mm
2
, which is meshed with 250×250 fully 

integrated linear square elements (i.e., with an element size of 0.01×0.01 mm
2
), over which as many 

user elements are superimposed for the activation of DOFs 12 and 13 (representing the concentrations 

of 𝑈 and 𝑉, respectively) and for the integration of the reaction-diffusion process. A transient ‘coupled 

temp-displacement’ procedure is applied. Periodic boundary conditions are prescribed to DOFs 12 and 

13 along the border of the domain, as set in [44]. The following initial conditions for 𝑢 and 𝑣 are 

defined using a DISP user subroutine: 

 

 𝑥   ∈   Ω   ⇒ 𝑢 = 0.5 − 0.01𝛿 𝑥 ;   𝑥   ∉   Ω   ⇒ 𝑢 = 1

𝑥   ∈   Ω   ⇒ 𝑣 = 0.25 + 0.01𝛿 𝑥 ;   𝑥   ∉ Ω   ⇒ 𝑣 = 0
 

(4) 

 

where Ω is a rectangular domain 0.125(1+  𝛿)×0.125(1+  𝛿) with 𝛿   ∈ [0,1]a random perturbation. 

Finally, 𝐷! and 𝐷! have been set to 10
-5

 mm
2
/s and 2.10

-5
 mm

2
/s, respectively. Several 𝐹, 𝑘  

parameters have been considered, as listed in Table 1. 

Table 1. Reaction parameters considered (among those of [44]). 

� 0.006 0.022 0.026 0.046 0.062 

𝑘 0.037 0.049 0.061 0.063 0.0609 

Expected 

pattern 

[44,46] 

Propagating 

wavefronts 

(Type ξ) 

Chaotic 

oscillations 

(Type β) 

Solitons 

(Type λ) 

Worms 

(Type µ) 

Negatons 

(Type π) 

 

4.4 Results 

 

The Abaqus results for 𝑢 (NT12) and 𝑣 (NT13) are presented in Figure 4(a) to 8(a), with the 

corresponding Python reference results for 𝑢 shown on (b). All Abaqus computations have been 

performed with a constant time increment of 10 s, while the python’s one is equal to 1 s. It can be 

observed that our implementation in the Abaqus code is able to reproduce quite well the results 

obtained with another software, for various configurations.  

It may be noted that the U-skate geometries exhibited by Munafo [41,46]) could not be generated, as 

in [44]. 

 

  

(a) (b) 

Figure 4. (a )  𝑢 and 𝑣  fields obtained with Abaqus and (b) 𝑢 field computed with python following [44], using 

𝐹, 𝑘 = 0.006,0.037  at 𝑡 = 800  𝑠. 
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(a) (b) 

Figure 5. Same as Figure 4, with F, k = 0.022,0.049  at t = 800  s. 

 

  

(a) (b) 

Figure 6. Same as Figure 4, with F, k = 0.026,0.061  at t = 2500  s. 

 

  

(a) (b) 

Figure 7. Same as Figure 4, with F, k = 0.046,0.063  at t = 5000  s 

 

  

(a) (b) 

Figure 8. Same as Figure 4, with F, k = 0.062,0.0609  at t = 5000  s 

 

5 Discussion 

 

An important feature observed in our simulations is a non constant velocity of the pattern front, with a 

strong influence of the 𝐹, 𝑘  parameters. This behavior is consistent with results obtained by other 

methods, especially in [44]. From the Figure 4 to 8, it might be observed that the front velocity 

computed by Abaqus has the same order of magnitude than the one obtained using Python. 

We have also investigated the effects of the element size and of the time increment (see [46] for a 

more complete investigation of the time increment influence). The influence of the element size is 

illustrated in Figure 9 for 𝐹, 𝑘 = 0.006,0.037 . When the element size increases, the generated 
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pattern is strongly influenced by the mesh structure and tends to a square rather than a circle. 

Moreover, the velocity of the pattern front is increased because of a rapidly vanishing 𝑉 field that 

annihilates the reaction process. 

 

(a) Element size: 

0.012 mm2 

 

(b) Element size: 

0.0252 mm2 

 

(c) Element size: 

0.052 mm2 

 

Figure 9. Influence of the element size on the Abaqus results at 𝑡 = 800  𝑠 

for u (left) and v (right), with F, k = 0.006,0.037 . 

 

In contrast, decreasing the time increment has no influence on the Abaqus results and on their 

consistency with [44], except for 𝐹, 𝑘 = 0.022,0.049  where the intensities of the pattern 

oscillations decrease and a steady state is finally reached for 𝑡 about 3400 s. For this configuration, the 

influence of the time increment is shown in Figure 10: when it is decreased from 10 s to 1 s, no steady 

state is reached with Abaqus up to 5000 s and chaotic oscillations are observed, as in [44]. 

 

(a) Reference pattern 

for 𝑢 [44] 

 

(a) Element size: 

0.012 mm2, time 

increment: 10 s 
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(b) Element size: 

0.0252 mm2, time 

increment: 1 s 

 

Figure 10. Influence of the time increment on the Abaqus results at 𝑡 = 5000  𝑠 for 𝑢 (left) and 𝑣 (right), with 

F, k = 0.022,0.049 . 

 

6 Conclusion 

 

An appropriate application of user elements allows the extension of Abaqus capabilities, including the 

modification of library elements, the activation of hidden DOFs, and the addition of various physical 

processes with or without couplings. This study has been focused on the activation of DOFs and on the 

addition of chemical reactions in Abaqus. An application to the Gray-Scott model has been made 

successfully. However, this model, though spectacular, has very complex features in term of spatio-

temporal evolution, intimately linked with the used parameters. This complexity leads to some 

difficulties in the definition of the finite element setup in terms of time increment and mesh. Further 

work will extend the proposed approach to 3D simulations, reactions involving 3 species or more, and 

mechanical coupling. 

To include mechanical interactions, especially, it will be only necessary to introduce in the UELs the 

related contribution to the weak formulation. Furthermore, a 4
th

 layer might be added to include the 

coupling between DOF 11 and mechanical fields. Equation (1) thus becomes 

 

 

 

(5) 
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