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Abstract— This paper deals with the problem occurring
when features go in or out of the image during the visual ser-
voing task. The appearance/disappearance of image features
during the control task produces discontinuities in the control
law that affect the performance of the system. In this paper,
we propose a solution in order to avoid these discontinuities by
the use of weighted image features. In particular, we redefine
the camera invariant visual servoing approach in order to take
into account the change of image features when zooming in or
out during a positioning task. Simulations and experimental
results demonstrate the improvements that can be obtained
in the performance of the vision-based control task.

I. INTRODUCTION

Visual servoing techniques have been widely investi-
gated in the last three decades [2], [5], [6]. The visibility
problem received particular attention in the recent past: a
minimum number of image features must remain in the field
of view of the camera during the servoing. Research in this
field has concentrated on visual servoing methods that are
able to keep always the object in the field of view. Path
planning in the image space [10] is an elegant solution
to the problem. When several constraints (visibility, robot
mechanical limits, etc) are simultaneously considered by
a path planning scheme, the camera trajectory is deviated
from the optimal one [11]. By using a zooming camera we
can more easily follow the planned optimal trajectory [9].
Indeed, zooming while controlling a camera [3] has the
main advantage of improving the visibility of features dur-
ing the servoing. Nevertheless, zooming to keep all features
in the field of view it is not always possible in all cases.
For this reason, we propose in this paper to study the way
of allowing the temporary disappearance of image features
during the control task. From this point of view, we can
control the camera without imposing too strict constraints
which are considered by the path planing solution and also
we can use the zoom to obtain more details of the scene
without the constraint of controlling the zoom to keep all
features in the field of view. The key idea of the proposed
approach is to allow some features to appear or disappear
from the image rather than trying to keep all of them
in the image. Note that, the appearance/disappearance of
features during a positioning task produces discontinuities
in the control task that affect to the performance of the
system. So we need to ensure that the new approach avoids
all the discontinuities in the control law produced by the
free movement of features in the image plane. To do

this, the concept of weighted features is introduced and
a smooth task function based on them is defined [12].
With this task function, and defining appropriate weight
functions, it is possible to control the camera directly
with the standard image-based visual servoing technique
but not with the invariant one. To be able to use all the
interesting characteristics of the invariant visual servoing
approach, it must be reformulated to take into account
the weighted features. Simulation and experimental results
using this new approach to the visibility problem are
presented to demonstrate the efficiency of the proposed
method. The experiments have been carried out using a 6
degrees of freedom eye-in-hand system composed by an
industrial robot and a micro-head camera. The paper is
organized as follows. In Section II, the problem with the
appearance/disappearance of image features is presented.
A solution is proposed in Section III. It is structured
in the presentation of the concept of weighted features,
the definition of a smooth task function an finally the
formulation of invariant visual servoing with them. In the
last section, some experimental results with an industrial
robot is shown.

II. THE PROBLEM OF CHANGING IMAGE FEATURES

In this section, we describe more in details the discon-
tinuity problem that occurs when some features go in/out
of the image during the vision-based control. A simple
simulation illustrate the effects of the discontinuities on the
control law and on the performances of the visual servoing.

A. What happens when features appear or disappear?

Consider a standard vision-based positioning task. The
goal is to bring the robot end-effector back to a reference
position (ξ∗) with an eye-in-hand camera. This means that
a feature vector s(ξ), which contains the information of
the current image, has to converge to a reference feature
vector s∗(ξ∗). We use the task function approach [12]
which consists in minimizing an error vector e:

e = L̂+(s − s∗) (1)

where L̂+ is the pseudo-inverse of the estimated interaction
matrix, s(ξ) = (s1, s2, · · · , sn), s∗(ξ∗) = (s∗1, s∗2, · · · , s∗n)
are the current and reference features and ξ, ξ∗ is a (6×1)
vector containing respectively the current and reference
position of the camera in the Cartesian space. A local



exponential decrease of the task function can be imposed
by choosing a proportional control law v = −λ e where
v is the velocity of the camera and λ is a positive scalar
factor which tunes the speed of convergence. When one or
more features appear or disappear during the servoing, the
features will be added to or removed from the error vector
(Figure 1). This change produce a jump discontinuity in the
control law. The magnitude of the discontinuity in control
law depends on the number of the features that go in or
go out of the image plane at the same time, the distance
between the current and reference features, and the pseudo-
inverse of interaction matrix.
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Fig. 1: What happens when an image feature appear or
disappear in the image plane.

In the case of invariant visual servoing approach, the
effect produced by the appearance/disappearance of fea-
tures is more important since the invariant space Q used
to compute the current and the reference invariant points
(q,q∗) changes with them. To show the discontinuities
produced by the appearance/disappearance of features dur-
ing the control, different experiments with simulated data
have been carried out. One of them is the control of a
camera that is moving from its reference pose due to a
perturbation and at the same time is zooming in. As the
camera is changing its focal length, the invariant visual
servoing approach has to be used to keep it in its reference
position. In Figure 2(a)(b), the discontinuities produced by
the disappearance and appearance of features can be seen.
If their magnitudes are sufficiently large, they will cause
an unwanted variation in the position and orientation of the
camera as it is shown in Figure 2. In Figure 2(c), a sharp
change in the position of the camera can be appreciated.

III. A SOLUTION TO PRESERVE THE CONTINUITY OF

THE CONTROL LAW

In the previous section, the continuity problem of the
control law due to the appearance/disappearance of features
has been shown. In this section a solution to preserve
the continuity is presented. The section is organized as
follows. First, the concept of weighted features is defined.
Then, the definition of a smooth task function is presented
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Fig. 2: Simulation of the invariant visual servoing ap-
proach: discontinuities in the control law when features
disappear.

and finally the reason to reformulate the invariant visual
servoing approach and its development is explained.

A. Weighted features

A possible solution to preserve the continuity of the
control law is to weight the features depending on their
position in the image. The weights are used in order to
anticipate in some way the possible discontinuities pro-
duced in the control law by the appearance/disappearance
of image features. The key idea in this formulation is that
every feature (points, lines, moments, etc) has its own
weight which may be a function of image coordinates (u, v)
and/or a function of the distance between feature points and
an object which would be able to occlude them, etc. In this
paper, the weights are computed by a function that depends
on the position of image feature (u, v). Representing the
weight as γy , the function that has been used and tested to
compute the magnitude of the weights is:

γy(x) =

{
e
−

(x−xmed)2n

(x−xmin)m(xmax−x)m xmin < x < xmax

0 x = {xmin, xmax}

The function weight γy(x) is a bell-shaped function which
is symmetrical respect to xmed = xmin+xmax

2
.With n, m

parameters, the shape of the bell function can be controlled.
Their values must be chosen according to the following
conditions:

{
γy(xmin + β(xmax − xmin)) ≥ 1 − α

γy(xmin +
β

2
(xmax − xmin)) ≤ α

(2)

where 0 < α < 0.5 and 0 < β < 0.5. If the conditions (2)
are verified then the following conditions are verified too:

{
γy(xmax − β(xmax − xmin)) ≥ 1 − α

γy(xmax −
β

2
(xmax − xmin)) ≤ α

(3)



where 0 < α < 0.5 and 0 < β < 0.5. In these simulations,
a camera with an image size of 500x500 pixels is chosen.
For each feature with (ui, vi) coordinates, a weight γy(x)
for its ui and vi coordinates can be calculated using the
definition of the function γy(x) and has been denoted as
(γi

u = γy(ui) and γi
v = γy(vi) respectively). For this

camera, xmin = 0, xmax = 500 and of course xmed = 250
and then n and m values can be chosen, for example if α

and β is fixed to α = 0.1 and β = 0.2 (it means that
the function loses 10% of its maximum value when the
distance of the image point from the border is the 20%
of the image size (see Figure 3(a)), then n and m values
will be 3. Finally, for every image feature, a total weight
that will be denoted (γi

uv) is computed by multiplying the
weight of its u coordinate (γi

u) by the weight of its v

coordinate (γi
v). In Figure 3(b), the total weight γi

uv ,which
has been computed for all the image points, is represented.
Looking at it carefully, we can see that the magnitude of
γi

uv tends to zero near the border and to one near the center
of the image.
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B. Smooth Task function

Suppose that n matched points are available in both
images, current and reference. Every point has a weight
γi

uv which is used to build the following task function [12]:

e = CW (s − s∗(t)) (4)

where W is a (2n × 2n) diagonal matrix where its
elements are the weights γi

uv . The derivative of the task
function,considering C constant, will be:

ė = CW (ṡ − ṡ∗) + CẆ (s − s∗) (5)

Substituting ṡ = L v in (5), we obtain:

ė = CW Lv − CWṡ∗ + CẆ (s − s∗) (6)

A simple control law can be obtained by imposing the
exponential convergence of the task function to zero:

ė = −λe (7)

where λ is a positive scalar factor which tunes the speed
of convergence:

CWLv − CWṡ∗ + CẆ(s − s∗) = −λe

v = −λ (CWL)−1e + (CWL)−1CWṡ∗ +

+ (CWL)−1 CẆ (s − s∗) (8)

Let us suppose that these weights γi
uv are varying slowly,

then Ẇ can be considered nearly equal to zero (Ẇ ≈
0). Considering this assumption, the equation (8) can be
rewritten as:

v = −λ (CWL)−1e + (CWL)−1CWṡ∗ (9)

Setting C = (W∗L∗)+ (i.e. the matrices computed with
the references values), if (CWL) > 0 then the task
function converges to zero and, in the absence of local
minima and singularities, so does the error s − s∗.

IV. APPLICATION TO INVARIANT VISUAL SERVOING

The theoretical background about invariant visual servo-
ing can be extensively found in [7][8][9]. In this section, we
modify the approach in order to take into account weighted
features. Suppose that n image points are available. The
weights γi used in the weighted invariant visual servoing
are obtained as follows:

γi =

√√√√√
n

n∑

i=1

(γi
uv)

2

· γi
uv (10)

The weights γi
uv defined in the previous section are redis-

tributed in order to have
∑

γi
2 = n. Every image point

with projective coordinates pi = (ui, vi, 1) is multiplied
by its own weight γi in order to obtain a weighted point
pγi

i = γi pi. Using all the weighted points we can compute
the following symmetric (3×3) matrix:

Sγi

p =
1

n

n∑

i=1

pγi

i pγi

i

> (11)

The image points depends on the upper triangular matrix
K containing the camera intrinsic parameter and on the
normalized image coordinates mi: pi = Kmi. Thus, we
have pγi

i = K(γimi) = Kmγi

i and the matrix Sγi

p can be
written as follows:

Sγi

p =
1

n

n∑

i=1

pγi

i pγi>

i = K Sγi

m K> (12)

where Sγi

m is a symmetric matrix which is does not directly
depend on the camera parameters:

Sγi

m =
1

n

n∑

i=1

mγi

i mγi

i

> (13)

If the points are not collinear and n > 3 then Sγi

p and Sγi

m

are positive definite matrices and they can be written, using
a Cholesky decomposition, as:

Sγi

p = Tγi

p Tγi

p
> and Sγi

m = Tγi

m Tγi

m
> (14)

From equations (12) and (14), the two transformation
matrices, can be related by:

T γi

p = K T γi

m (15)



The matrix Tγi

p defines a projective transformation and can
be used to define a point in a new projective space Qγi :

qi = Tγi

p
−1pi = Tγi

m
−1K−1pi = Tγi

m
−1mi (16)

The new projective space Qγi does not depend directly
on camera intrinsic parameters but it only depends on the
weights γi and on the normalized points. The normalized
points mi depends on a (6×1) vector ξ containing global
coordinates of an open subset S ⊂ R

3 × SO(3) (i.e. rep-
resents the position of the camera in the Cartesian space).
Suppose that a reference image of the scene, corresponding
to the reference position ξ∗ has been stored and computed
the reference points p∗

i in a previous learning step. The
camera parameters K∗ are eventually different from the
current camera parameters. We use the same weights γi

to compute the weighted reference p∗γi

i = γip
∗

i . Similarly
to the current image, we can define a reference projective
space:

q∗

i = Tγi

p∗

−1
p∗

i == T∗γi

m
−1K∗−1p∗

i = Tγi

m∗

−1
m∗

i (17)

Note that, since the weights in equations (16) and (17) are
the same, if ξ = ξ∗ then qi = q∗

i ∀ i ∈ {1, . . . , n} and the
convergence is true even if the intrinsic parameters change
during the servoing. Thus, similarly to the standard invari-
ant visual servoing, the control of the camera is achieved by
stacking all the reference points of space Qγi in a (3n×1)
vector s∗(ξ∗) = (q∗

1(t),q
∗

2(t), · · · ,q∗

n(t)). Similarly, the
points measured in the current camera frame are stacked
in the (3n×1) vector s(ξ) = (q1(t), q2(t), · · · , qn(t)).
If s(ξ) = s∗(ξ∗) then ξ = ξ∗ and the camera is back
to the reference position whatever the camera intrinsic
parameters. The derivative of vector s is:

ṡ = L v (18)

where the (3n×6) matrix L is called the interaction matrix
and v is the velocity of the camera. The interaction matrix
depends on current normalized points mi(ξ) ∈ M (mi

can be computed from image points mi = K−1 pi), on
the invariant points qi(ξ) ∈ Qγ , on the current depth
distribution z(ξ) = (Z1, Z2, ..., Zn) and on the current
redistributed weights γi. The interaction matrix in the
weighted invariant space (Lγi

qi = T
γi

mi (Lmi − C
γi

i ))is
obtained like in [8] but the term C

γi

i must be recomputed
in order to take into account the redistributed weights γi.

In order to control the movement of the camera, we use
the control law (9) where W depends on the weights pre-
viously defined and L is the interaction matrix recomputed
for the invariant visual servoing with weighted features.

V. SIMULATION RESULTS

In section II-A, the results of an experiment with simu-
lated data is presented. The goal of this simulation is the
control of a camera that is moving due to a perturbation and
zooming in. In this case, the new formulation of invariant
visual servoing with weighted features is used to control
the same camera. Comparing Figures 2 and 4(a)(b), we
can see the improvements of invariant visual servoing with
weighted features in the continuity of the control law. The

control law with this formulation is continuous (Figure
4(a)(b)) so the camera pose is also continuous without
sharp movements (Figure 4(c)(d)).
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Fig. 4: Experiment with simulated data: Invariant visual
servoing with weighted features.

VI. EXPERIMENTAL RESULTS

Experimental results has been obtained using a 7 axis
redundant Mitsubishi PA-10 manipulator (only 6 of its 7
dof have been considered). The experimental setup used in
this work also include one camera (JAI CM 536) rigidly
mounted in robot end-effector, some experimental objects
and two computers one of them with a Matrox Genesis
vision board and the other with the PA-10 controller board.
The goal of these experiments is keeping the robot in a
reference position in spite of the fact that a perturbation
is applied to the end-effector position of the robot (Figure
5). The amplitude and duration of this perturbation was
chosen to produce that some image features go out of the
image plane during the control.
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Fig. 5: Perturbation apply to the PA-10



A. Invariant visual servoing approach

We compare the weighted and un-weighted invariant
visual servoing approaches using both, a constant and a
varying interaction matrix.

1) Constant Interaction Matrix:

In this section, the interaction matrix is assumed
constant and determined during off-line step using the
desired value of the visual features and an approximation
of the points depth at the reference camera pose. Then a
perturbation is applied to the end-effector position of the
robot (Figure 5). The goal of the control is to keep the
robot in the reference position using the invariant visual
servoing approach. During the experiment, one feature go
out of the image plane (feature with (U4V4) in Figure 6a).
Due to the disappearance of this feature, a discontinuity
is produced in the control law (Figure 6c-d). In Figure
6b, the robot end-effector velocities can be seen. As it is
shown in it, the system becomes unstable due to the lost
of a feature during the control. In the second experiment,
the new formulation of invariant visual servoing with
weighted features was used. In Figure 7f, the weights of
every feature can be seen. Some features go out or are
near the border of the image plane (features 2, 3, 4). As it
is shown in Figure 7(b), the system is stable even though
one feature goes out of the image plane. The control law
in this case is continuous (Figure 7c-d). Note that you
can not appreciate the same noise in the Figure 7 than in
the Figure 6 due to the difference between limits of the
figures.
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Fig. 6: Experimental results: Robot with an eye-in-hand
camera perturbated with respect to its reference pose. The
interaction matrix is constant.

2) Variable Interaction Matrix:

In this section, the interaction matrix is now updated
at each iteration of the control law using the current
measurement of the visual features and an estimation
of the depth of each considered point. The depth can
be obtained from the knowledge of a 3D model of
the object [1]. Then a perturbation is applied to the
end-effector position of the robot (Figure 5). The goal of
the control is to keep the robot in the reference position.
During the experiment, one feature go out of the image
plane (feature with (U4V4) in Figure 8). Due to the
disappearance of this feature, a discontinuity is produced
in the control law (Figure 8b-c). This discontinuity is not
enough to produce that the system becomes unstable. In
The second experiment, the new formulation of invariant
visual servoing with weighted features was used. In
Figure 9(d), the weights of every feature can be seen.
Some features go out or are near the border of the image
plane (feature 3, 4). The system is stable even though one
feature goes out of the image plane. The control law in
this case is continuous (Figure 9(b)(c)).
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(d) Translational velocity
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(e) Joint velocities
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Fig. 7: Experimental results: Robot with an eye-in-hand
camera perturbated with respect to its reference pose. The
interaction matrix is constant.
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(b) Rotational velocity
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(c) Translational velocity
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(d) Robot joints velocities

Fig. 8: Experimental results: Robot with an eye-in-hand
camera perturbated with respect to its reference pose. The
interaction matrix is update at each iteration of the control.
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(c) Translational velocity
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(d) Robot joint velocities

Fig. 9: Experimental results: Robot with an eye-in-hand
camera perturbated with respect to its reference pose. The
interaction matrix is update at each iteration of the control.

VII. CONCLUSIONS

In this paper, a possible solution for the singular-
ities produced in vision-based control by the appear-
ance/disappearance of image features has been presented
and tested. The new approach can be used to improve both
standard image-based and intrinsic-free visual servoing ap-
proaches. Contrary to the approaches based on constrained
movements of the camera to ensure the visibility of features
during the control and on zooming to keep it, the solution
presented does not constrain the camera movements and
allows us to control the zoom with another purpose. The
camera trajectory seems to be closer to the optimal one
than the one produced by the other approaches.

REFERENCES

[1] D. Dementhon and L. Davis Modelbased object pose in 25 lines
of code. In Int. Journal of Computer Vision, 15(1/2):123–141, June
1995.

[2] B. Espiau, F. Chaumette, and P. Rives. A new approach to visual
servoing in robotics. IEEE Trans. on Robotics and Automation,
8(3):313–326, June 1992.

[3] S. Benhimane and E. Malis Vision-based control with respect to
planar and non-planar objects using a zooming camera In IEEE
International Conference on Advanced Robotics, Coimbra, Portugal,
July 2003.

[4] F. Chaumette. Potential problems of stability and convergence in
image-based and position-based visual servoing. In D. Kriegman,
G. Hager, and A. Morse, editors, The confluence of vision and control,
volume 237 of LNCIS Series, pages 66–78. Springer Verlag, 1998.

[5] K. Hashimoto. Visual Servoing: Real Time Control of Robot manipu-
lators based on visual sensory feedback, volume 7 of World Scientific
Series in Robotics and Automated Systems. World Scientific Press,
Singapore, 1993.

[6] S. Hutchinson, G. D. Hager, and P. I. Corke. A tutorial on visual servo
control. IEEE Trans. on Robotics and Automation, 12(5):651–670,
October 1996.

[7] E. Malis. Visual servoing invariant to changes in camera intrinsic pa-
rameters. In International Conference on Computer Vision, volume 1,
pages 704–709, Vancouver, Canada, July 2001.

[8] E. Malis Stability Analysis of Invariant Visual Servoing and Robust-
ness to Parametric Uncertainties. Second Joint CSS/RAS International
Workshop on Control Problems in Robotics and Automation, Las
Vegas, Nevada, December, 2002.

[9] E. Malis. Vision-based control invariant to camera intrinsic param-
eters: stability analysis and path tracking. In IEEE International
Conference on Robotics and Automation, volume 1, Washington,
D.C., USA, May 2002.

[10] Y. Mezouar, F. Chaumette Path Planning For Robust Image-based
Control In IEEE Trans. on Robotics and Automation, 18(4):534-549,
August 2002.

[11] Y. Mezouar, F. Chaumette Optimal Camera Trajectory with Image-
Based Control International Journal of Robotics Research, 22(10-
11):781-803, October-November 2003.

[12] C. Samson, M. Le Borgne, and B. Espiau. Robot Control: the Task
Function Approach, volume 22 of Oxford Engineering Science Series.
Clarendon Press, Oxford, UK, 1991.


