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Abstract— This paper concerns the stability analysis of
image-based visual servoing methods with respect to un-
certainties on the depths of the observed object. In the
recent past, research on image-based visual servoing has
been concentrated on potential problems of stability and on
robustness with respect to camera calibration errors. Only
little attention, if any, has been devoted to the robustness of
image-based visual servoing to depth estimation errors. It is
generally believed that a rough approximation of the depth
distribution is sufficient to ensure the stability of the control
law. In this paper, we prove that the robustness domain is
not so wide and that an extreme care must be taken when
approximating the depth distribution.

I. INTRODUCTION

Visual servoing is a very flexible method for the control
of uncalibrated dynamic systems evolving in an unknown
environment. Typical applications of visual servoing are
the positioning of a robot and the tracking of objects using
the information provided by an in-hand camera. Several
vision-based control laws have been proposed in the
literature [1]. Contrarily to model-based visual servoing
methods, image-based visual servoing does not need the
knowledge of the full model of the target [2]. On the other
hand, it is necessary to provide some information about
the depths of the object in the camera frame. It is generally
believed that a rough approximation of the depth distribu-
tion is sufficient to ensure the stability of the control law.
However, if the environment is completely unknown and
the robot is uncalibrated the stability of the visual servoing
in the presence of depth estimation errors, can become a
serious issue. In the recent past, research on the stability of
image-based visual servoing has been concentrated on the
solution of convergence problems [3]. Indeed, image based
is a local method which, even in the absence of calibration
errors, can fail if the initial camera displacement is too
big [3]. In order to avoid these potential convergence
problems several possible approaches have been proposed.
In hybrid approaches, some global information is intro-
duced by estimating the camera displacement between the
current and reference views [4] [5] [6]. The rotation of
the camera is thus controlled directly in the Cartesian
space while some image-based information is used to
control the translation. The image-based information used
in [4] consists of only one image point. Thus, the method
does not need the estimation of the depths of all other
points and it is stable for any positive approximation

of the depth of point [7]. On the contrary, other hybrid
approaches [6] and [5] use all available information in
the image and thus they need the estimation of the depth
distribution. More recently, a partitioned approach [8] has
been proposed in order to avoid the camera displacement
reconstruction but the approach is also strongly dependent
on the depth distribution estimation. For this reason, the
stability analysis of hybrid (except for [7]) and partitioned
approaches is as difficult as the stability analysis of the
standard image-based visual servoing. Another solution to
potential stability problem of the image-based approach
is provided by interpolation approaches. These methods
define a path in the image by interpolating initial and
reference image features [9] [10]. Thus, the error in the
image is maintained small at each iteration of the control
law. Even if interpolation approaches are an elegant so-
lution to potential convergence problems of the standard
image-based visual servoing, a fundamental theoretical
question stands: how is the image-based visual servoing
robust with respect to calibration errors ? Due to the
complexity of the problem, only few theoretical results
have been obtained concerning the stability analysis of
image-based visual servoing in the presence of calibration
errors. The theoretical analysis has been carried out only
in very simple cases [11] [12] [13], often considering a
simplified model for the camera intrinsic parameters but
always supposing that the depth distribution was perfectly
estimated. In this paper, we investigate the robustness of
the image-based visual servoing method with respect to
errors on the depth distribution. The analysis proposed
in this paper is not limited to purely image-based visual
servoing methods but it could also be extended to recent
hybrid and partitioned methods which use several image-
based features in their control law [6], [5], [8].

II. THEORETICAL BACKGROUND

A. Perspective projection

Let F0 be a frame attached to an object represented
by the homogeneous coordinates of a discrete set of n
3D points X i = (Xi,Yi,Zi,1) (i = {1,2, ...,n}). Let F be
the current camera frame and let the origin of the frame
coincide with the center of projection. Let the plane of
projection be parallel to the plane (−→x ,−→y ). Without loss
of generality we can suppose that the distance between the



two planes is 1. A 3D point X i ∈ P
3 is projected to the

point mi ∈ P
2 with normalized homogeneous coordinates:

mi =
1
Zi

[
R0 t0

]
X i = (xi,yi,1) (1)

where R0 and t0 are respectively the rotation and the
translation between frame F0 and F . Pinhole cameras
perform a perspective projection of a 3D point. The
information measured by the camera is an image point:

pi = K mi = (ui,vi,1) (2)

where the upper triangular matrix K contains the camera
intrinsic parameters. Using an approximation K̂ of the
camera intrinsic parameters K and a measured image point
pi it is possible to compute the corresponding normalized
point from equation (2): m̂i = K̂−1pi. Obviously, if the
camera intrinsic parameters are perfectly known K̂ = K
then the normal coordinates are perfectly estimated m̂i =
mi.

B. Image-based visual servoing

Consider the (2n×1) vector s = (s1,s2, ...,sn), where
si = (xi,yi) is the (2×1) vector containing the normalized
coordinates extracted from mi. The derivative of si with
respect to time is:

ṡi = Li(Zi,si) v

where v is the velocity of the camera and Li is the (2×6)
interaction matrix [2] which can be decomposed into two
(2×3) sub-matrices Li =

[
Ai Bi

]
:

Ai(Zi,si) =
1
Zi

[
−1 0 xi
0 −1 yi

]
(3)

Bi(si) =

[
xiyi −(1+ x2

i ) yi
(1+ y2

i ) −xiyi −xi

]
(4)

If we consider the derivative of vector s we have:

ṡ = L(z,s) v

where L = (L1,L2, ...,Ln) is the (2n×6) interaction ma-
trix. Again, L can be decomposed into two (2n×3) sub-
matrices:

L(z,s) =
[

A(z,s) B(s)
]

where A = (A1,A2, ...,An) and B = (B1,B2, ...,Bn). Due
to the form of matrix A(z,s) we also have:

A(z,s) = D(z) C(s)

where:

D(z) = diag

(
1
Z1

,
1
Z1

,
1
Z2

,
1
Z2

, ...,
1
Zn

,
1
Zn

)

is a (2n×2n) diagonal matrix containing the depth distri-
bution z. Consider the following task function [2]:

e = L̂+(s− s∗)

where L̂+ is the pseudo-inverse of an approximation of
the true (2n×6) interaction matrix. In [2], the matrix L̂+

is supposed to be constant while in this paper we consider
the most general case when the matrix is not constant. In
that case, the derivative of the task function is:

ė =
dL̂+

dt
(s− s∗)+ L̂+ṡ = (O(s− s∗)+ L̂+L) v (5)

where O(s − s∗) is a 6 × 6 matrix such that O(s −
s∗)|s=s∗ = 0. Consider the following control law:

v = −λ e (6)

In order to compute the control law it is necessary to
provide the approximated interaction matrix L̂.

III. STABILITY ANALYSIS

Plugging equation (6) into equation (5), we obtain the
following closed-loop equation:

ė = −λ (O(s− s∗)+ L̂+L)e (7)

It is well know from control theory that the non-linear sys-
tem (7) is locally asymptotically stable in a neighborhood
of s = s∗ if and only if the linearized system is stable:

ė = λQe (8)

where Q =−L̂+L|s=s∗ . The linear system (8) is asymptot-
ically stable if and only if Q has eigenvalues with negative
real part:

real(eig(Q)) = real(eig(−L̂+L)) < 0

The matrix depends Q = Q(K̂,K, ẑ,z) on two set of
unknown parameters. Obviously, if K = K̂ and ẑ = z then
Q = I and the system is stable. The objective of the
robustness analysis is to known if the system is stable
in the presence of unavoidable calibration errors. Note
that, an adaptive estimation of the depth distribution is
possible only supposing that the robot is calibrated and in
the presence of enough disparity in the image.

A. Known camera intrinsic parameters

Let us suppose that the camera parameters are perfectly
known (i.e. K̂ = K). Thus, the normalized points are
perfectly estimated ŝ = s and the uncertainties on the
estimated interaction matrix only depends on the depth
distribution ẑ:

L̂(ẑ,s) =
[

A(ẑ,s) B(s)
]

It is easy to verify that the estimated sub-matrix A(ẑ,s)
can be written as a function of the true sub-matrix A(z,s):

A(ẑ,s) = D(ẑ) C(s) = Γ−1(ẑ,z)A(z,s) (9)

where, setting γi = Ẑi/Zi the ratio between the estimated
and true depths, the diagonal matrix Γ is:

Γ = D(z)D−1(ẑ) = diag
(
γ1,γ1,γ2,γ2, ...,γn,γn

)



From equation (9) one can deduce that:

L(z,s) =
[

ΓA(ẑ,s) B(s)
]

Setting ∆ = Γ− I one can deduce that:

L = L̂+∆
[

A(ẑ,s) 0
]

Setting Â = A(ẑ,s), the matrix Q is:

Q = −L̂+L = −I−
[

L̂+∆Â 0
]

If L̂ is full rank, the pseudo-inverse of the matrix can be
written as:

L̂+ =

[
Â\

B̂\

]

where Â\ is a generalized inverse of Â (i.e. Â\Â = I) and
B̂\ is a generalized inverse of B̂ (i.e. B̂\B̂ = I). Note also
that Â\B̂ = 0 and B̂\Â = 0. Matrix Q can be rewritten as:

Q = −I−

[
Â\

B̂\

][
∆Â 0

]
= −

[
I+ Â\∆Â 0

B̂\∆Â I

]

Setting again ∆ = Γ− I:

Q =

[
Q11 Q12
Q21 Q22

]
=

[
−Â\ΓÂ 0
−B̂\ΓÂ −I

]

Thus, the closed-loop matrix is block lower triangular. In
this case, it is well known that the eigenvalues of Q are
the eigenvalues of the two (3×3) matrices Q11 and Q22.
Since Q22 =−I its eigenvalues are negative for any choice
of the depth distribution. The analysis is limited to the
eigenvalues of the following matrix:

Q11 = −Â\ΓÂ =
n

∑
i=1

γiÂ
\
i Âi

where Â\
i

are sub-matrices of matrix Â. Note that:

Â\Â =
n

∑
i=1

Â\
i Âi = I

The first important results of the analysis is that the depth
distribution can be estimated up to a positive scalar factor.
The scalar factor only influence the performance of the
servoing but not its stability since it does not change the
sign of the eigenvalues. Thus, without loss of generality
we can factor γ j > 0 from the sum:

Q11 = −γ j

n

∑
i=1

ψiÂ
\
i Âi = γ jF

where ψi = γi/γ j and, obviously, ψ j = 1. We will see in
section III-A.2 how it is possible to select the best j. Since
γ j > 0, Q11 is stable if and only if F is stable. Therefore,
we can focus on the stability of F.

1) Necessary and sufficient conditions: The eigenval-
ues of F are the roots of the characteristic polynomial:

λ 3 − tr(F)λ 2 +
1
2
(tr(F)2 − tr(F2))λ −det(F) = 0

where tr and det are respectively the trace and the determi-
nant of a matrix. The necessary and sufficient conditions
for the roots of the polynomial to have negative real part
are obtained from the Routh-Hurwitz Theorem:

tr(F) < 0

tr(F2)− tr(F)2 < 0

det(F) < 0

tr(F)(tr(F)2 − tr(F2))−2det(F) < 0

The necessary and sufficient conditions can be used
to test the stability of the servoing and to obtain the
robustness domain (see for example the simulations in
section IV-A). However, for a large number of parameters
the computation time can be high. In some cases, it is
preferable to have a simple test in order to know, given
a bound on the precision of depths estimates |ψi| ≤ ψ i,
if the eigenvalues are negative. In the next section, we
present simple sufficient conditions in order to obtain an
approximation of the robustness domain.

2) Sufficient conditions: Since ψ j = 1, we can rewrite
the (3×3) matrix F as:

F = −Â\
jÂ j −

n

∑
i=1,i6= j

ψiÂ
\
i Âi

from equation Â\
j
Â j = I−∑n

i=1,i6= j Â\
i
Âi, thus:

F = −I−
n

∑
i=1,i6= j

δiÂ
\
i Âi = −I+E(δ )

where δ = (δ1,δ2, ...,δm) and δi = ψi−1. Matrix F can be
regarded as a perturbation of the matrix −I, where E(δ )
is the perturbation matrix. Let us define the SPECTRAL

VARIATION of a matrix M̃ with respect to a matrix M as
[14]:

svM(M̃) = max
i

min
j
|λ̃i −λ j|

The Bauer-Fike theorem [14] states that:

svM(M̃) ≤ ‖M̃−M‖

In our case, applying the Bauer-Fike theorem to the
spectral variation F with respect to −I we obtain:

sv(F) = max
i

|λ̃i +1| ≤ ‖E(δ )‖

Thus, a simple sufficient condition for the stability of F
is ‖E(δ )‖ < 1. Indeed, if ‖E(δ )‖ < 1 then:

max
i

|λ̃i +1| < 1 (10)



which implies λ̃i < 0. From the definition of spectral
variation, all others eigenvalues λk ∀k are such that |λ̃k +

1| ≤ |λ̃i + 1|. Thus, |λ̃k + 1| < 1 which means λ̃k < 0 ∀k.
Now, since E(δ ) = −∑n

i=1,i6= j δiÂ
\
i
Âi :

‖E‖ ≤
n

∑
i=1,i6= j

|δi|‖Â\
i Âi‖

setting µi = ‖Â\
i
Âi‖ > 0, the condition (10) can be im-

posed by bounding the previous inequality:

n

∑
i=1,i6= j

µi|δi| < 1 (11)

In the inequality, each error |δi| is weighted by the scalars
µi. The smaller is µi the larger can be |δi|. Thus, the best
choice for the point γ j is µ j = maxk µk. Inequality (11)
define a polygonal region whose axis are weighted by the
scalars µi. The volume of the region V = ∏n

i=1,i6= j µi gives
a measure of the robustness domain. If we suppose that
the precision of measurement is the same for all points
|δi| ≤ δ then:

δ < 1/
n

∑
i=1,i6= j

µi (12)

This is a very simple test for the local stability.

B. Unknown camera intrinsic parameters

If the camera intrinsics parameters are unknown the
analysis is not simplified as in the previous case. The
matrix Q is not upper triangular any more and depends on
the estimated camera intrinsics parameters K̂ [11]. Thus,
to test the stability of the system one must consider all
six eigenvalues of the matrix. Consequently, the stability
regions are reduced and a bigger precision in the depth
estimation is required.

IV. SIMULATION RESULTS

The stability results obtained in the previous section
have been tested with simulations. Three set of tests have
been carried out. In the first set, the target is planar. In this
case, whatever is the number of points on the plane, the
stability analysis only depends on the estimated normal
to the plane. Thus, from the necessary and sufficient
conditions we obtain the exact robustness domain. In the
second set, we consider a 3D object. In that case, the
sufficient conditions provide an approximate robustness
domain. Finally, in the last simulations we show the
influence of the errors of the depth distribution on the
visual servoing.

A. Planar objects

When the object is planar, the depths are related to the
normal n to the plane and proportional to the distance d
of the plane from the center of projection:

Zi = d/n>m

where n is a unit vector which is a function of two param-
eters n(θ ,φ) = (cos(θ)sin(φ),sin(θ)sin(φ),cos(φ)). The
estimated depth Ẑi can be obtained using an approximation
of n̂(θ̂ , φ̂) and d̂:

Ẑi = d/n̂>m

then:

γi =
Ẑi

Zi
=

d̂
d

n>mi

n̂>mi
and ψi =

γi

γ j
=

n>mi

n̂>mi

n̂>mi

n>mi

As expected, the stability of the visual servoing does
not depends on d̂ but only on n̂. Figure 1 show the
stability regions as a function of (θ̂ , φ̂ ) for an increasing
number of points on the same plane. The true normal
is n = (0.5,0,0.866) (i.e. θ = 0 and φ = π/6). In the
green region all the eigenvalues are negatives, the system
is locally asymptotically stable. In the red region at least
one eigenvalue is positive, and the system is locally
unstable. Finally, the normals obtained in the blue region
are discarded since we obtain at least a negative depth,
which is impossible. When considering 3 image points
(see Figure 1(a)), the corresponding stable region is not
so wide. Note that, adding a point inside the triangle
defined by the others points (see Figure 1(c)) only slightly
modifies the stability region (compare Figure 1(b) and (d)).
Thus, when learning the reference image, one can think
that it is probably better to chose points spread in the
image. Unfortunately, the stability analysis shows that it
is not always true. Indeed, if we add 4 more points as in
Figure 1(e), the stability region in green is even reduced
(see Figure 1(f)). Note that, if we have absolutely no idea
on the 3D position of the plane, a simple guess n̂ = (0,0,1)
makes the visual servoing unstable. On the other hand, if
many points are well distributed in all the image as in
Figure 1(g) the stability region considerably increase (see
Figure 1(h)). However, even in this very favorable case,
there exist an important red instability region.

B. Non-planar objects

When the target is non-planar, it is easier to use
the sufficient condition. In the simulation, we show the
stability regions for 3 and 4 points since they can be
represented in a plot. In the first case, we find µ1 = 0.1861
and µ2 = 0.2188 see Figure 2(a)). After adding a point
not on the plane, we find µ1 = 0.1861, µ2 = 0.2188 and
µ3 = 0.2235 see Figure 2(b)). For higher dimensional
problems, the volume of the convex polyhedron gives an



idea of the precision required in the measurement of the
depth distribution.
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Fig. 1. Stability regions for a planar object.
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Fig. 2. Stability regions for a non planar object.

C. Visual servoing

We simulated several examples to show the usefulness
of the theoretical analysis proposed in the paper. For

all examples, the initial camera displacement is very
small: t = −

[
0,001 0,001 0,001

]
meters and

r =
[

0,48 0,96 1,44
]

degrees. Firstly, we verified
that the visual servoing is locally stable when the sufficient
conditions are satisfied. From equation (12) we find that
if |δi| < δ = 0.06 then the visual servoing is stable. The
true depths are z∗ = (0.91,0.83,0.87,0.86,0.91,0.89) m
while the estimated depth is an average of the true
depths ẑ∗ = (0.88,0.88,0.88,0.88,0.88,0.88) m. Note
that the maximum error is 6 % of the true depth. From
the data given above, we find δ1 = 0.047, δ2 = 0.052,
δ4 = 0.017, δ5 = 0.039 and δ6 = 0.021. Thus, the
sufficient condition is verified and the visual servoing
is stable. However, it must be noticed that if an error
of 10 % on the intrinsic parameters is added, the visual
servoing is not stable any more. This prove that, in
the presence of camera calibration errors the stability
region is reduced. In the first simulation, we show
that if the necessary and sufficient conditions are not
verified the visual servoing is unstable. The true depth
distribution is z = (0.94,0.85,0.94,0.85,0.95,0.94) m,
while the estimated depth distribution is ẑ =
(0.91,0.91,0.91,0.91,0.91,0.91) m. Despite the maximal
error on the estimated depths is only 8% of the true depth,
one eigenvalue is positive. Thus, even starting very close
to the reference position, after iteration 200 the translation
and rotation errors start to grow (see Figures 3(c) and
3(d)). In the beginning, the control law seems to be stable
since the others dominant eigenvalues have negative
real part. Note that, in this case the sufficient condition
is also not satisfied and we know in advance that the
servoing will be unstable. Thus, it is useful to know if
the precision on the depth distribution is good enough
before starting the servoing.
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Fig. 3. Unstable image-based visual servoing.



The second simulation is similar to the first one but
with the addition of a Gaussian noise (σ = 1 pixel) in the
image. The noise in the image accelerate the divergence
of the servoing (see Figure 4).
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Fig. 4. Unstable image-based visual servoing with noise.

V. CONCLUSION

In this paper, we have shown that extreme care must
be taken when approximating the depth distribution of
a target for image-based visual servoing. Indeed, the
stability region in the presence of errors on the depth
distribution is not very large. As a consequence, if the
target geometry is completely unknown it is necessary to
accurately estimate the depth. Future work will be devoted
to the off-line estimation of the depth distribution with a
precision bounded by those obtained from the sufficient
condition proposed in this paper.
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