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Dynamic estimation of homography transformations
on the special linear group for visual servo control

Ezio Malis, Tarek Hamel, Robert Mahony and Pascal Morin

Abstract— In the last decade, many vision-based robot
controllers have been designed using Cartesian information
encoded in the homography transformation that links two
images of a planar object. For any approach, the performance
of the closed-loop system depends on the quality of the homog-
raphy estimates obtained. In this paper, we exploit the special
linear Lie-group structure of the set of all homographies to
develop a dynamic observer to estimate homographies on-
line. The resulting estimates are effective and can be used
to improve closed-loop response of several visual servoing
algorithms.

I. INTRODUCTION

Visual servo control uses the visual information acquired
by one or multiple cameras [10], [11], [5] in order to
control a robot with respect to a target. This robotic task
can be considered as the regulation of a task function
that depends on the robot configuration and the time [20].
In the last decade, many vision-based robot controllers
have been designed using Cartesian information encoded
in the homography transformation that links two images
of a planar object. For example, the homography can be
decomposed [8], [17] to explicitly reconstruct the pose
(the translation and the rotation in Cartesian space) of the
camera. Thus, the design of the task function can be done
directly in the Cartesian space as, for example, in [22],
[15], [2]. The task function can also be defined in both
the Cartesian space and the image, i.e. the rotation error is
estimated explicitly and the translation error is expressed
in the image (see, for example, [16], [6], [7]). These visual
servoing approaches make it possible not only to perform
the control in the image but also to demonstrate analytically
the stability and robustness of the control law [15]. For
any of the standard methods, a measure (on-line or off-
line) of some 3D information concerning the observed
target is needed. Indeed, the pose reconstruction using
the homography estimation is not unique (two different
solutions are possible) [8], [17]. In order to choose the
good solution, it is necessary to have additional information
such as an estimate of the vector normal to the target
plane. To avoid this requirement, an approach has been
recently proposed that uses the homography matrix directly,
without explicitly extracting the rotation and translation
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[1]. An advantage of such an approach is to avoid poor
conditioning of the structure decomposition of homography
matrices at certain configurations.

In all cases, however, the performance of the closed-
loop system depends on the quality of the homography
estimates obtained and it is of interest to consider how to
improve these estimates. In the case of visual servo control
applications, where the homographies vary continuously
with time, it is of interest to consider a dynamical observer
(or filter) that achieves temporal smoothing of the data
estimates. There has been a surge of interest recently
in nonlinear observer design for systems with certain
invariance properties [21], [9], [14], [3] that have mostly
been applied to applications in robotic vehicles [18], [19].
From these foundations there is an emerging framework for
observer design for invariant systems on Lie groups [12],
[4], [13].

In [1], the authors proposed to identify the set of all
homographies that can be measured by a moving camera
continuously observing a planar surface with the special
linear group SL(3). In this paper, we exploit the special
linear Lie-group structure of the set of all homographies
to develop a dynamic observer to estimate homographies
on-line. The proposed homography observer is based on
constant velocity invariant kinematics on the Lie group. We
assume that the velocity is unknown and propose a non-
linear observer for both the homography and the velocity
estimates. We prove the existence of a Lyapunov function
for the system, that guarantees almost global stability and
local exponential stability around the desired equilibrium
point. Thus, we obtain a high quality temporal smoothing
of the homography data along with a velocity estimate.
The estimation algorithm has been extensively tested in
simulation and on real data. The resulting estimates will
be highly effective in improving closed-loop response of
visual servo algorithm.

After the introduction, Section II provides a recap of the
Lie group structure of the set of homographies. The main
contribution of the paper is given in Section III. Sections
IV and V provide an experimental study with simulated
and real data. They are followed by a short paragraph of
conclusions.

II. THEORETICAL BACKGROUND

A homography is a mapping between two images of a
planar scene P . Let p = (u, v) represent the pixel coordi-
nates of a 3D point ξ ∈ P as observed in the normalized
image plane of a pinhole camera. Let A (resp. B) denote



projective coordinates for the image plane of a camera
A (resp. B), and {A} (resp. {B}) denote its frame of
reference. A (3×3) homography matrix H : A → B defines
the following mapping: pB = w(H, pA), where

w(H, p)=

[
(h11u + h12v + h13)/(h31u + h32v + h33)
(h21u + h22v + h23)/(h31u + h32v + h33)

]

The mapping is defined up to a scale factor. That is, for
any scaling factor µ 6= 0, pB = w(µH, pA) = w(H, pA).
If we suppose that the camera continuously observes the
planar object, any homography can be represented by a
homography matrix H ∈ SL(3) such that:

H = γK

(
R +

tn>

d

)
K−1 (1)

where K is the upper triangular matrix containing the
camera intrinsic parameters, R is the rotation matrix rep-
resenting the orientation of {B} with respect to {A}, t is
the translation vector of coordinates of the origin of {B}
expressed in {A}, n is the normal to the planar surface P
expressed in {A}, d is the orthogonal distance of the origin
of {A} to the planar surface, and:

γ = det

(
R +

tn>

d

)−
1

3

=

(
1 +

n>Rt

d

)−
1

3

Correspondingly, knowing the camera intrinsic parameters
K, any full rank 3× 3 matrix with unitary determinant can
be decomposed according to (1) (see [8] for a numerical
decomposition and [17] for the analytical decomposition).
Note that there exist two possible solutions to the decom-
position. The planar surface P is parametrized by

P = {ξ ∈ {A} | n>ξ = d}

For any two frames {A} and {B} whose origins lie
on the same side of the planar surface P then n>Rt >
−d by construction and the determinant of the associated
homography det(H) = 1.

The map w is a group action of SL(3) on R2:

w(H1, w(H2, p)) = w(H1H2, p)

where H1, H2 and H1H2 ∈ SL(3). The geometrical
meaning of this property is that the 3D motion of the
camera between views {A} and {B}, followed by the 3D
motion between views {B} and {C} is the same as the 3D
motion between views {A} and {C}.

Remark 2.1: The local parametrization given by (1) is
singular when {A} and {B} are collocated. That is, when
t = 0, the differential of the mapping defined by (1) is
degenerate. Indeed, in this case the normal to the plane n
is not observable. The singularity of the parametrization
does not affect the validity of the correspondence H ≡
SL(3), however, it does mean that the parametrization (1)
is very poorly conditioned for homography matrices close
to SO(3). This is another fundamental reason why it is
preferable to do both image based visual servo control
and temporal smoothing directly on the homography group
rather than extracting structure variables explicitly. 4

The Lie-algebra sl(3) for SL(3) is the set of matrices
with trace equal to zero: sl(3) = {X ∈ R

3×3 | tr(X) = 0}.
The adjoint operator is a mapping Ad : SL(3)×sl(3) →

sl(3) defined by

AdHX = HXH−1, H ∈ SL(3), X ∈ sl(3).

For any two matrices A,B ∈ R
3×3 the Euclidean matrix

inner product and Frobenius norm are defined as

〈〈A,B〉〉 = tr(AT B) , ||A|| =
√
〈〈A,A〉〉

Let P denote the unique orthogonal projection of R
3×3

onto sl(3) with respect to the inner product 〈〈·, ·〉〉

P(H) :=

(
H −

tr(H)

3
I

)
∈ sl(3). (2)

The projection onto the complementary subspace (the
span of I in R

3×3) is defined by

P
⊥(H) := H − P(H) =

tr(H)

3
I. (3)

Clearly one has 〈〈P(H), P⊥(H)〉〉 = 0

III. NONLINEAR OBSERVER ON SL(3)

Consider the left invariant kinematics defined on SL(3)

Ḣ = HA (4)

where H ∈ SL(3) and A ∈ sl(3). A general framework
for nonlinear filtering on the Special Linear group is
introduced. The theory is developed for the case where
A is assumed to be unknown and constant. The goal is to
provide a set of dynamics for an estimate Ĥ(t) ∈ SL(3)
of H(t) and an estimate Â(t) ∈ sl(3) of A to drive the
estimation error H̃ = Ĥ−1H to the identity matrix I , and
the estimation error Ã = A − Â to zero.

The estimator filter equation of Ĥ is posed directly on
SL(3). It includes a correction term derived from the error
H̃ . We consider an estimator filter of the form




˙̂
H = Ĥ

(
Ad

H̃
Â + α(Ĥ,H)

)
, Ĥ(0) = Ĥ0,

˙̂
A = β(Ĥ,H), Â(0) = Â0.

(5)

This yields the following expression for the dynamics of
the estimation error (H̃, Ã) = (Ĥ−1H,A − Â):





˙̃
H = H̃

(
Ã − Ad

H̃−1α
)

˙̃
A = −β

(6)

with the arguments of α and β omitted to lighten the
notation. The main result of the paper is stated next.

Theorem 3.1: Assume that the matrix A in (4) is con-
stant. Consider the nonlinear estimator filter (5) along with
the innovation α and the estimation dynamics β defined as





α = −kHAd
H̃

P(H̃T (I − H̃)) , kH > 0

β = −kAP(H̃T (I − H̃)) , kA > 0
(7)

with the projection operator P : R
3×3 → sl(3) defined by

(2). Then, for the estimation error dynamics (6),



i) All solutions converge to E = Es ∪ Eu with:

Es = (I, 0)

Eu = {(H̃0, 0) : H̃0 = λ(I + (λ−3 − 1)vv>, v ∈ S
2}

where λ < 0 is the unique real solution of the equation
λ3 − λ2 + 1 = 0.

ii) The equilibrium point Es = (I, 0) is locally exponen-
tially stable.

iii) Any point of Eu is an unstable equilibrium. More
precisely, for any (H̃0, 0) ∈ Eu and any neighborhood
U of (H̃0, 0), there exists (H̃1, Ã1) ∈ U such that
the solution of System (6) issued from (H̃1, Ã1)
converges to Es.

Proof of Theorem 3.1:
Proof of Part i) : Let us consider the following candidate
Lyapunov function

V (H̃, Ã) =
1

2
‖I − H̃‖2 +

1

2kA

‖Ã‖2

=
1

2
tr((I − H̃)T (I − H̃)) +

1

2kA

tr(ÃT Ã),
(8)

The derivative of V along the solutions of System (6) is

V̇ = −tr((I − H̃)T ˙̃
H) +

1

kA

tr(ÃT ˙̃
A)

= −tr((I − H̃)T H̃Ã − (I − H̃)T H̃Ad
H̃−1α)

−
1

kA

tr(ÃT β)

Knowing that for any matrices G ∈ SL(3) and B ∈ sl(3),
tr(BT G) = tr(BT

P(G)) = 〈〈B, P(G)〉〉, one obtains:

V̇ = 〈〈P(H̃T (I − H̃)), Ad
H̃−1α〉〉

− 〈〈Ã, P(H̃T (I − H̃)) +
1

kA

β〉〉 (9)

Introducing the expressions of α and β (Eq. (7)) in the
above equation yields

V̇ = −kH ||P(H̃T (I − H̃)||2 (10)

The derivative of the Lyapunov function is negative semi-
definite, and equal to zero when P(H̃T (I − H̃) = 0. The
dynamics of the estimation error is autonomous, i.e. it is
given by





˙̃
H = H̃

(
Ã + kHP(H̃T (I − H̃))

)

˙̃
A = kAP(H̃T (I − H̃))

(11)

Therefore, we deduce from LaSalle’s theorem that all
solutions of this system converge to the largest invariant
set contained in {(H̃, Ã) : P(H̃T (I − H̃)) = 0}.

We now prove that, for System (11), the largest invariant
set E contained in {(H̃, Ã)|P(H̃T (I − H̃)) = 0} is equal
to Es ∪ Eu.

We need to show that the solutions of System (11)
belonging to {(H̃, Ã)|P(H̃T (I−H̃)) = 0} for all t consist
of all fixed points of Es ∪ Eu. Note that Es = (I, 0)
is clearly contained in E. Let us thus consider such a
solution (H̃(t), Ã(t)). First, we deduce from (11) that ˙̃A(t)

is identically zero since P(H̃T (t)(I − H̃(t))) is identically
zero on the invariant set E and therefore Ã is constant. We
also deduce from (11) that H̃ is solution to the equation
˙̃
H = H̃Ã. Note that at this point one cannot infer that
H̃ is constant. Still, we omit from now on the possible
time-dependence of H̃ to lighten the notation.

Since P(H̃T (I − H̃)) = 0, we have that

H̃>(I − H̃) =
1

3
trace(H̃>(I − H̃))I (12)

which means that H̃ is a symmetric matrix. Therefore, it
can be decomposed as:

H̃ = UDU> (13)

where U ∈ SO(3) and D = diag(λ1, λ2, λ3) ∈ SL(3) is a
diagonal matrix which contains the three real eigenvalues
of H̃ . Without loss of generality let us suppose that the
eigenvalues are in increasing order: λ1 ≤ λ2 ≤ λ3.
Plugging equation (13) into equation (12), one obtains:

D(I − D) =
1

3
trace(D(I − D))I

Knowing that det(D) = 1, the λi’s satisfy the following
equations:

λ1(1 − λ1) = λ2(1 − λ2) (14)
λ2(1 − λ2) = λ3(1 − λ3) (15)

λ3 = 1/(λ1λ2) (16)

which can also be written as follows:

λ1 − λ2 = (λ1 − λ2)(λ1 + λ2) (17)
λ1 − λ3 = (λ1 − λ3)(λ1 + λ3) (18)

λ3 = 1/(λ1λ2) (19)

First of all, let us remark that if λ1 = λ2 = λ3 then
λ1 = λ2 = λ3 = 1. This solution is associated with the
equilibrium point Es = (I, 0).

If λ1 = λ2 < λ3 then:

1 = λ2 + λ3 (20)
λ3 = 1/(λ2

2) (21)

where λ2 ∈ (−1, 0) is the unique real solution of the
equation λ3

2 − λ2
2 + 1 = 0. This solution is associated with

the equilibrium set Eu.
If λ1 < λ2 = λ3 then:

1 = λ1 + λ2 (22)
λ1 = 1/λ2

2 (23)

so that λ2 is also solution of the equation λ3
2−λ2

2 +1 = 0.
But this is impossible since we supposed λ1 < λ2 and the
solution of the equation is such that −1 < λ2 < 0 and
0 < λ1 = 1/λ2

2 < 1.
If λ1 6= λ2 6= λ3, then:

1 = λ1 + λ2 (24)
1 = λ1 + λ3 (25)

λ3 = 1/(λ1λ2) (26)



which means that λ2 = λ3. This is in contradiction with
our initial hypothesis.

In conclusion, H̃ has two equal negative eigenvalues
λ1 = λ2 = λ < 0 (λ is the unique real solution of the
equation λ3 −λ2 +1 = 0) and the third one is λ3 = 1/λ2.
Writing the diagonal matrix D as follows:

D = λ(I + (λ−3 − 1)e3e
>

3 )

and plugging this equation into equation (13), the homog-
raphy for the second solution (λ1 = λ2) can be expressed
as follows:

H̃ = λ(I + (λ−3 − 1)(Ue3)(Ue3)
>)

Setting v = Ue3, we finally find that H̃ must have the
following form:

H̃ = λ(I + (λ−3 − 1)vv>)

where v is a unitary vector: ‖v‖ = 1 and λ is the unique
real constant value that verifies the equation λ3−λ2 +1 =
0.

It remains to show that Ã = 0. The inverse of H̃ is

H̃−1 = λ−1(I + (λ3 − 1)vv>)

The derivative of H̃ is
˙̃
H = λ(λ−3 − 1)(v̇v> + vv̇>)

so that

Ã = H̃−1 ˙̃
H = (λ−3 − 1)(I + (λ3 − 1)vv>)(v̇v> + vv̇>)

Knowing that v>v̇ = 0, this equations becomes:

Ã = (λ−3 − 1)(v̇v> + vv̇> + (λ3 − 1)vv̇>)

and knowing that λ3 = λ2 − 1, we obtain:

Ã = (λ−3 − 1)(v̇v> + vv̇> + (λ2 − 2)vv̇>) (27)
= (λ−3 − 1)(v̇v> − vv̇> + λ2vv̇>) (28)

Since v̇v> − vv̇> = [[v]×v̇]×, we finally obtain

Ã = (λ−3 − 1)([[v]×v̇]× + λ2vv̇>)

Since [[v]×v̇]× is a skew-symmetric matrix, the diagonal
elements of Ã are aii = (λ−3 − 1)λ2viv̇i. Knowing that
each aii is constant we have two possible cases. The first
one is aii = 0 for each i. Then v is constant so that H̃
is also constant and Ã = 0. If there exists i such that
aii 6= 0, then there exists i such that aii < 0. This is due
to the fact that Ã ∈ sl(3) and therefore

∑
i
aii = 0. In this

case, the corresponding vi diverges to infinity because viv̇i

is a strictly positive constant. This contradicts the fact that
‖v‖ = 1. This concludes the proof of Part i) of the theorem.

Proof of Part ii) : We compute the linearization of System
(11) at Es = (I, 0). Let us define X1 and X2 as elements
of sl(3) corresponding to the first order approximations of
H̃ and Ã around (I, 0):

H̃ ≈ (I + X1) , Ã ≈ X2

Substituting these approximations into (11) and discarding
all terms quadratic or higher order in (X1, X2) yields

(
Ẋ1

Ẋ2

)
=

(
−kHI3 I3

−kAI3 0

)(
X1

X2

)
(29)

Since kH , kA > 0, the linearized error system is
exponentially stable. This proves the local exponential
stability of the equilibrium (I, 0).

Proof of Part iii) : First, we remark that the function V
is constant and strictly positive on the set Eu. This can
be easily verified from (8) and the definition of Eu, using
the fact that on this set Ã = 0, H̃T H̃ = H̃2 = λ2I +
( 1

λ2 − λ)vvT , and tr(vvT ) = 1 since ‖v‖ = 1. We denote
by Vu the value of V on Eu. The fact that Vu is strictly
positive readily implies (in accordance with Part ii)) that
Es is an asymptotically stable equilibrium, since V is non-
increasing along the system’s solutions, and each of them
converges to Es∪Eu. Using the same arguments, the proof
of Part iii) reduces to showing that for any point (H̃0, 0) ∈
Eu, and any neighborhood U of this point, one can find
(H̃1, Ã1) ∈ U such that

V (H̃1, Ã1) < Vu (30)

Let H̃(.) denote a smooth curve on SL(3), solution of
˙̃
H = H̃C with C a constant element of sl(3) that will be
specified latter on. We also assume that (H̃(0), 0) ∈ Eu.
Let f(t) = ‖I − H̃(t)‖2/2 so that, by (8), f(0) = Vu. The
first derivative of f is given by

ḟ(t) = −tr((I − H̃(t))T ˙̃
H(t))

= −tr((I − H̃(t))T H̃(t)C)

= −〈〈P(H̃T (t)(I − H̃(t))), C〉〉

For all elements (H̃0, 0) ∈ Eu, one has P(H̃T
0 (I − H̃0)) =

0, so that ḟ(0) = 0. We now calculate the second order
derivative of f :

f̈(t) = tr( ˙̃
H(t)T ˙̃

H(t)) − tr((I − H̃(t))T ¨̃
H(t))

= tr( ˙̃
H(t)T ˙̃

H(t)) − tr
(
(I − H̃(t))T ˙̃

H(t)C
)

where we have used the fact that C is constant. Evaluating
the above expression at t = 0 and replacing ˙̃

H(0) by its
value H̃(0)C yields

f̈(0) = ‖H̃(0)C‖2 − tr
(
(I − H̃(0))T H̃(0)C2

)
(31)

When (H̃0, 0) ∈ Eu, one has

H̃2
0 = λ2I + (

1

λ2
− λ)vvT = H̃0 + (λ2 − λ)I

Therefore, we deduce from (31) that

f̈(0) = ‖H̃(0)C‖2 + λ(λ − 1)tr(C2) (32)

Since (H̃(0), 0) ∈ Eu, there exists v ∈ S
2 such that

H̃(0) = λI +( 1

λ2 −λ)vvT . From this expression and using
the fact that λ3 − λ2 + 1 = 0, one verifies that

‖H̃(0)C‖2 = λ2‖C‖2 + (
1

λ2
− λ)tr(CT vvT C) (33)



Now let us set C = [v]× with [v]× the skew-symmetric
matrix associated with the cross-product by v, i.e. [v]×y =
v × y ∀y. Clearly, C ∈ sl(3). Then, it follows from (32)
and (33) that

f̈(0) = λ2‖C‖2 + λ(λ − 1)tr(C2)

= λ2tr(vT

×v×) + λ(λ − 1)tr((v×)2)

= −λ2tr((v×)2) + λ(λ − 1)tr((v×)2)

= −λtr((v×)2) = 2λ‖v‖2 = 2λ < 0

Therefore, there exists t1 > 0 such that for any t ∈ (0, t1),

f(t) ≈ f(0) + tḟ(0) + t2/2f̈(0)

≈ Vu + t2/2f̈(0) < Vu

Eq. (30) follows by setting (H̃1, A1) = (H̃(t), 0) with t ∈
(0, t1) chosen small enough so as to have (H̃(t), 0) ∈ U .
This concludes the proof of Part iii) and the proof of the
theorem.

IV. SIMULATIONS WITH GROUND TRUTH

We validated the proposed observer with several sim-
ulations. In this section, we illustrate and discuss three
examples. We use the known ground truth to assess the
quality of the homography and velocity estimations.

In order to simulate a real experiment, we build a
sequence of reference homographies, starting from an
initial homography H0 ∈ SL(3). The reference set of
homographies was built using the following formula:

Hk+1 = Hk exp(A∆t + Qk∆t)

where A ∈ sl(3) is a constant velocity, Qk ∈ sl(3) is a
random matrix with Gaussian distribution, and ∆t is the
sampling time (in the simulation we set the variance to
σ = 0.1). By building the homographies in this way, we
guarantee that the measured Hk ∈ SL(3), ∀k.

We implemented a discretized observer in order to
process the data. In all examples the gains of the observer
were set to kH = 2 and kA = 1.

In the figures, we show a (3×3) table of plots. Each plot
represents an element of a (3×3) matrix.

In this simulation the initial “error” for the homography
is chosen at random and it is very large. The initial velocity
estimate Â0 is set to zero. Figure 1 shows that, after a fast
transient, the estimated homography converges towards the
measured homography. Figure 2 shows that the estimated
velocity also converges towards the true one.

V. EXPERIMENTS WITH REAL DATA

In this section, we present results obtained with real
data. In the first image the user selects a rectangular area
of interest. The homographies that transform the area of
interest in the current image are measured using the ESM
visual tracking software1 [1]. Figure 3 shows four images
extracted from the sequence Corkes. The first image in the
figure shows a red rectangle containing the area of interest
that must be tracked in all the images of the video sequence.

1Available for download at http://esm.gforge.inria.fr

h11 h12 h13

h21 h22 h23

h31 h32 h33

Fig. 1. Red line: the measured homography matrix H . Blue line: the
observed homography Ĥ .

a11 a12 a13

a21 a22 a23

a31 a32 a33

Fig. 2. Red line: the true homography velocity A. Blue line the observed
homography velocity Â.

For each image of the sequence, the output of the ESM
visual tracking algorithm is the homography that encodes
the transformation of each pixels of the rectangular area
from the current to the first image.

The measured homographies are the input of the pro-
posed nonlinear observer. In this experiment the gains were
kH = 5 and kA = 1. The filtering effect of the observer
on the estimated homography are visible in Figure 4.

In this experiment with real data, the velocity A is
unknown and not constant. Nevertheless, when the velocity
varies slowly the observer is able to give us an approxima-
tion of the velocity.



image 1 image 50

image 100 image 180
Fig. 3. Images from the Corkes sequence. The red quadrilateral represents
the tracked area. The visual tracking is correctly performed in real-time.
However, the noise in the images and modeling errors affect the accuracy
of the measured homographies.

VI. CONCLUSION

In this paper, we proposed an observer for the homo-
graphies defined on SL(3) and their velocities defined on
sl(3). We proved that the observer is almost globally stable.
We also proved that isolated critical points exist but that
they are far from the equilibrium point and unstable. We
performed several simulations with ground truth to validate
the theoretical results. Experiments with real data show that
the observer performs well even when the constant velocity
assumption does not hold. Future work will be dedicated
to the application of such observer to improve vision based
control.
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