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Chapter

Online Canonical Polyadic
Decomposition: Application
of Fluorescence Tensors
with Nonnegative Orthogonality
and Sparse Constraint
Isaac Wilfried Sanou, Xavier Luciani, Roland Redon

and Stéphane Mounier

Abstract

The canonical polyadic decomposition (CPD) is now widely used in signal
processing to decompose multi-way arrays. In many applications, it is important to
add constraints to quickly converge on an optimal solution. In contrast to classical
CPD, we then focus on online CPD. In this context, the number of relevant factors is
usually unknown and can vary with time. We propose two algorithms to compute the
online CPD based on sparse dictionary learning. We also introduce an application
example in environmental sciences and evaluate the performances of the proposed
approaches in this context on real data.

Keywords: third order tensor decomposition, online tensor decomposition,
PARAFAC, rank variation, fluorescence spectroscopy

1. Introduction

In many fields such as psychometric [1], data mining [2], neuroscience [3],
chemometric [4], telecommunications [5], computer vision [6], and biomedical image
processing [7], use canonical polyadic decomposition (CPD) also known as PARAllel
FActor analysis (PARAFAC).

The data from these fields can be put in a multidimensional data array (or tensor).
Then, the CPD permits to decompose this array into factors (which is composed of the
number of components or rank depending to the application) that can be interpreted
by the user.

CPD algorithms can be summarized in three mains methods:

• Direct methods. These methods are based on algebraic computation such as Direct
TriLinear Decomposition (DTLD) [8], SEmi-algebraic framework for approximate
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CP decompositions via SImultaneous matrix diagonalization (SECSI) [9], and DIrect
AlGorithm for canonical polyadic decomposition (DIAG) [10].

• Alternating methods. These methods are based on least square methods, and we can
cite alternating least square (ALS) [1], hierarchical alternating least square (HALS)
[11–13], and alternating direction method of multipliers (ADMM) [14].

• Descent methods. These methods are based on traditional gradient descent. We can
cite some algorithms using stochastic gradient descent [15–17] or Nadam
optimizer [18].

By considering these algorithms, we can say that the rank of the decomposition,
namely the relevant number of factors, is known, but we find in practice that this is
not the case. Indeed, this value is unknown so we make an estimate on the order of
magnitude while a bad choice can have an impact on the factorial estimates [19].
Traditionally, two opposing approaches are used to address this situation.

• Rank estimation. Rank estimation consists in estimating the appropriate CPD rank
before the decomposition. Among these methods, we can cite the CORe
CONsistency DIAgnostic (CORCONDIA) [20], split half validation [21], or
AutoTen [22]. Though these approaches do not always allow to clearly decide
between several possible rank values.

• Overfactoring. In this method, an overestimated value is chosen, i.e., one higher than
the current rank and the CPD algorithms are designed to produce additional factors
with zero contribution [19]. Thus, in contrast, overfactoring is a posterior rank
estimation method because the appropriate rank value is inferred from the CPD.

At this stage, we have talked about offline CPD. However, in this chapter, we are
interested in online CPD. In online CPD, the data increases with the time, and the
decomposition must follow this augmentation [23].

In the context of fluorescence data and environmental sciences, the online CPD
can be summarized as follow:

• 3-way array is used. This tensor is built by concatenation of a new matrix on the
last mode. At each time we got a tensor call sub-tensor as shown in Figure 1.

• In practice, some components or the rank of the decomposition can change at
interval time from one sub-tensor to another. This phenomenon can be seen as
appear and/or disappear of component. We talk about the rank variation but
these variations are unknown.

• The goal of online CPD in this context is to update at each new time interval the
CPD factors using the factors estimated previously without performing the CPD
of the whole.

In the literature, some online CPD algorithms exist. For example, in [23], the
authors introduced two adaptive algorithms: simultaneous diagonalization tracking
(SDT) which tracks the SVD of the unfolded tensor and recursive least squares
tracking (RLST). In [24], grid-based tensor factorization algorithm (GridTF) is intro-
duced for the large tensor. Also, in [25] authors proposed OnlineCP based on ALS
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algorithms. In [26] authors introduced an online Tucker decomposition with a fixed
rank. This list is not exhaustive, and more online algorithms can be found in [27].

For the rest of the chapter, we propose an approach based on sparse dictionary
learning to compute the CPD with sparsity, nonnegativity, and orthogonality con-
straint. These constraints permit to handling unknown rank variation over time and
the better convergence. Considering the most general case, we make no assumptions
about these variations. The goal of the proposed approach is to combine dictionary
learning with LASSO [28] in a simple but appropriate way for nonnegative online
CPD. We have selected the factors of the two fixed modes from two dictionaries
which are learned and updated throughout the online process. The appropriate num-
ber of vectors is selected from a sparsity constraint on the two atoms matrices (i.e., the
CPD rank). We derived from this solution three different algorithms (one for offline
CPD and the rest for online CPD). They differ in the way that the dictionaries are
updated from one sub-tensor to another. Next, we propose an experiment semi-
controlled to obtain real fluorescence data online with rank variations. We provide out
an evaluation od our approaches with the state of the art.

Notations are introduced while recalling some basic definitions and the problem of
online CPD in the particular context of fluorescence spectroscopy and environmental
sciences in Section 2. In Section 3, the new proposed approach is described in the form
of three algorithms for computing the nonnegative CPD of a third-order tensor. Two
of these algorithms were already presented in a previous conference paper [18] and
this journal paper [27]. In Section 4, an experimental design is proposed to evaluate
the approaches. Results and comparisons with reference approach are provided and
discussed. Section 5 concludes.

2. Problem formulation

We denote tensors and sub-tensors with letter T and are of size I � J � Kð Þ
meaning that T gather K matrix of size I � Jð Þ on its last mode.

2.1 Offline CPD: Example of a fluorescence tensor

In environmental sciences, especially for fluorescence data tensors the third-order
tensor is most used. The CPD of this tensor can be used in order to characterize
fluorescent dissolved organic matters (FDOM) in natural water samples [21, 27, 29–31]
(see Figure 2).

Fluorescence data tensors are a set of 2D signals called emission and excitation
matrices (EEMs) of fluorescence measured from a set of samples. Each sample is then a
mixture of an unknown number of fluorescent components (fluorophores), and each
part of an EEM corresponds to the fluorescence intensity of one sample at a

Figure 1.
Example of a sub-tensor.
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given couple of excitation and emission wavelengths. At low concentrations, the
nonlinear model based on the Beer–Lambert law can be linearized, and it then follows
the CPD model [32]. To recover each individual emission and excitation spectra
of the fluorophores present in the different samples along with their respective
contributions can be found using the CPD. In some applications like in our case, the
decomposition factors have physical meaning and are known to be nonnegative. This
constraint allows better convergence especially when the columns of the factors are
collinear. Nonnegativity constraint can be imposed on the factors during optimization
by projecting the values of each factor matrix on 

þ [33]. This method of applying
nonnegativity constraint sometimes shows its limits in certain cases due to the change of
scale. In [34], the authors propose to solve this problem by involving two factors, ϵ and
θ∈ �1; 1f g, which multiply each factors. Nonnegativity can also be imposed by choos-
ing an optimization method [14, 17, 35] or even using an exponential variable change
[31]. In the literature, the projection method is mostly used such as in approach [14, 17,
18, 33, 36, 37]. In signal or data processing, the nonnegative CPD is usually used as a
mathematical model to fit a data tensor T of size (I, J, K):

∀i, j, k, T i,j,k ≃
bT i,j,k A,B,Cð Þ ¼

XR

r¼1

AirBjrCkr (1)

The matrices A∈
I�R
þ ,B∈

J�R
þ and C∈

K�R
þ are named the factor matrices. R is

the CPD rank. Each column of the factor matrices A, B, and C, defines the CPD factors.
We can distinguish two values of R if the CPD factors have a physical meaning:

• The define value of the tensor T :

• The maximal value of R for which all the factors have a physical meaning. We name
this value the physical rank of T : It is usually much smaller than the tensor rank.

Figure 2.
Example of the rank 4 CPD of the fluorescence tensor [18, 27].
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In the considered application, these matrices are usually full column rank so that
the Kruskal condition [38] is fulfilled and guarantees that the decomposition is unique
up to trivial scaling and permutation indeterminacy.

The euclidia distance F is the most used to the reconstruction error. With nonneg-
ative constraint, the offline CPD problem is thus given by

min F A,B,Cð Þ ¼ ∥T � bT Að ,B,CÞ∥ 2
F

n o

s:t: A≥0,B≥0,C≥0
(2)

2.2 Fluorescence tensor in online CPD

In the online case, tensor T can be seen as

• A composition of sub-tensors T n of size I, J,Knð Þ acquired at various time intervals.

• Each sub-tensor can have zero matrix in common between last and the present
sub-tensor. We call this case partition with nooverlapping.

• In opposite case, we talk about overlapping case. As explained on Figure 3, two
consecutive sub-tensors share some matrices, i.e, in this case, T n also contains
the last η EEMs of T n�1: Sub-tensor overlapping should help the factor
estimations but then the online decomposition becomes slower because we find
ourselves with a larger number of sub-tensors.

• Rank variation or fluorophore appearance and disappearance can be explained by
sea currents or pollution events, natural degradation… , in a natural marine
environment.

The physical rank of sub-tensor T n will be denoted ~Rn in this chapter, and we
recall that it is unknown. The online CPD problem with rank variation has been
clearly described in [18, 27, 39].

In short, the online CPD consists by solving Eq. (2) for each sub-tensor T n with
the nonnegative constraint. We speak of: NonNegative Online Canonical Polyadic
Decomposition (NNOnline CPD). The factor matrices estimated at time tn�1 with
the sub-tensor T n�1 are used to update the sub-tensor T n in order to reduce the
computational cost.

3. Algorithms for computing the nonnegative online canonical polyadic
decomposition with sparsity and orthogonality constraint

3.1 NNCPD for the first tensor acquired at time t0

The first sub-tensor acquired at time t0 is denoted T 0: At this time, we do not know

the value of ~R0 but we suppose that, ∀n, ~Rn < <R: We aim to rewrite the matricesA and

B as the product of sparse dictionaries DA and DB by atoms VA and VB
:

A ¼ DAVA and B ¼ DBVB (3)
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with DA I,Rð Þ and DB J,Rð Þ, respectively, and VA R,Rð Þ and VB R,Rð Þ: We expect

that DA and DB contain ~R true components on their columns. The factors without

physical meaning are R� ~R: While VA and VB have R� ~R null columns and that the
other columns form generalized permutation matrix. For instance, for R ¼ 3 and
~R0 ¼ 2, we could have ideally

A ¼
9 7 2

1 4 2

2 1 2

0

B@

1

CA

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{DA

:

0:8 0 0

0 0 0

0 0:9 0

0

B@

1

CA

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{VA

¼
7:2 1:8 0

0:8 1:8 0

1:6 1:8 0

0

B@

1

CA

We can easily estimate ~R0 by counting the number of non-null columns of A or B.
A similar problem has been studied in depth by Cohen and Gillis in [40] but for the
case in which the dictionary is known and the atom is a selection matrix. To have zeros

columns on the atoms, we thus promote the sparsity constraints on the matrices VA

and VB
: In this purpose, we will aim at minimizing their L1,1 norm. Regarding the

sparsity constraint, it is generally used for sparse tensors or to ensure the
overestimation of the rank, as mentioned above. This constraint is imposed
according to the goal we are looking for, and in our case, it is the overestimation of
the rank. The constraint can be applied to the matrices factors in the form of a
regularization term:

min x F xð Þ
zffl}|ffl{fonction

þ R xð Þ|ffl{zffl}
regularization

(4)

Figure 3.
Example of a sub-tensor.
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F(x) corresponds here to Eq. (2) and is the attachment part. R(x) is the regulari-
zation part on the matrix a, b, and c.

L1,1 norm is a classically used to promote the sparsity [41]. Indeed, it is more
tractable than the L0,0 norm. It has been used in similar contexts in [17, 35, 36, 40].
We can thus rewrite our problem as a LASSO regression problem by adding two
penalty terms to the cost function (see Appendix A).

For T ¼ T 0, we solve

min F1 DA,VA,DB,VB,C
� �� �

s:t: DA,VA,DB,VB,C≥0

where F1 ¼
1

2
∥T � bT DAVA,DBVB,C

� �
∥2F þ α∥VA∥1,1 þ α∥VB∥1,1

(5)

α>0 is a penalty term.
This approach is named sparse nonnegative CPD (SNNCPD). We resort to a sto-

chastic gradient descent (SGD) algorithm called Nadam [42, 43] in order to
solve Eq. (5). Details of the Nadam algorithm are given in Appendix B. In order

to ensure the nonnegativity of matrix entries, all the element of matricesDA,DB,C,VA,

and VB are projected on þ at each iteration [44]. We can thus differentiate the L1,1

norm, and the gradients with respect to the different variables are given by

∂F1

∂VA
¼ � DA

� �⊤
T1 �DAVA L1ð Þ⊤

� �
L1 þ α1R,R

∂F1

∂VB
¼ � DB

� �⊤
T2 �DBVB L2ð Þ⊤

� �
L2ð Þ þ α1R,R

∂F1

∂DA
¼ � T1 �DAVA L1ð Þ⊤

� �
L1 VA
� �⊤

∂F1

∂DB
¼ � T2 �DBVB L2ð Þ⊤

� �
L2ð Þ VB

� �⊤

∂F1

∂C
¼ � T3 � C L3ð Þ⊤

� �
L3ð Þ

(6)

Matrices T1,T2,T3 are obtained by unfolding the tensor T with respect to the

first, second, and third modes, respectively. L1 ¼ C⊙ DBVB
� �

,L2 ¼ C⊙ DAVA
� �

and

L3 ¼ DBVB
� �

⊙ DAVA
� �

: The matrices VA and VB are initialized as the identity matrix.

The matrices DA and DB and C are initialized with nonnegative random values. The
different steps of SNNCPD are summarized in Algorithm 1.

Algorithm 1. Sparse NonNegative Canonical Polyadic Decomposition (SNNCPD).
Initialization step

• Input: T , R overestimated

while a convergence criterion is not reached do.

Update the dictionaries DA,DB, and C using Nadam optimizer.

Update the atoms VA and VB using Nadam optimizer.
end while

• Output: (Da,Db,C,Va,Vb)
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3.2 Online step: NN-CPD for the first tensor acquired at time tn with n>0

In this step, we assume that the factors matrices An and Bn are well estimated.

3.2.1 Algorithm 1

In this approach, we allow some modification of the factors estimated at time tn�1

thanks to linear combinations as explained below. We first replace all the null columns
of An�1 and Bn�1 by columns of random numbers drawn from the standard normal
distribution. We then look for An and Bn as

An ¼ UAAn�1V
A andBn ¼ UBBn�1V

B (7)

The matrices UA and UB are square with sizes I and J, respectively. Here, UAAn�1

and UBBn�1 are our dictionaries, while VA and VB matrices are still sparse atoms.
Therefore, the optimization problem becomes

min F2 UA,VA,UB,VB,C
� �� �

s:t UA,UB,C,VB,VB ≥0

with F2 ¼
1

2
∥T � bT UAAn�1V

B,UBBn�1V
B,C

� �
∥2F

þα∥VA∥1 þ α∥VB∥1

(8)

We call this algorithm online sparse and nonnegative CPD (OSNCPD). The
different steps are.

summarized in Algorithm 2. Most details can be found in [18, 27].

Algorithm 2. Online Sparse and NonNegative CPD

• STEP 1: Initialization phase

Input: T 0, R overestimated.
Solve Eq. (5) with T ¼ T 0.
Compute matrices A0 and B0 using Eq. (3).
Output: A0,B0 and C0

• STEP 2: Online phase at time tn with n>0

Input: T n, and An�1,Bn�1.
Fill null columns of An�1,Bn�1 by random numbers and Solve Eq. (8).
Update matrices An and Bn using Eq. (7).

Output: (An,Bn,Cn and ~Rn)

• STEP 3: Return to Step 2 with n = n + 1

The advantage of this approach is therefore its flexibility. The inconvenient is that
the matrices to optimize are larger which make the algorithm more expensive in time.
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We call this algorithm online sparse and nonnegative CPD (OSNCPD). The different
stages are summarized in the Algorithm 2.

3.2.2 Algorithm 2

By taking the Eq. (7) as well as the cost function 8, the optimization of the

algorithm becomes costly because of the dictionaries UA and UB
: This is caused by

the fact that no constraint is applied to these matrices to restrict the research space.
In this approach, we will apply an orthogonality constraint on these dictionaries.
The orthogonality constraint on the factors is also useful in certain applications
[26, 45]. It is possible to apply the orthogonality constraint to the factors by using the
Eq. 4. If, for example, A must be orthogonal then: IA ¼ AtA: We therefore seek to
minimize

min
A,B,C

T � bT A,B,Cð Þ
			

			
2

F
þ ATA� IA
		 		

F
þ BTB� IB
		 		

F
þ CTC� IC
		 		

F
(9)

To impose orthogonality constraint on the factors matrices for T ¼ T N, the cost
function becomes

min E2 UA
n ,V

A
n ,U

B
n ,V

B
n ,C

� �� �

où E2 ¼
1

2
∥T � bT UA

nAn�1V
B
n ,U

B
nBn�1V

B,C
� �

∥2F þ α∥VA
n ∥1,1 þ α∥VB

n∥1,1þ

∥IA � UA
n

� �T
UA

n ∥
2
F þ ∥IB � UB

n

� �T
UB

n∥
2
F

(10)

The gradient of the cost Eq. (10) is given by

∂E2

∂VA
n

¼ � UA
nAn�1

� �⊤
TA �UA

nAn�1V
A
n ZA
� �⊤� �

ZA þ α1R

∂E2

∂VB
n

¼ � UB
nBn�1

� �⊤
TB �UB

nBn�1V
B
n ZB
� �⊤� �

ZB þ α1R

∂E2

∂UA
n

¼ � TA � UA
nAn�1V

B
n ZA
� �⊤� �

ZA VA
n

� �⊤
An�1ð Þ⊤ � 2UA

n I⊤A � UA
n

� �⊤
UA

n

� �� �
þ

2UA
n IAU

A
n � UA

n

� �⊤
UA

n

� �� �

∂E2

∂UB
n

¼ � TB � UB
nBn�1V

B ZB
� �⊤� �

ZB VB
n

� �⊤
Bn�1ð Þ⊤ � 2UB

n I⊤B � UB
n

� �⊤
UB

n

� �� �
þ

2UB
n IBU

B
n � UB

n

� �⊤
UB

n

� �� �

∂E2

∂C
¼ � TC � C ZC

� �⊤� �
ZC

(11)

The advantage of this approach is its speed of convergence because we reduce the
research space for our dictionaries. For example, if An is similar to An�1, the matrix

UA
n is a diagonal matrix. We call this algorithm orthogonality online sparse CPD

(OOSCPD). The different steps are similar with the Algorithm 2.
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4. Experiment for fluorescence real data acquisition

We plan an experiment to obtain real data acquisition. Four well-known
fluorophores are injected on a reservoir at different time intervals under quasi-real
conditions. At all, we get 50 matrices or EEMs os size [21, 36] online with a spectro-
fluorimeter Hitachi F7000. The corresponding fluorescence tensor was partitioned
into four successive sub-tensors (T 0 … T 3). Two kinds of partitions are considered. In
the first partition (50% overlapping), each sub-tensor contains 20 EEMs, and two
consecutive sub-tensors have ten EEMs in common. In the second partition (no
overlapping, see Figure 3), sub-tensors have no EEMs in common. The initialization
tensor T 0 contains 20 EEMs. The other sub-tensors contain ten EEMs. During the
acquisition, an extra fluorophore appears in all the EEMs due to the experimental
device. A preliminary study showed that this extra fluorophore can be represented by
a single additional factor in the CPDmodel. Thus, the rank of the sub-tensors can be 3,
4, or 5. We recall that SNNCPD is used for sub-tensors T 0 in initialization phase.

4.1 Results and discussions

OSNCPD has already been compared with others online algorithms in [18, 27]. We
compare the values of the physical ranks estimated by the two online approaches
(OSNCPD, OOSCPD) with NN-CPD algorithm proposed in [31] and the actual values.
Results are reported in Tables 1 and 2 for the 50% overlapping case and no
overlapping case, respectively. The penalty coefficient term (α) used in our two
algorithms and in NN-CPD is also given. We can see that NN-CPD overestimated the
rank in the last sub-tensors in both cases and this means that NN-CPD creates

Symbols Definition

T ,T n Tensor, sub-tensor at time tn

A, A⊺, a, a Matrix, transposed matrix, column vector, scalar

1R A matrix (R, R) of 1

IA Identity matrix with size of matrix A

ℝ Set of real numbers

:k kF , ∥:∥1,1 Frobenius norm, L1,1 norm

A≥0 Means that all the elements of matrix A are nonnegative

~Rn, Rn Physical rank of the sub-tensor T n, CPD rank of the sub-tensor

⊙ Khatri-Rao product

Table 1.
Main notations used in the paper.

Sub-tensor 0 1 2 3 α

True rank 3 4 5 5 —

NN-CPD 3 4 7 10 0.5

OSNCPD & OOSCPD 3 4 5 5 1

Table 2.
Rank estimation in the overlapping case.
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duplicate factors. In contrast, our approaches (OSNCPD and OOSCPD) find the
correct rank.

When the null columns of Â and B̂ and the corresponding columns of Ĉ are
removed, we can compare the factor matrices estimated by our algorithms with the
true factors by means of normalized root mean squared errors:

EA ¼ ∥A� Â∥F

∥A∥F
, EB ¼ ∥B� B̂∥F

∥B∥F
and EC ¼ ∥C� Ĉ∥F

∥C∥F
(12)

Results are reported in Tables 3 and 4 for the 50% overlapping case and no
overlapping case, respectively Table 5.

In addition, to give some physical meaning to these error terms that may seem
high, we have plotted in Figure 4 the factors obtained from our approach in the sub-
tensor T 4 along with the true factors. We observe a good agreement between the true
and estimated factors.

In the overlapping case, both algorithms give similar results for sub-tensors, and
this can be explained that the algorithms use past information. Also, these are close to
those obtained from the initialization sub-tensor T 0 meaning that the online phase has
been performed correctly.

Sub-tensor 0 1 2 3 α

True rank 3 4 5 5 —

NN-CPD 3 4 5 10 0.1

OSNCPD & OOSCPD 3 4 5 5 0.5

Table 3.
Rank estimation in the no overlapping case.

Algorithm 1 (OSNCPD) Algorithm 2 (OOSCPD)

Sub-tensor 0 1 2 3 0 1 2 3

Mean EA 0.17 0.19 0.19 0.2 0.17 0.18 0.2 0.16

Mean EB 0.14 0.15 0.15 0.16 0.14 0.16 0.14 0.14

Mean EC 0.25 0.25 0.16 0.20 0.25 0.21 0.16 0.18

Table 4.
Mean estimations errors in the overlapping case.

Algorithm 1 (OSNCPD) Algorithm 2 (OOSCPD)

Sub-tensor 0 1 2 3 0 1 2 3

Mean EA 0.17 0.19 0.20 0.20 0.17 0.18 0.21 0.21

Mean EB 0.14 0.15 0.16 0.19 0.14 0.16 0.19 0.23

Mean EC 0.25 0.32 0.31 0.32 0.25 0.31 0.32 0.25

Table 5.
Mean estimations errors in the no overlapping case.
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In the no overlapping case OSNCPD and OOSCPD give good results although
no sub-tensors are share any information. The error in matrix C seems to be high
but in the no overlapping case, because the algorithms do not have the a priori
information.

5. Conclusions

We have introduced two algorithms (OSNCPD and OOSCPD) for the online
nonnegative canonical polyadic decomposition of sub-tensors. We have also
introduced an offline nonnegative algorithm with sparsity constraint. Our
algorithms are based on dictionary learning and can deal with unknown rank
variations. OOSCPD incorporates orthogonality constraint and can be seen as an
extension of OSNNCPD which incorporates nonnegativity and sparsity constraint for
a better convergence.

These algorithms are presented in the particular case of the nonnegative online
CPD of third-order fluorescence tensors, but they are not limited to this application
field, and they can be easily extended to higher-order tensors. A real online fluores-
cence spectroscopy experiment was conducted in laboratory to validate our approach
and compare with state-of-the-art approaches. The proposed algorithms allow to
correctly follow the rank variations in most of the considered situations contrary to
reference approaches. Eventually, these encouraging results allow to plan, for exam-
ple, a monitoring in the natural environment in future work.
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Figure 4.
Emission and excitation and spectra of the fluorophores for T 4: Top: Emission spectra, bottom: Excitation spectra.
Red dots: estimated spectra, black lines: true spectra.
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Abbreviations

ALS alternating least square
ADMM alternating direction method of multipliers
CPD canonical polyadique decomposition
NNCPD nonnegative canonical polyadique decomposition
ELS enhenced line search
PARAFAC parallel factor analysis
DOM dissolve organisme matter
EEM emission and excitation matrices
pH potential Hydrogen
NMF nonnegative matrix factorization
SGD stochastique gradient descent
Nadam nesterov accelerated adaptive moment estimation
F fluorescence
TRP tryptophane
5S8HQ 5-sulfate-8-hydroxyquinine
RHO RHOdamine
SVD singular value decomposition

Appendix A

It is useful to mention that the CPD can incorporate different constraints depending
on the field from which the data comes from. For example, it can be constraints of
nonnegativity, orthogonality, or sparsity to name only the most commonly used.

Nonnegativity constraint Nonnegativity constraint is imposed in the CPD when the
data to be processed is linked to physical quantities. In this sense, we can cite the
domain of imagery [46] where nonnegativity is present because we know that
optical signals are positive or zero. This is also the case of fluorescence
spectroscopy where the data from the sensor is nonnegative [4, 30, 31, 47].
Nonnegativity constraint can be imposed on the factors during optimization by
projecting the values of each factor matrix on 

þ [33]. This method of imposing
nonnegativity sometimes shows its limits in certain cases because of the change of
scale. In [34], the authors propose to remedy this problem by involving two factors, ϵ
and θ∈ �1; 1f g which multiply every factor matrix. Nonnégativity can also be
imposed by choosing an optimization method [14, 17, 35] or even using an exponential
variable change [48] or square [31].

Sparsity constraint Regarding the constraint of parsimony, it is generally used for
parsimonious tensors or to ensure the overestimation of the rank, as mentioned above.
This constraint is imposed according to the goal we are looking for, and in our case, it
is the overestimation of the rank. The constraint can be applied to the matrices factors
in the form of a regularization term:

min x f xð Þ|{z}
function

þ r xð Þ|{z}
regularization

(13)

F(x) corresponds here to T � bT a,b, cð Þ
			

			
2

F
and is the attachment part. R(x) is the

regularization part on the matrix a, b, and c.
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In the literature, the standard l1,1 is the most used as in [17, 35, 41, 46, 49], and it
can be defined according to the Eq. (A1) as following:

min
a,b, c

T � bT a,b, cð Þ
			

			
2

F
þ ak k1,1 þ Bk k1,1 þ Ck k1,1 (14)

Standard l1,1 is conventionally used compared to standard l0,0 to promote parsimony
because it is easier to handle than standard l0,0: In order to minimize the rank of a
matrix, we can speak of the nuclear standard which makes it possible to impose a small
rank [50–52] and can be defined as a function of the Eq. (A1) as follows:

min a,b,c T � bT a,b, cð Þ
			

			
2

F
þ ak k ∗ þ Bk k ∗ þ Ck k ∗ (15)

In [53], the authors show that the mixed standard provides a better convex envelope
of the rank function than the nuclear standard. It therefore makes it possible to mini-
mize the rank of a matrix. In the literature, the mixed standard is increasingly used as in
[54–56]. It can be defined as a function of the Eq. (A1) as follows:

min
a,b, c

T � bT a,b, cð Þ
			

			
2

F
þ ak k2,1 þ Bk k2,1 þ Ck k2,1 þ ak k1,2 þ bk k1,2 þ ck k1,2 (16)

Appendix B: Stochastique gradient descent (SGD)

Take a differentiable function f(x). For each iteration k, the update of x in gradient
descent is given by

x kþ 1ð Þ ¼ x kð Þ � γf 0 x kð Þð Þ (17)

with γ >0, the step-size or the learning rate.

B.1 Adaptive moment estimation (ADAM)

Adaptive Moment estimation (ADAM) [43]. Adam optimizer is a variant of SGD.
It acts on the gradient component using the exponential mobile average of the gradi-
ents and the step-size component by dividing the step-size by the square root of v, the
square of exponential average gradients.

Let take a function f(x). For each iteration k, the update of x in gradient descent is
given by

gk ¼ f 0 x kð Þð Þ
mk ¼ β1mk�1 þ 1þ β1ð Þgk
vk ¼ β2vk�1 þ 1þ β2ð Þg2k
m̂k ¼

mk

1� β1ð Þk

v̂k ¼
vk

1� β2ð Þk

x kþ 1ð Þ ¼ x kð Þ � γffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂k þ ϵ

p m̂k

(18)

with γ >0 the step-size, β1 ∈ 0, 1½ �, β2 ∈ 0, 1½ � and m, v is initialized to 0.
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B.2 Nesterov accelerated adaptive moment estimation (Nadam)

Nadam optimizer is an extension of the Adam optimization algorithm. The
algorithm was described in the 2016 article by Timothy Dozat [42]. For each iteration
k of a function f(x), the update of x in gradient descent is given by:

gk ¼ f 0 x k� 1ð Þð Þ
mk ¼ β1mk�1 þ 1� β1ð Þgk
nk ¼ β2nk�1 þ 1� β2ð Þg2k

m̂k ¼
β1mk

1� β1ð Þk
þ 1� β1ð Þgk

1� β1ð Þk

n̂k ¼
β2nk

1� β2

x kþ 1ð Þ ¼ x kð Þ � γm̂kffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂k þ ϵ

p

(19)
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