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Abstract— This paper presents a new approach to active
affine reconstruction without an exact knowledge of the
robot’s kinematic model nor camera intrinsic parameters.
Affine reconstruction from perspective image pairs is easy
if the motion of the camera between the two images is a
pure translation. If the robot is not well calibrated, a pure
translation achieved with an open loop control would lead
to a bias in the reconstruction. The problem can be solved
by using a 2 1/2 D visual servoing technique in order to
close the loop and control the camera trajectory. The affine
reconstruction is equivalent to the estimation of the depths
of the 3D points of the scene. Thus, affine reconstruction is
very useful to implement several visual servoing approaches
which need an estimation of the depths.

I. INTRODUCTION

The design of many vision-based control approaches [1]
often demands some a priori knowledge on the geometry
of the environment. For example, in order to implement an
image-based visual servoing using image points as visual
features [2] we need to know the depths of all the points
(i.e. the depth distribution). Even if the depths can be
approximated, it has been shown in [3] that errors on
the depth distribution can make the vision-based control
unstable. It is therefore an important issue to obtain a
good estimation of the information needed to implement
a vision-based control law. Affine reconstruction is a
possible solution to the problem since it allows to recover
the depth distribution of a set of points. In contrast to full
Euclidean reconstruction [4], affine reconstruction need
weaker assumptions on the system. Firstly, there is no need
to accurately calibrate the robot or the camera. Secondly,
only two views of the same set of points are sufficient.
Moreover, it is well know that affine reconstruction from
perspective image pairs is very easy if the motion of the
camera between the two images is a pure translation [5]
(the direction and the distance of the translation can be
arbitrary and unknown). Obviously, a pure translation can
be obtained if the camera is mounted on a well calibrated
robot manipulator. On the other hand, if the robot is not
well calibrated or mobile (i.e. with unavoidable drifting)
it is not possible to perform an open-loop pure translation.
The goal of this paper is to propose an active affine
reconstruction method in which the pure translation is
performed closing the loop with a visual servoing tech-

nique. The robot and the camera are not well calibrated
and the model of environment is completely unknown.
Thus, standard position-based visual servoing cannot be
used [6]. Note that, a reference image is not available
to achieve the task. On the other hand, some epipolar
geometry constraints can be used in a visual servoing
scheme as proposed in [7]. The key idea is to define
some constraints that the final (but unknown) image points
must verify in order to have a pure translation between
the initial and final images. However, the visual servoing
method proposed in [7] cannot be used since it also
needs the knowledge of the depth distribution. Instead,
we use the 2 1/2 D visual servoing [8] since it does
not need any knowledge on the depth distribution. Using
such a technique, the active affine reconstruction does not
need any accurate robot calibration. The visual servoing
is performed without any model of the object nor any
reference image. Only the current and initial images are
used to control the camera. Once the pure translation has
been achieved the affine reconstruction is straightforward.

The paper is organized as follows. In Section II we
review some theoretical background on projective geome-
try. In Section III we describe which constraints on the
unknown final image define a pure translation of the
camera. Section IV presents the control law used to close
the loop. Finally, the simulations described in Section V
prove the validity of the proposed approach.

II. THEORETICAL BACKGROUND

We consider in the paper an object which can be
described by a set of 3D points. Let F0 be a frame
attached to the object. The homogeneous coordinates,
with respect to F0, of a discrete set of n 3D points are
X i = (Xi, Yi, Zi, 1) (i = {1, 2, ..., n}) .

A. One view geometry

Let C be the center of projection coinciding with the
origin of the camera frame F . Let the image plane be
parallel to the plane (−→x ,−→y ). A 3D point X i is projected
to the image point xi:

xi =
1

Zi

K
[

R0 t0

]
X i = (xi, yi, 1) (1)



where R0 and t0 are respectively the rotation and the
translation between frame F0 and F , and the triangular
matrix K contains the camera internal parameters:

K =




f sf u0

0 rf v0

0 0 1


 (2)

f is the focal length (pixels), u0 and v0 are the coordinates
of the principal point (pixels), s is the skew and r is the
aspect ratio.

B. Two view geometry

The fundamental relationship between the i-th point in
two different images is:

Z2i

Z1i

x2i = 2
∞

H1

(
x1i +

1

Z1i

c1

)
(3)

where 2
∞

H1= K
2
R1 K

−1 is the homography of the plane
at infinity and c1 ∝ Kt is the epipole in the first image.
Equation (3) represents a set of non-linear equations in

the unknowns 2
∞

H1, c1, Z2i

Z1i

and 1
Z1i

. If we can estimate
1

Z1i

up to a scale factor (i.e. we have done an affine
reconstruction), the relationship between the unknowns
2
∞

H1, 2
∞

H1 c1 and Z2

Z1

becomes linear. Thus, one benefit
of estimating an affine reconstruction of the object will
be a linear reconstruction algorithm for the camera pose.
Note also that equation (3) can be rewritten as:

Z1i

Z2i

x1i = 1
∞

H2

(
x2i +

1

Z2i

c2

)
(4)

where 1
∞

H2=
2
∞

H

−1

1 and c2 ∝ 2
∞

H1 c1 is the epipole in
the second image.

C. Affine reconstruction

As already mentioned, affine reconstruction is easy if
the camera motion is a pure translation (i.e. 2

R1 = I). In

that case, equation (3) is simplified since 2
∞

H1= I :

Z2i

Z1i

x2i = x1i +
1

Z1i

c1 (5)

Obviously, if the camera motion is a pure translation
then c2 ∝ c1. If we are able to perform a desired pure
translation (i.e. c1 is known), then the set of equations
becomes linear in the unknowns 1

Z1i

and Z2i

Z1i

.

III. CONSTRAINTS FOR A PURE TRANSLATION

In this paper, we propose to perform a pure translation
(starting from any initial position) closing the loop with
visual servoing. In order to do this, we need to define some
constraints since we do not have any reference image.
First of all, the rotation between the initial and the final
position must be the identity matrix. Then, by choosing
the epipole c1 in the first image (see Figure 1(a)) one
can fix the direction of translation (indeed c1 ∝ Kt and
t ∝ K

−1
c1).
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(b) Unknown final image

Fig. 1. Two view geometry for a pure translation.

As a consequence, the epipole c2 in the second image
is constrained to be the same as c1 if the camera motion
is a pure translation (see Figure 1(b)). Note that the red
points in Figure 1(b) are not the reference points (we do
not have any reference image) but simply the same points
of Figure 1(a). The points in the unknown final image
image must belong to the epipolar lines (the blue lines in
Figure 1(b)) defined by:

l2i = x1i × c1 ∝ (cos(ϕi), sin(ϕi),−γi)

The point x2i in the final image can be anywhere on the
corresponding epipolar line such that l

>

2i
x2i = 0. Despite

a reference image cannot be defined, one reference point
x
∗
20 can be arbitrarily fixed on the epipolar line and this

will fix the distance of the translation. Indeed, equation (5)



can be written for i = 0 as:
Z∗

20

Z10
x
∗

20 = x10 +
1

Z10
c1 (6)

Setting ρ20 =
Z
∗

20

Z10

, it is possible to compute a reference:

ρ∗20 =
‖c1 × x10‖

‖c1 × x∗
20‖

(7)

where × represents the cross product between two vec-
tors. Therefore, the distance of the translation in the
Cartesian space is fixed (even if unknown): 1

Z10

‖c1‖ =
‖ρ∗20x

∗
20 − x10‖. The reference point x

∗
20 can be fixed by

computing the epipolar line:

l20 = x10 × c1 (8)

If x
∗
20 belongs to l20 then:

l20 • x
∗

20 = l
>

20 x
∗

20 = 0

Let vector τ 20 = (sin(ϕ),−cos(ϕ), 0) be the tangent
vector to the line l20. The reference point x

∗
20 in the final

image is:
x
∗

20 = x10 + ∆x τ 20

where ∆x represents the displacement along the epipolar
line (if ∆x = 0 then x

∗
20 = x10).

IV. THE CONTROL LAW

The constraints defined in the previous section can be
imposed by using a 2 1

2D visual servoing technique. At
each iteration of the control law we can compute an
estimation of the rotation 2

R1 between the current and
the initial image [8]. This rotation must be the identity
if we want to perform a pure translation. At the first
iteration the current and the initial image coincide and
the rotation is indeed the identity. However, due to bad
calibration of the robot the rotation must be kept small
by minimizing the error of rotation uθ, where u and θ
are respectively the axis and angle of rotation extracted
from 2

R1. It is important to notice that in order to obtain
an exact estimation of the rotation the camera parameters
are needed. An error on camera calibration will affect
the measure of 2

R1 unless we are able to obtain 2
∞

H1.
The reference epipole c1 can be fixed by the user. If the
camera is perfectly calibrated this is equivalent to fix the
direction of the translation since t ∝ K

−1
c1. Once the

epipole is fixed, we choose one of the points (x10) in the
first image. From equation (8) it is possible to compute
the epipolar line passing through that point. As already
mentioned in the previous section, we can set a reference
x
∗
20 and ρ∗20. It is also possible to define a sequence of

reference points along the epipolar line by setting ∆x(t)
such that ∆x(0) = 0 and ∆x(T ) = ∆x. Thus, we obtain
a reference trajectory for the point:

x
∗

20(t) = x10 + ∆x(t) τ 20

Similarly, it is possible to define a reference trajectory
ρ∗20(t) by solving equation (6) ∀x∗

20(t):

ρ∗20(t) =
‖c1 × x10‖

‖c1 × x∗
20(t)‖

where ρ∗20(0) = 1. Note that we must impose ρ∗
20(t) 6= 0,

thus x
∗
20(t) 6= c1 ∀t. Let us define the current signal s =

(x20, log(ρ20),uθ). The corresponding reference signal is
s
∗(t) = (x∗

20(t), log(ρ∗20(t)),0). Thus, the camera can be
controlled by defining the following task function:

e = s − s
∗(t) = (x20 − x

∗

20(t), log(ρ20/ρ
∗

20(t)),uθ)

The derivative of the task function is:

ė = L v −
∂s

∗(t)

∂t

where the (6×6) matrix L is the interaction matrix [8]
and v = (ν,ω) the velocity of the camera. The inter-
action matrix depends on the unknown camera intrinsic
parameters K, and on the unknown depth Z10 in the initial
frame. In order to control the movement of the camera
we impose an exponential decreasing of the task function
ė = −λe, where λ is a positive scalar tuning the speed of
the convergence. Thus, we use the following control law:

v = −λL̂
−1

e + L̂
−1 ∂s

∗(t)

∂t
(9)

where L̂ is an approximation of the interaction matrix.
Using this control law, the closed-loop equation is:

ė = −λLL̂
−1

e + (I − LL̂
−1)

∂s
∗(t)

∂t

It is well known from control theory that if LL̂
−1 > 0 and

limt→∞

∂s
∗(t)
∂t

= 0 then the task function e converge to
zero and the signal s converges to s

∗. Note that, since the
reference trajectory s

∗(t) is fixed by the user, it can always
be chosen bounded and such that limt→∞

∂s
∗(t)
∂t

= 0.
Control issues (for example the proof of the robustness of
the control law) are beyond the aim of this paper and they
have already been solved in previous work [8]. However,
it must be underlined that we do not need an exact cali-
bration of K nor Z10 for the convergence of the servoing.
For simplicity, we consider in the experiments only the
case when the references x

∗
20 and ρ∗20 are constant. In that

case, ∂s
∗(t)
∂t

= 0 in equation (9). The final results will be
the same for the final affine reconstruction.

V. EXPERIMENTAL RESULTS

The objective of the experiments is to achieve pure
translations of a camera mounted on an uncalibrated 6
d.o.f. manipulator arm. The camera observe a set of
n = 16 points randomly distributed in the 3D space. We
suppose that we do not know the model of the object
(thus, the translation cannot be achieved by a standard
position-based control law [6]). Moreover, the robot and
the camera are both badly calibrated. Thus, an open loop
control of the rotation and the translation would lead to
incorrect results. We use instead the control law proposed
in the previous section. For all experiments, the red circles
in the image represents the points in the initial position
while the yellow circles represents the points in the final
(and initially unknown) image. The dashed green lines
represents the epipolar lines.



A. Simple translations

In order to achieve a simple pure translation along the
→

x
axis one must fix the epipole in the initial image at infinity:
c = (1, 0, 0). Once the direction of translation has been
defined, the amplitude of the displacement can be fixed in
the image. In this experiment, we fixed the displacement
of the reference point to 80 pixels. Had the robot and
the camera been perfectly calibrated the trajectory of
the points in the image would have followed the green
epipolar lines in Figure 2. Instead, the trajectory of the
points in the image follows the blue lines in Figure 2.
However, at the end of the servoing, the current point x20

coincide with x
∗
20 and all the points belongs to the epipolar

lines. The rotational error in Figures 2(d) converge to zero.
Thus, the camera motion is a pure translation and the depth
distribution can be easily computed up to a scalar factor.
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Fig. 2. Translation along
→

x .

A simple pure translation along the
→

y axis can be
obtained by fixing the epipole at infinity: c = (0, 1, 0).
In this experiment, we fixed again the displacement of
the reference point to 80 pixels. Figure 3 shows similar
results to whose of the previous experiment. The starting
position is the same but now the pure translation is along
the

→

y axis. Finally, in order to achieve a simple pure
translation along the

→

z axis one must fix the epipole
to be the principal point of the image: c = (u0, v0, 1).
If the camera is not calibrated, the translation will not
be exactly in the

→

z direction. In this experiment, we
suppose to exactly know the principal point and we fixed
the displacement of the reference point to 40 pixels. The
effect of bad calibration on the position error visible in
Figures 4(d) and (e) are compensated by the control law
given in Figure 4(b) and (c).
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B. Generic translation

In this experiment, the translation is generic and the
epipole is chosen out of the image c1 = (417, 583, 1).
The corresponding true direction of translation is t ∝
(0.27, 0.53, 0.80). Obviously, we can exactly choose the
true direction of translation only if camera intrinsic pa-
rameters are perfectly known. In this experiment, we use
a rough approximation of them: f̂ = 800, û0 = 275, v̂0 =
225 instead of f = 500, u0 = 250, v0 = 250. Thus the
robot move only approximatively in the desired direction.
However, since the goal is to perform any pure transla-
tion, we can fix a direction even if the camera intrinsic
parameters are completely unknown. In this experiment,
a Gaussian noise with standard deviation σ = 0.1 pixels
is added to image point coordinates. As in the previous
experiments, the rotation is controlled in order to perform
a pure translation. Without such a control, noise and robot

calibration errors would cause large estimation estimation
errors on the depth distribution. The servoing is stopped
when the estimated rotation is less than 0.1 degrees, the
error on the image coordinates of the reference point is less
than 0.1 pixels and the error on the depth ratio is less than
0.001. At the end of the servoing, the camera displacement
is practically a pure translation. At the end of the servoing,
the rotational error in Figures 5(d) is closed to zero. Thus,
the motion of the camera is practically a pure translation.
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Fig. 5. Generic translation with image noise.

C. Affine reconstruction

The experiment in the previous section has been re-
peated 10 times with image noise standard deviation
increasing from σ = 0 to σ = 1 pixels. At the end of the
servoing, the depth distributions for the initial and final
positions are computed solving the linear system:

Z2ix2i = Z1ix1i + c1 i ∈ {1, 2, 3, ..., n} (10)



From equation (10) we compute the depth distribution z1

and z2 up to scale in the initial and final camera frames:

z1 = k1(Z11, Z12, ..., Z1n) (11)

z2 = k2(Z21, Z22, ..., Z2n) (12)

The scalar factors k1 and k2 are eliminated by computing
“normalized” depth distributions:

d1 = (1, Z12/Z11, ..., Z1n/Z11) (13)

d2 = (1, Z22/Z21, ..., Z2n/Z21) (14)

where Z11 and Z21 are the estimated depth of the first
point (any point can be used to normalize the distribution).
The normalized distributions are computed 1000 times in
order to average the estimation errors due to image noise.
Finally, we compute the relative error:

e1 =
100

n

n∑

i=1

|d̂1i − d1i|

d1i

e2 =
100

n

n∑

i=1

|d̂2i − d2i|

d2i

and its mean and standard deviation over all trials. Figure 6
plots the results for a displacement of 40 pixels in the
image. The reconstruction is very accurate since the mean
error is less than 5% in the worst case σ = 1. The mean
relative error (the blue line) increases (almost linearly)
with image noise as well as the standard deviation (the
red dashed lines). The accuracy of the reconstruction also
depends on the displacement in the image.Figure 7 plots
the results for a displacement of 80 pixels in the image. In
this experiment, the mean error is less than 4% in the worst
case σ = 1. The bigger is the disparity in the image the
more accurate is the estimation of the depth distribution.
However, the disparity in the image is bounded by the
size of the CCD. In order to improve the estimation of
the depth distribution, it is possible to update the affine
reconstruction to an Euclidean reconstruction. In that case,
several views of the same points are needed and an online
camera self-calibration must be computed.
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Fig. 6. Mean relative error on the depths in the initial (a) and final (b)
positions (blue lines) for a displacement of 40 pixels. The red dashed
lines represents the standard deviation.
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VI. CONCLUSION

This paper has shown that it is possible to perform
pure translation by visual servoing without any reference
image nor any knowledge on the structure of the scene.
When the camera displacement is a pure translation the
affine reconstruction of the scene is straightforward. Once
the depth of the points in the scene have been estimated
once and for all, it can be used to improve visual servoing
schemes or as an initial guess for full 3D reconstruction
of the scene. Ongoing work is devoted to implement the
algorithm on a real robot.
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