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Abstract: An asymptotic ansatz for the solution of the axisymmetric problem of interaction between a
thin cylindrical elastic tube and a viscous fluid filling the thin interior of the elastic tube was recently
introduced and justified by G. Panasenko and R. Stavre. The thickness of the elastic medium (ε)
and that of the fluid domain (ε1) are small parameters with ε << ε1 << 1, while the scale of the
longitudinal characteristic size is of order one. At the same time, the magnitude of the stiffness and
density of the elastic tube may be large or finite parameters with respect to the viscosity and density
of the fluid when the characteristic time is of order one. This ansatz can be considered as a Poiseuille-
type solution for the fluid–structure interaction problem. Its substitution to the Stokes fluid–elastic
wall coupled problem generates a one-dimensional model. We present a numerical experiment
comparing this model with the solution of the full-dimensional fluid–structure interaction problem.

Keywords: viscous fluid–thin elastic wall interaction; cylindrical elastic tube; axisymmetric problem;
Poiseuille-type flow

MSC: 74F10; 35Q35; 35Q74; 76M45

1. Introduction

The interaction between a fluid and an elastic shell arises in many real-life applications
in engineering and biology. The corresponding mathematical model is represented by
the fluid–structure interaction problem, coupling two media with different, often highly
contrasting physical characteristics. These problems are of great interest for the math-
ematical community due to their connection with blood flow models, for example, pa-
pers [1–3] studying the existence of a solution for fluid–structure interaction problem, and
papers [4–6] considering viscous flows in elastic tubes. The wall is modeled either by a two-
dimensional shell or by a full-dimensional elasticity or visco-elasticity equation; the small
parameter is the thickness of a wall with respect to its diameter or the diameter of the pipe
compared to its length, and the stiffness of the wall is considered finite. The stiffness of the
wall as a large parameter was considered in [7–9], where the fluid–plate and fluid–cylindric
wall interactions were studied, and the wall was modeled by a special boundary condition.
In [10–12] the wall was modeled by the elasticity equation in two or three dimensions as
a thin plate or thin cylindric layer, but the fluid domain was not thin. The asymptotic
behavior of the solution when both the thickness of the wall and the diameter of the pipe
are small parameters, and the wall has high stiffness, was first considered in [13]. Note
that this setting is crucial for understanding an analog of a Poiseuille flow in a tube with
an elastic wall. Paper [13] was devoted to this setting. Clearly, different orders of stiffness
of the wall lead to different reduced models, but the ansatz of the asymptotic solution
does not change for the cases considered in the cited paper. This property allows us to
introduce this ansatz as an approximate Poiseuille-type flow in a stiff elastic tube. Plugging
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this ansatz in to the variational formulation of the full-dimensional problem, one obtains
a one-dimensional model of the flow, taking into consideration the elasticity of the wall.
The passage of the fluid through such a pipe is governed by the given inflow flux and
an outflow flux, which can now be different functions of time. Recall that, for the rigid
tube, they should be the same, due to the fluid incompressibility condition. The main
result is a numerical comparison of the full-dimensional model of the flow and the one-
dimensional approximation for a test problem. The results show good accuracy of the
one-dimensional model.

Alternative approaches can be found in [14] (see also [15–17]), where the one-dimensional
model is derived by engineering methods from the mass conservation law and the impulse-
momentum theorem. It is presented by a hyperbolic-type system of two equations relating
the cross-section area A of the vessel and the average velocity u. This model is applied
in the case when the viscous term is dominated by the convective term. The viscosity is
introduced by an empirical friction. In contrast to this model, we derive asymptotically
the one-dimensional model from the Stokes equation coupled with the elasticity equation
for the wall, and it is applied in the case that the viscous term is dominant in the Stokes
equation. Thus, the model presented below is derived using more rigorous mathematical
tools. However, its limits of application correspond to the modest Reynolds numbers. The
goal of the present study is to evaluate numerically, using computational tests, the difference
between the solution to the asymptotically derived one-dimensional model and the solution
to the three-dimensional Navier–Stokes equation set in a thin tube with elastic wall (see
Figure 1). The main conclusion of the paper is that, for modest Reynolds numbers, the
asymptotically derived one-dimensional model is in good agreement with the solution to the
three-dimensional Navier–Stokes equation. This allows this 1D model to be used for networks
of blood vessels.

1

𝜺

𝜺2 1

Figure 1. A thin tube with radius ε1, covered by an elastic wall of thickness ε.

Note that, although the main application of this model is related to hemodynamics, it
can be applied to viscous flows in industrial installations, for example, for the thin tube
structures in [18].

2. Formulation of the Three-Dimensional Problem and Its Asymptotic
One-Dimensional Approximation

Let us recall the formulation of the problem and the main result of [13].
Consider a fluid occupying the interior of a thin cylindrical elastic tube (as shown in

Figure 1) with the radius denoted by ε1. More precisely, ref. [13] studies a periodic direction
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problem in longitudinal space, where ε1 is defined as the ratio between the radius of the
fluid domain and the length of the period, taken to be equal to one. The second small
parameter is the elastic tube thickness ε with

ε << ε1 << 1. (1)

The fluid and the elastic parts of the domain are defined, respectively, by{
C f = {(x1, x2, x3) ∈ R3/ x2

1 + x2
2 < ε2

1, x3 ∈ R},
Ce

ε = {(x1, x2, x3) ∈ R3/ ε2
1 < x2

1 + x2
2 < (ε1 + ε)2, x3 ∈ R}.

(2)

Supposing that the coupled problem is axisymmetric and denoting r =
√

x2
1 + x2

2, let

us associate the following layers in the plane (x3, r) to C f and Ce
ε :{

L f = {(x3, r) ∈ R2/ x3 ∈ R, r ∈ (0, ε1)},
Le

ε = {(x3, r) ∈ R2/ x3 ∈ R, r ∈ (ε1, ε1 + ε)}.
(3)

The boundaries of the fluid and elastic layers L f and Le
ε are denoted by

F0 = {(x3, 0)/ x3 ∈ R},
Fε1 = {(x3, ε1)/ x3 ∈ R},
Fε1+ε = {(x3, ε1 + ε)/ x3 ∈ R},

(4)

with the second one representing the interface surface.
The characteristics of the elastic medium are represented by the variable density

ρ̃e = ρ̃e(ξ) depending on the radial variable, and by the matrix-valued coefficients
Ãij = Ãij(ξ), i, j ∈ {1, 2, 3}, which depend on the Young’s modulus Ẽ = Ẽ(ξ) and on

the Poisson’s ratio ν̂ = ν̂(ξ), with ξ =
r− ε1

ε
, r ∈ (ε1, ε1 + ε). Because the density and the

Young’s modulus characterizing a solid phase may be very different (high contrast) from
one material to the other, it is interesting to analyze the changes in the mathematical model
with respect to these physical characteristics. For this purpose, we introduce two additional
parameters related to ε:

ωρ = εα, ωE = εβ, with α, β ∈ R. (5)

The density of the elastic tube is supposed to be of order ωρ and its Young’s modulus to be
of order ωE, while the characteristic time, the dynamic viscosity and the density of the fluid
are supposed to be scaled so that they are of order one. So, ρ̃e = ωEρe and Ẽ = ωEE, with ρe
and E of order one. With respect to the physical characteristics of the elastic medium, we
consider the following assumptions imposed for physical reasons:

ωρ ≤ ωE; ε−1 ≤ ωE. (6)

With respect to the magnitude of ωE, the following different cases are identified:

(1) ε−1 ≤ ωE << ε−1ε−2
1 ;

(2) ωE = ε−1ε−2
1 ;

(3) ε−1ε−2
1 << ωE << ε−1ε−3

1 ;
(4) ωE = ε−1ε−3

1 ;
(5) ωE >> ε−1ε−3

1 .

In most practical applications, the relation between the density of an elastic medium
and its Young’s modulus is ωρ << ωE. However, in order to simplify the illustration, we
start with the relation

ωρ = ωE; (7)
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and then we pass to the case
ωρ << ωE, (8)

and we present the results if there are major differences with respect to the case (7).
Some practical examples from biology and engineering are given in the introductory

part of [13].
Let us now give the formulation of the problem. Consider the stiffness matrices Ãij

having the elements Ãij = (ãkl
ij )1≤k,l≤3, which satisfy the relations

ãkl
ij = ωEakl

ij , akl
ij =

E
2(1 + ν̂)

(
2ν̂

1− 2ν̂
δikδjl + δijδkl + δilδjk

)
, with the properties:

(i) akl
ij (ξ) = ail

kj(ξ) = alk
ji (ξ), (∀) i, j, k, l ∈ {1, 2, 3}, (∀) ξ ∈ [0, 1],

(ii) (∃) κ > 0 independent of ε, ε1 such that
3

∑
i,j,k,l=1

akl
ij (ξ)η

l
jη

k
i ≥ κ

3

∑
j,l=1

(ηl
j)

2, (∀) ξ ∈ [0, 1],

(∀) η = (ηl
j)1≤j,l≤3, with ηl

j = η
j
l .

The functions ρe, ν̂, E are supposed to be piecewise-smooth, and ρe satisfies the follow-
ing condition:

(∃)mρ, Mρ independent of ε, ε1, 0 < mρ < Mρ, such that mρ ≤ ρe(ξ) ≤ Mρ, (∀) ξ ∈ [0, 1]. (9)

So, the wall can be a natural laminate, as is the case with blood vessels. The char-
acteristics of the viscous fluid, independent of ε, ε1, are the positive constants ρ f and ν
representing its density and its dynamic viscosity, respectively. They are supposed to be of
order one.

In addition to the data ρe, E, ν̂ (for the elastic medium) and ρ f , ν (for the viscous fluid),
we also consider as data of the problem the forces g and f, which represent an external
action on the elastic medium and on the fluid, respectively. In the case of blood vessels, it
corresponds to the action of the surrounding tissues; see [15].

The mathematical model of the periodic, axisymmetric, time-dependent interaction
between an incompressible, Stokes fluid and a cylindrical, stratified, elastic tube uses the
following notation and expressions for: the linear elasticity operator, the divergence oper-
ator (for a vector-valued function and a symmetric tensor-valued function), the gradient
operator (for a vector-valued function) and the velocity strain tensor with respect to the
cylindrical coordinates:



Lu · e3 =
∂

∂x3

(
(λ + 2µ)

∂u3

∂x3
+ λ

(
∂ur

∂r
+

1
r

ur

))
+

∂

∂r

(
µ

(
∂u3

∂r
+

∂ur

∂x3

))
+

µ

r

(
∂u3

∂r
+

∂ur

∂x3

)
,

Lu · er =
∂

∂x3

(
µ

(
∂u3

∂r
+

∂ur

∂x3

))
+

∂

∂r

(
λ

(
∂u3

∂x3
+

1
r

ur

)
+ (λ + 2µ)

∂ur

∂r

)
+

2µ

r

(
∂ur

∂r
− 1

r
ur

)
,

divcu =
∂u3

∂x3
+

∂ur

∂r
+

1
r

ur,

divcS =

(
∂S33

∂x3
+

1
r

∂

∂r
(rSr3)

)
e3 +

(
∂S3r

∂x3
+

1
r

∂

∂r
(rSrr)−

Sθθ

r

)
er,

∇cu =



∂u3

∂x3
0

∂u3

∂r

0
1
r

ur 0

∂ur

∂x3
0

∂ur

∂r

.

Dc(u) =
1
2

(
∇cu + (∇cu)T

)
.

(10)

Here (x3, r, θ) are the cylindrical coordinates; e3 and er are the unit vectors of Ox3 and
Or axes, respectively; u represents a vectorial function; S represents a tensorial axisymmet-
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ric function; and λ =
Eν̂

(1 + ν̂)(1− 2ν̂)
, µ =

E
2(1 + ν̂)

. In a two-dimensional setting, taking

into account only the “x3” and “r” components, we will use the notation

Dc(u) =


∂u3

∂x3

1
2

(
∂u3

∂r
+

∂ur

∂x3

)
1
2

(
∂u3

∂r
+

∂ur

∂x3

)
∂ur

∂r

.

The mathematical model describing the fluid–elastic structure interaction in a thin-
walled elastic tube with periodicity condition along the tube and homogeneous initial
conditions is given by

ωρρe
∂2u
∂t2 −ωELu = ε−1g in Le

ε × (0, T), ρ f
∂v
∂t
− 2νdivcDc(v) +∇p = f

divcv = 0
in L f × (0, T),

vr = 0 on F0 × (0, T),
∂u3

∂r
+

∂ur

∂x3
= 0

λ(1)
∂u3

∂x3
+ (λ(1) + 2µ(1))

∂ur

∂r
+

λ(1)
ε1 + ε

ur = 0
on Fε1+ε × (0, T),



v =
∂u
∂t

ν

(
∂v3

∂r
+

∂vr

∂x3

)
= ωEµ(0)

(
∂u3

∂r
+

∂ur

∂x3

)
−p + 2ν

∂vr

∂r
= ωE

(
λ(0)

∂u3

∂x3
+ (λ(0) + 2µ(0))

∂ur

∂r
+

λ(0)
ε1

ur

) on Fε1 × (0, T),

u, v, p 1− periodic in x3,

u(0) =
∂u
∂t

(0) = 0 in Le
ε,

v(0) = 0 in L f .

(11)

The positive constant T appearing in this system gives the time interval of the problem,
and it can be arbitrarily chosen, independently of ε, ε1.

The main result of [13] is the construction of a complete asymptotic expansion of
the solution in all the cases cited above, the evaluation of the norms of the error for the
truncated expansions, and the computation of the leading term of the expansion, which
is some analogue of the Poiseuille flow for tubes with elastic walls. Classical Poiseuille
flow is defined as a flow with a given pressure drop at the ends of a tube. Formally,
the problem (11) does not include such a case, because of the periodicity condition along
the tube. However, such a pressure drop can be created in half of a tube. Then, the leading
term of the asymptotic expansion of the solution, independently of the considered cases,
can be interpreted as a Poiseuille-type flow; the velocity of the fluid and the displacements
in the walls are expressed via three basic functions depending on the normal variable and
time only. One of them is the scaled average velocity Q (the averaged velocity is equal
to 2ε2

1Q), the second is the longitudinal displacement of the wall-fluid interface w3, and the
third is the leading term for the pressure, q:
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v3(x3, r, t) = 4ε2
1

(
1− r2

ε2
1

)
Q(x3, t) +

∂w3

∂t
(x3, t)+

ε2
1

4

(
1− r2

ε2
1

)(
−

ρ f

ν

∂2w3

∂t2 (x3, t) +
∂3w3

∂t∂x2
3
(x3, t)

)
,

vr(x3, r, t) = −ε3
1

r
ε1
(2− r2

ε2
1
)

∂Q
∂x3

(x3, t)− ε1
r

2ε1

∂2w3

∂t∂x3
(x3, t)

−
ε3

1
16

r
ε1

(
2− r2

ε2
1

)(
−

ρ f

ν

∂3w3

∂t2∂x3
(x3, t) +

∂4w3

∂t∂x3
3
(x3, t)

)
,

p(x3, r, t) = q(x3, t),

u3(x3, r, t) = w3(x3, t) + ε
r− ε1

ε

(
ε3

1

∫ t

0

∂2Q
∂x2

3
(x3, θ)dθ +

ε1

2
∂2w3

∂x2
3
(x3, t)

)

−ν ω−1
E εε1

(∫ r−ε1
ε

0

1− τ

µ(τ)
dτ

)(
8Q(x3, t)−

ρ f

2ν

∂2w3

∂t2 (x3, t) +
∂3w3

∂t∂x2
3
(x3, t)

)
,

ur(x3, r, t) = −ε3
1

(
1− ε

∫ r−ε1
ε

0

1
ε1 + ετ

λ(τ)

λ(τ) + 2µ(τ)
dτ

) ∫ t

0

∂Q
∂x3

(x3, θ)dθ

−
(

ε1

2

(
1− ε

∫ r−ε1
ε

0

1
ε1 + ετ

λ(τ)

λ(τ) + 2µ(τ)
dτ

)
+ ε

∫ r−ε1
ε

0

λ(τ)

λ(τ) + 2µ(τ)
dτ

)
∂w3

∂x3
(x3, t)

+ω−1
E ε

(∫ r−ε1
ε

0

1− τ

λ(τ) + 2µ(τ)
dτ

)(
2νε2

1
∂Q
∂x3

(x3, t)− ν
∂2w3

∂t∂x3
(x3, t)− q(x3, t)

)
.

(12)

Here, for the leading terms, we keep the same notation as for the exact solution.
Note that the leading term for pressure, q, is related to the scaled average velocity Q by

∂q
∂x3

(x3, t) + 16νQ(x3, t) = f3, (13)

so that there are only two independent basic functions of the leading term of the ansatz, and
the radial displacement of the wall-fluid interface, wr, can be approximately calculated as

wr(x3, t) = −ε3
1

∫ t

0

∂Q
∂x3

(x3, θ)dθ − ε1

2
∂w3

∂x3
(x3, t), (14)

and so,
∂wr

∂t
(x3, t) = −ε3

1
∂Q
∂x3

(x3, t)− ε1

2
∂2w3

∂t∂x3
(x3, t). (15)

If we need a continuous approximation of the velocity at the interface, then we have
to add the third order terms in the approximation of ur:

−
ε3

1
16

(
−

ρ f

ν

∂2w3

∂t∂x3
(x3, t) +

∂3w3

∂x3
3
(x3, t)

)
.

Note that the classical notion of the Poiseuille flow in an axisymmetric thin cylinder
corresponds to the parabolic shape of the normal velocity of the flow and vanishing radial
velocity. It was first described by J.L.M. Poiseuille and J. Boussinesq [19,20], and it takes
place only for the stationary Stokes or Navier–Stokes equations. In the time-dependent
case with no slip condition at the boundary (absolutely rigid wall), its analogue is the
so-called Womersley flow [21,22], when the normal velocity is just independent of the
normal coordinate, and the radial velocity still vanishes. However, in the case of a flow in a
tube with an elastic wall, the normal velocity depends on the normal coordinate because
the cross-section changes over time. Therefore, a Poiseuille-type flow is quite different from
a flow with a rigid wall. The first term in formula (12)1 is the “trace” of the rigid wall case.
If the longitudinal velocity of the wall vanishes, then this term coincides with the result
of [23]; the relation (13) coincides with the earlier known relations for the pressure slope
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and the average velocity (Darcy law), and the relations for the cross-section area and the
average velocity (mass conservation law).

Relations (12) and (13) with two free basic functions Q and w3 can be used as an ansatz
in the frame of the method of asymptotic partial decomposition of the domain for the
fully three-dimensional problem for the Stokes or Navier–Stokes equations in a network of
vessels with fluid–structure interaction at the interface with elastic walls. Namely, the weak
formulation of the full problem can be restricted to a subspace of functions having the form
(12) and (13) within all cylindrical parts of a network at some distance from the bifurcations,
similarly to the approach proposed in simpler cases in [10,24]. For the Navier–Stokes
equations, formal analysis shows that the same ansatz can be used, but relation (13) should
be modified in order to take into account non-linear terms. This approach allows us to
reduce the number of dimensions to one in all cylindrical parts of the network and reduces
the computational costs and computer memory required.

Comparing the ansatz (12) to the one-dimensional model [14], one can check that the
leading term of the velocity satisfies the first equation of the system of equations

∂A
∂t

+
∂F
∂x3

= 0,

where A(x3, t) is the area of the cross-section at the point x3, and F(x3, t) is the flux at the
same point. However, the second equation of [14] differs from the equation below. This is
explained by a different approach to the derivation of the one-dimensional model and the
absence of the convective term in the formulation of the fluid–structure interaction problem.

Note that in models [15–17], the first equation of the system is the same.

3. The Variational Framework of the Problem

The first part of this section is devoted to the presentation of the functional spaces we
are dealing with. Because our functions are periodic with respect to x3, we introduce the
3D periodicity domains for the fluid and for the elastic tube, respectively:{

Ω f = {(x1, x2, x3) ∈ R3/ x2
1 + x2

2 < ε2
1, x3 ∈ (0, 1)},

Ωe
ε = {(x1, x2, x3) ∈ R3/ ε2

1 < x2
1 + x2

2 < (ε1 + ε)2, x3 ∈ (0, 1)}
(16)

and the corresponding periodicity plane domains{
D f = {(x3, r) ∈ R2/ x3 ∈ (0, 1), r ∈ (0, ε1)},
De

ε = {(x3, r) ∈ R2/ x3 ∈ (0, 1), r ∈ (ε1, ε1 + ε)}.
(17)

The boundaries corresponding to D f and De
ε are denoted by

Γ0 = {(x3, 0)/ x3 ∈ (0, 1)},
Γε1 = {(x3, ε1)/ x3 ∈ (0, 1)},
Γε1+ε = {(x3, ε1 + ε)/ x3 ∈ (0, 1)}.

(18)

Let us introduce the following weighted spaces for the fluid part of the domain:

(L2
r (D f ))2 = {ψ : D f 7→ R2/

∫
D f

rψ2(x3, r)dx3dr < ∞},

(H1
r (D f ))2 = {ψ ∈ (L2

r (D f ))2/
∫

D f
r|∇cψ|2(x3, r)dx3dr < ∞},

(H1
0,r(D f ))2 = {ψ ∈ (H1

r (D f ))2/rψ = 0 on Γε1},

(H2
r (D f ))2 = {ψ ∈ (H1

r (D f ))2/
∫

D f
r|∇2

c ψ|2(x3, r)dx3dr < ∞},

(19)
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where

|∇2
c ψ|2 =

(
∂2ψ3

∂x2
3

)2

+

(
∂2ψ3

∂r2

)2

+ 2
(

∂2ψ3

∂x3∂r

)2

+

(
∂2ψr

∂x2
3

)2

+

(
∂2ψr

∂r2

)2

+ 2
(

∂2ψr

∂x3∂r

)2

+
1
r2

((
∂ψ3

∂r

)2
+ 2
(

∂ψr

∂x3

)2
+ 3
(

∂ψr

∂r
− 1

r
ψr

)2
)

.

For periodic in x3 functions, we introduce the periodic weighted spaces: Hl
r,per(D f )

is the space of functions defined on L f , 1−periodic in x3, with the restriction to any
arbitrary rectangle (a, b) × (0, 1) in Hl

r((a, b) × (0, 1)), (∀) l ∈ N and L2
r,per(D f ) = {h :

L f 7→ R/ h/
D f
∈ L2

r (D f ), h/
D f

i

= h/
D f

, (∀)i ∈ Z}, where D f
i = {(x3, r) ∈ R2/x3 ∈

(i, i + 1), r ∈ (0, 1)}, i ∈ Z (D f
0 = D f ). The space of the traces of functions from Hl

r,per(D f )

is denoted by Hl−1/2
r,per (∂D f ) and, if we are interested only of the properties on a subset

Γ ⊂ ∂D f , we shall write Hl−1/2
r,per (Γ), for l integer, l ≥ 1. The space H−1/2

r,per (Γ) represents the
dual of the subspace of H1/2

r,per(∂D f ) containing functions that vanish on ∂D f \Γ.
For the elastic part of the domain, the classical Sobolev spaces are used: Hl(De

ε),
see [25? ], (as in De

ε we have r > ε1, Hl
r(De

ε) = Hl(De
ε)). Additionally, we introduce the

periodic spaces Hl
per(De

ε), L2
per(De

ε) defined in a similar way as for the fluid domain and the
classical trace spaces. However, we write Hl

r(De
ε), etc., to show that the integrands in the

norm contain the factor r.
The spaces that contain some of the properties given by (11) for the displacement and

for the velocity, as well as the expected regularity of these functions, are defined by

U =

{
ϕ ∈ (H1

r,per(De
ε))

2/
∫ 1

0
ϕr(x3, 1)dx3 = 0,

}
,

V =
{

ψ ∈ (H1
r,per(D f ))2/divcψ = 0, ψr = 0 on Γ0

}
,

HU =

{
ϕ ∈ H1(0, T; U)/

∂2 ϕ

∂t2 ∈ L2(0, T; U′)
}

,

HV =

{
ψ ∈ L2(0, T; V)/

∂ψ

∂t
∈ L2(0, T; V′)

}
.

(20)

In order to present the space containing the coupling condition, let us set for any
ϕ defined on De

ε and belonging to a certain functional space H,

Vϕ = {ψ ∈ V/ψ = ϕ on Γ ε1} (21)

and then
SH =

{
(ϕ, ψ)/ϕ ∈ H, ψ ∈ Vϕ

}
. (22)

Note that the space H should have enough regularity to give sense to the trace of ϕ on Γ ε1 .

Remark 1. In the axisymmetric problem, associate to any arbitrary function ψ : L f (orLe
ε) 7→ R2

the function Ψ : C f (orCe
ε) 7→ R3 such that

Ψ(x1, x2, x3) is the 3D cartesian form of ψ(x3, r) for (x1, x2, x3) ∈ C f (or Ce
ε), (23)

with
√

x2
1 + x2

2 = r. The function Ψ is expressed with respect to the Cartesian coordinates

and unit vectors and standard calculations give ψ ∈ (Hl
r(D f (orDe

ε)))
2 if and only if Ψ ∈

(Hl(Ω f (orΩe
ε)))

3, (∀) l ∈ {0, 1, 2}.
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In [13], it is assumed that{
ρe, akl

ij ∈ L∞(0, 1), i, j, k, l ∈ {1, 2, 3},
g ∈ H1(0, T; (L2

r,per(De
ε))

2), f∈ H1(0, T; (L2
r,per(D f ))2).

(24)

In the framework presented above, the variational formulation of system (11), studied
in [12], is given by

Find (u, v) ∈ HU × HV , such that

ωρ
d
dt

∫
De

ε

rρe
∂u(t)

∂t
· ϕ + ωE aL(u(t), ϕ) + ρ f

d
dt

∫
D f

rv(t) · ψ + 2V
∫

D f
rDc(v(t)) : Dc(ψ)

= ε−1
∫

De
ε

rg(t) · ϕ +
∫

D f
rf(t) · ψ ∀ (ϕ, ψ) ∈ SU , a.e. in (0, T),

∂u
∂t

= v in L2(0, T; (H1/2
per (Γ

1))2),

u(0) =
∂u
∂t

(0) = 0 in (L2
r,per(De

ε))
2,

v(0) = 0 in (L2
r,per(D f ))2,

(25)

where aL, defined by

aL(u, ϕ) =
∫

De
ε

r
(

µ

(
2
(

∂u3

∂x3

∂ϕ3

∂x3
+

∂ur

∂r
∂ϕr

∂r

)
+

(
∂u3

∂r
+

∂ur

∂x3

)(
∂ϕ3

∂r
+

∂ϕr

∂x3

)
+ 2

ur

r
ϕr

r

)
+ λdivcu divc ϕ

)
,

is the bilinear form associated with the elasticity operator L .The results concerning the
existence, the uniqueness and the regularity of the unknown functions are obtained in [12].

4. Modified Variational Formulation for the Numerical Setup

We will modify the boundary conditions at the ends of the tube. Instead of the periodic
solution with respect to the variable x3, we introduce some given inflow and outflow,
supposing that the elastic tube is clamped at the ends of the tube. Namely, the periodic
boundary conditions (11)10 are replaced by a given velocity vr =

1
4ν (ε

2
1 − r2)gin(t), v3 = 0

for x3 = 0 and vr =
1

4ν (ε
2
1 − r2)gout(t), v3 = 0 for x3 = 1, and by vanishing displacements

u = 0 for x3 = 0 and x3 = 1. Here gin and gout are given differentiable functions vanishing at
t = 0 . On the right-hand side, g and f are taken to be equal to zero. So, the problem is

ωρρe
∂2u
∂t2 −ωELu = 0 in Le

ε × (0, T), ρ f
∂v
∂t
− 2νdivcDc(v) +∇p = 0

divcv = 0
in L f × (0, T),

vr = 0 on F0 × (0, T),
∂u3
∂r

+
∂ur

∂x3
= 0

λ(1)
∂u3
∂x3

+ (λ(1) + 2µ(1))
∂ur

∂r
+

λ(1)
ε1 + ε

ur = 0
on Fε1+ε × (0, T),



v =
∂u
∂t

ν

(
∂v3
∂r

+
∂vr

∂x3

)
= ωEµ(0)

(
∂u3
∂r

+
∂ur

∂x3

)
−p + 2ν

∂vr

∂r
= ωE

(
λ(0)

∂u3
∂x3

+ (λ(0) + 2µ(0))
∂ur

∂r
+

λ(0)
ε1

ur

) on Fε1 × (0, T),

vr =
1

4ν (ε
2
1 − r2)gin(t), v3 = 0, u = 0 for x3 = 0,

vr =
1

4ν (ε
2
1 − r2)gout(t), v3 = 0, u = 0 for x3 = 1,

u(0) =
∂u
∂t

(0) = 0 in Le
ε ,

v(0) = 0 in L f .

(26)
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Respectively, the variational formulation is changed. Let us define the spaces Ũ =
{

ϕ ∈ (H1
r (De

ε))
2},

Ṽ =
{

ψ ∈ (H1
r (D f ))2/divcψ = 0, ψr = 0 on Γ0

}
,

(27)

and

H̃Ũ =

{
ϕ ∈ H1(0, T; Ũ)/

∂2 ϕ

∂t2 ∈ L2(0, T; Ũ′)
}

,

H̃Ṽ =

{
ψ ∈ L2(0, T; Ṽ)/

∂ψ

∂t
∈ L2(0, T; Ṽ′)

}
.



Find (u, v) ∈ H̃Ũ × H̃Ṽ , such that

v3 = 1
4ν (ε

2
1 − r2)gin(t), vr = 0, u = 0 for x3 = 0,

v3 = 1
4ν (ε

2
1 − r2)gout(t), vr = 0, u = 0 for x3 = 1, and

ωρ
d
dt

∫
De

ε

rρe
∂u(t)

∂t
· ϕ + ωE aL(u(t), ϕ) + ρ f

d
dt

∫
D f

rv(t) · ψ + 2ν
∫

D f
rDc(v(t)) : Dc(ψ) = 0

a.e. in (0, T) ∀ (ϕ, ψ) ∈ SŨ , such that ϕε|x3=0;1 = 0, ψε|x3=0;1 = 0,
∂u
∂t

= v in L2(0, T; (H1/2(Γ1))2),

u(0) =
∂u
∂t

(0) = 0 in (L2
r (De

ε))
2,

v(0) = 0 in (L2
r (D f ))2.

(28)

Multiplying (28)4 by functions of the base ηk in H2
0(0, T) with some coefficients ck, and

summing up and varying ck, we obtain the equivalent integral equation.

Find (u, v) ∈ H̃Ũ × H̃Ṽ , such that

v3 = 1
4ν (ε

2
1 − r2)gin(t), vr = 0, u = 0 for x3 = 0,

v3 = 1
4ν (ε

2
1 − r2)gout(t), vr = 0, u = 0 for x3 = 1, and

ωρ

∫ T

0

∫
De

ε

rρe
∂2u(t)

∂t2 · ϕdt +
∫ T

0
ωE aL(u(t), ϕ)dt

+
∫ T

0 ρ f
∫

D f r ∂
∂t v(t) · ψdt + 2

∫ T
0 ν
∫

D f rDc(v(t)) : Dc(ψ)dt = 0

∀ (ϕ, ψ) ∈ H̃Ũ × H̃Ṽ , such that ϕ|x3=0;1 = 0, ψ|x3=0;1 = 0, and
∂ϕ

∂t
= ψ in L2(0, T; (H1/2(Γ1))2),

ϕ(0) = ϕ(T) =
∂ϕ

∂t
(0) =

∂ϕ

∂t
(T) = 0 in (L2

r (De
ε))

2,

ψ(0) = ψ(T) = 0 in (L2
r (D f ))2.

(29)

Here, 2ε2Q is the average velocity, and 2πε4Q is the flux.
Equation (29)4 can be rewritten in the following form:

ωρ

∫ T

0

∫
De

ε

rρe(
∂2u3

∂t2 ϕ3 +
∂2ur

∂t2 ϕr)

+ωE

∫ T

0

∫
De

ε

(2µ r (
∂u3

∂x3

∂ϕ3

∂x3
+

∂ur

∂r
∂ϕr

∂r
) + µ r(

∂u3

∂r
+

∂ur

∂x3
)(

∂ϕ3

∂r
+

∂ϕr

∂x3
) + 2µ r

ur

r
ϕr

r

+λ r(
∂u3

∂x3
+

∂ur

∂r
+

ur

r
)(

∂ϕ3

∂x3
+

∂ϕr

∂r
+

ϕr

r
)) + ρ f

∫ T

0

∫
D f

r(
∂v3

∂t
ψ3 +

∂vr

∂t
ψr)

+2ν
∫ T

0

∫
D f

r(
∂v3

∂x3

∂ψ3

∂x3
+

1
2
(

∂v3

∂r
+

∂vr

∂x3
)(

∂ψ3

∂r
+

∂ψr

∂x3
) +

∂vr

∂r
∂ψr

∂r
) = 0.

(30)
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Finally, we consider a projection of this variational formulation to the “ansatz space” of
test functions having the form (12) with q given by (13), with arbitrary free basic functions
Q and w3 from C∞

0 ([0, T]× [0, 1]). The solution is sought in the closure with respect to the
norm H̃Ũ × H̃Ṽ of the space of functions having the form (12) with smooth base functions.

In the following, we consider a simplified ansatz, assuming that w3 = 0 and taking
only a part of the terms in (12). This assumption is often satisfied in the blood vessels,
such that the vessel does not move very much in the direction of blood flow. Namely, we
consider the following space of test functions:

v3(x3, r, t) = 4ε2
1

(
1− r2

ε2
1

)
Q(x3, t),

vr(x3, r, t) = −ε3
1

r
ε1
(2− r2

ε2
1

ig)
∂Q
∂x3

(x3, t),

u3(x3, r, t) = ε
r− ε1

ε

(
ε3

1

∫ t

0

∂2Q
∂x2

3
(x3, θ)dθ

)
− 8ν ω−1

E εε1

(∫ r−ε1
ε

0

1− τ

µ(τ)
dτ

)
Q(x3, t),

ur(x3, r, t) = −ε3
1

(
1− ε

∫ r−ε1
ε

0

1
ε1 + ετ

λ(τ)

λ(τ) + 2µ(τ)
dτ

) ∫ t

0

∂Q
∂x3

(x3, θ)dθ

+ω−1
E ε

(∫ r−ε1
ε

0
1−τ

λ(τ)+2µ(τ)
dτ

)(
2νε2

1
∂Q
∂x3

(x3, t) + 16ν
∫ x3

0 Q(s, t)ds
)

,

(31)

where Q ∈ H2(0, T; H4(0, 1)) vanishes with its first derivatives in x3 for x3 = 0 and x3 = 1,
and vanishes with its first derivatives in t for t = 0 and t = T. Furthermore, we will replace
the notation of the basic function Q for the space of test functions with R. Additionally,
we assume that functions gin and gout satisfy the conditions 〈gin〉T = 〈gout〉T = 0 and
〈
∫ t

0 gin(τ)dτ〉T = 〈
∫ t

0 gout(τ)dτ〉T = 0, where 〈·〉T =
∫ T

0 ·dτ, and we seek a solution with
Q satisfying the relations 〈Q〉T = 〈

∫ t
0 Q(τ)dτ〉T = 0. The test functions are also considered,

with R satisfying the same relations: 〈R〉T = 〈
∫ t

0 R(τ)dτ〉T = 0.
After substituting (31) in (30), we obtain the following differential equation:

C̃1
∂4Q(x3, t)

∂x4
3

+ C̃2
∂2Q(x3, t)

∂t2 + C̃3
∂2Q(x3, t)

∂x2
3

+ C̃4
∂4Q(x3, t)

∂x2
3∂t2

+ C̃5

∫ x3

0

∫ θ

0

∂2Q(s, t)
∂t2 dsdθ

+C̃6

∫ t

0

∫ τ

0

∂6Q(x3, θ)

∂x6
3

dθdτ + C̃7

∫ t

0

∫ τ

0

∂2Q(x3, θ)

∂x2
3

dθdτ + C̃8Q(x3, t)

+C̃9

∫ x3

0

∫ θ

0
Q(s, t)dsdθ + C̃10

∫ t

0

∫ τ

0

∂4Q(x3, θ)

∂x4
3

dθdτ + C̃11
∂Q(x3, t)

∂t
+ C̃12

∂3Q(x3, t)
∂x2

3∂t
= 0,

(32)

where

C̃1 = −ωρρeε6
1

ε3(3ε + 4ε1)

12
+ 4ωEµ(

ω−1
E ε

λ + 2µ
)2ν2ε4

1
ε(11ε + 16ε1)

120
+

11
24

νε8
1,

C̃2 = 64ωρρe(
νω−1

E εε1

µ
)2 ε(11ε + 16ε1)

120
− 64ωρρe(

ω−1
E ε

λ + 2µ
)2ν2ε2

1
ε(11ε + 16ε1)

120
,

C̃3 = 1
4 ωρρeε6

1(((2ε2 + 4ε1ε + 2ε2
1) ln2( ε+ε1

ε1
) + (−2ε2 − 4ε1ε− 2ε2

1) ln( ε+ε1
ε1

)

+ε2 + 2ε1ε)( λ
λ+2µ )

2 + ((−4ε2 − 8ε1ε− 4ε2
1) ln( ε+ε1

ε1
) + 2ε2 + 4ε1ε) λ

λ+2µ + 2ε2 + 4ε1ε)

−64ωE(2µ + λ)(
νω−1

E εε1
µ )2 ε(11ε+16ε1)

120 − 4ωE(2µ + λ)(
ω−1

E ε
λ+2µ )

2ν2ε4
1

ε+4ε1
12ε + 64ωEµ(

ω−1
E ε

λ+2µ )
2ν2ε2

1
ε(11ε+16ε1)

120

+ωE(2µ + λ)(
ω−1

E
λ+2µ )

2ν2ε4
1((4ε1ε + 2ε2

1) ln(ε1 + ε)− 3ε2 + (−4ε1 ln(ε1)− 2ε1)ε− 2ε2
1 ln(ε1))

+16ωEλ
νω−1

E εε1
µ

ω−1
E ε

λ+2µ νε2
1(

4ε
15 + 7ε+15ε1

60 )−ωEλ(
ω−1

E ε
λ+2µ )

2ν2ε4
1 − νε6

1,
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C̃4 = −4ωρρe(
ω−1

E ε

λ + 2µ
)2ν2ε4

1
ε(11ε + 16ε1)

120
, C̃5 = −256ωρρe(

ω−1
E ε

λ + 2µ
)2ν2 ε(11ε + 16ε1)

120
,

C̃6 = ωE(2µ + λ)ε6
1

ε3(3ε + 4ε1)

12
,

C̃7 = ωE(2µ + λ)( λε1
λ+2µ )

2 ln( ε+ε1
ε1

) + ωE(2µ + λ)ε6
1(

1
3 ln3( ε+ε1

ε1
)( λ

λ+2µ )
2 − ln2( ε+ε1

ε1
) λ

λ+2µ + ln( ε+ε1
ε1

))

−ωE
λ2ε6

1
λ+2µ (ln(

ε+ε1
ε1

)− 1
2 ln2( ε+ε1

ε1
) λ

λ+2µ )−ωE
λ2ε6

1
λ+2µ (ln(

ε+ε1
ε1

)− 1
2 ln2( ε+ε1

ε1
) λ

λ+2µ ),

C̃8 = −64ωE(2µ + λ)(
ω−1

E ε
λ+2µ )

2ν2ε2
1

ε+4ε1
12ε + 64ωEµ(

νω−1
E εε1
µ )2 ε+4ε1

12ε

+256ωEµ(
ω−1

E ε
λ+2µ )

2ν2 ε(11ε+16ε1)
120

+16ωE(2µ + λ)(
ω−1

E ε
λ+2µ )

2ν2ε2
1ε−2((4ε1ε + 2ε2

1) ln(ε1 + ε)− 3ε2 + (−4ε1 ln(ε1)− 2ε1)ε− 2ε2
1 ln(ε1))

−16ωEλ(
ω−1

E ε
λ+2µ )

2ν2ε2
1 + 8ωEλ

νω−1
E εε1
µ

ω−1
E ε

λ+2µ (
4ε
15 + 7ε+15ε1

60 ) + 16νε4
1,

C̃9 = −64ωE(2µ + λ)(
ω−1

E ε
λ+2µ )

2ν2 ε+4ε1
3ε

+64ωE(2µ + λ)(
ω−1

E ε
λ+2µ )

2ν2ε−2((4ε1ε + 2ε2
1) ln(ε1 + ε)− 3ε2 + (−4ε1 ln(ε1)− 2ε1)ε− 2ε2

1 ln(ε1))

−64ωEλ(
ω−1

E ε
λ+2µ )

2ν2,

C̃10 = −ωEµε6
1(εε1 +

ε2

2 )−
1
2 ωEµε6

1(((2ε2 + 4ε1ε + 2ε2
1) ln( ε1+ε

ε1
)− ε2 − 2εε1)

λ
λ+2µ − 2ε2 − 4εε1)

− 1
4 ωEµε6

1(((2ε2 + 4ε1ε + 2ε2
1) ln2( ε+ε1

ε1
) + (−2ε2 − 4ε1ε− 2ε2

1) ln( ε+ε1
ε1

)

+ε2 + 2ε1ε)( λ
λ+2µ )

2 + ((−4ε2 − 8ε1ε− 4ε2
1) ln( ε+ε1

ε1
) + 2ε2 + 4ε1ε) λ

λ+2µ + 2ε2 + 4ε1ε)

+ωEλ
ε6

1ε2

2(λ+2µ)
+ 1

2 ωEλε6
1(((2ε2 − 2ε2

1) ln( ε1+ε
ε1

)− ε2 − 2ε1ε) λ
λ+2µ − 2ε2) + ωE

ε6
1λ2

λ+2µ
ε2

2 ,

C̃11 =
8
3

ρ f ε6
1, C̃12 =

11
24

ρ f ε8
1.

Next, we will consider a shorter approximation for the solution:

v3(x3, r, t) = 4ε2
1

(
1− r2

ε2
1

)
Q(x3, t),

vr(x3, r, t) = −ε3
1

r
ε1
(2− r2

ε2
1
)

∂Q
∂x3

(x3, t),

u3(x3, r, t) = −8ν ω−1
E εε1

(∫ r−ε1
ε

0

1− τ

µ(τ)
dτ

)
Q(x3, t),

ur(x3, r, t) = 2ω−1
E εν

(∫ r−ε1
ε

0

1− τ

λ(τ) + 2µ(τ)
dτ

)
ε2

1
∂Q
∂x3

(x3, t).

(33)
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We assume that µ and λ are constants; therefore, from (33), we have the following expressions:

v3(x3, r, t) = 4ε2
1

(
1− r2

ε2
1

)
Q(x3, t),

vr(x3, r, t) = −ε3
1

r
ε1
(2− r2

ε2
1
)

∂Q
∂x3

(x3, t),

u3(x3, r, t) = −
8ν ω−1

E εε1

µ
(

r− ε1

ε
− (r− ε1)

2

2ε2 ) Q(x3, t),

ur(x3, r, t) = −
2ω−1

E εν

λ + 2µ
(

r− ε1

ε
− (r− ε1)

2

2ε2 ) ε2
1Q(x3, t).

(34)

As the boundary conditions for the solution, we use the value of 2ε2
1Q equal to the

average velocity at the inlet and outlet, and the x3 derivative is equal to zero.
Substituting (34) into the following integral identity:

ωρ
d
dt

∫
De

ε

rρe(
∂u3

∂t
ϕ3 +

∂ur

∂t
ϕr)

+ωE

∫
De

ε

(2µ r (
∂u3

∂x3

∂ϕ3

∂x3
+

∂ur

∂r
∂ϕr

∂r
) + µ r(

∂u3

∂r
+

∂ur

∂x3
)(

∂ϕ3

∂r
+

∂ϕr

∂x3
) + 2µ r

ur

r
ϕr

r

+λ r(
∂u3

∂x3
+

∂ur

∂r
+

ur

r
)(

∂ϕ3

∂x3
+

∂ϕr

∂r
+

ϕr

r
)) + ρ f

d
dt

∫
D f

r(v3ψ3 + vrψr)

+2ν
∫

D f
r (

∂v3

∂x3

∂ψ3

∂x3
+

1
2
(

∂v3

∂r
+

∂vr

∂x3
)(

∂ψ3

∂r
+

∂ψr

∂x3
) +

∂vr

∂r
∂ψr

∂r
) = 0,

(35)

we obtain the fourth order differential equation describing the elastic wall Poiseuille equation (EWPE):

C1
∂2Q(x3, t)

∂t2 + C2
∂4Q(x3, t)

∂x2
3∂t2

+ C3
∂Q(x3, t)

∂t
+ C4

∂3Q(x3, t)
∂x2

3∂t

+C5
∂4Q(x3, t)

∂x4
3

+ C6
∂2Q(x3, t)

∂x2
3

+ C7Q(x3, t) = 0,
(36)

where

C1 =
8ωρρeν2ω−2

E ε2
1ε3(16ε1 + 11ε)

15µ
, C2 = −

ωρρeν2ω−2
E ε4

1ε3(16ε1 + 11ε)

30(λ + 2µ)2 ,

C3 =
8ρ f ε6

1
3

, C4 = −
11ρ f ε8

1
24

, C5 = ωE
µν2ω−2

E ε4
1ε3(16ε1 + 11ε)

30(λ + 2µ)2 + 2ν
11ε8

1
48

,

C6 = −ωE(
8(λ + 2µ)ν2ω−2

E ε2
1ε3(16ε1 + 11ε)

15µ2 +
2λν2ω−2

E ε4
1ε(4ε1 + ε)

3(λ + 2µ)2

+
(λ− 2µ)ν2ω−2

E ε4
1((4ε1ε + 2ε2

1) ln(ε1 + ε)− 3ε2 + (−4ε1 ln(ε1)− 2ε1)ε− 2ε2
1 ln(ε1))

ε(λ + 2µ)2

+
−4λν2ω−2

E ε3
1ε2(15ε1 + 7ε)

15µ(λ + 2µ)
+
−32λν2ω−2

E ε3
1ε3

15µ(λ + 2µ)
+

λν2ω−2
E ε4

1ε2

(λ + 2µ)2 +
2λν2ω−2

E ε3
1ε3(16ε1 + 11ε)

15µ(λ + 2µ)
)

+ωE
−2µν2ω−2

E ε3
1ε2(15ε1 + 7ε)

15µ(λ + 2µ)
+ ωE

−2µν2ω−2
E ε3

1ε2(15ε1 + 7ε)

15µ
− 2ν

19ε6
1

6
+ 4ν

4ε6
1

3
,
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C7 = ωE
16µν2ω−2

E ε2
1ε(4ε1 + ε)

3µ2 + 2ν8ε4
1.

5. Numerical Scheme for the Poiseuille Equation

In this section, we numerically solve the following boundary value problem for the
elastic wall Poiseuille equation (EWPE) (36):



C1
∂2Q(x3,t)

∂t2 + C2
∂4Q(x3,t)

∂x2
3∂t2 + C3

∂Q(x3,t)
∂t + C4

∂3Q(x3,t)
∂x2

3∂t
+ C5

∂4Q(x3,t)
∂x4

3
+ C6

∂2Q(x3,t)
∂x2

3
+ C7Q(x3, t) = 0,

Q(0, t) = gin(t), Q(1, t) = gout(t),

∂Q(0,t)
∂x3

= ∂Q(1,t)
∂x3

= 0,

Q(x3, 0) = ∂Q(x3,0)
∂t = 0.

(37)

We introduce uniform meshes of points in space and time with step sizes equal to h
and τ, respectively:

xm
3 := mh, m = 0, . . . , M, xM

3 = 1,

tn := nτ, n = 0, . . . , N, tN = T.

Then, the numerical solution to (37) at grid point (xm
3 , tn) is denoted by Un

m.
The derivatives of even order in (37) are discretized using central differences, while

the derivatives of the first order are discretized using forward differences. The resulting
scheme is implicit. Applied at each inner point of the spatial mesh, it forms a tridiagonal
matrix problem, which is effectively solved using the Thomas algorithm.

Using the standard method of Taylor expansions, it is easy to check that, with sufficient
smoothness conditions, the order of accuracy of this scheme is O(h2 + τ). Note that a central-
difference discretization of the first-order derivatives would result in higher accuracy in
time; however, the stability of such a scheme would be hardly attainable in practical
computations, where the parabolic terms of (37) are dominant.

Using the classical stability analysis, it is easy to show that, for the practical problems
that we are interested in, the numerical stability Courant–Friedrichs–Lewy (CFL) condition
τ ≤ ch2 holds, with some constant c that depends on the parameters of the model.

We seek the scaled average velocity Q in m/s inside a small elastic tube or capil-
lary with the Young modulus E = 106 Pa, the Poisson ratio ν̂ = 0.35, the length of the
tube 10−3 m, the radius 5 · 10−5 m, the thickness ε = 2 · 10−5 m and the dynamic viscosity
of blood ν = 4 · 10−3 Pa·s. The following set of constants Ci is obtained:

C1 = 9.2287 · 10−38, C2 = −2.0734 · 10−42, C3 = 4.1667 · 10−2, C4 = −1.7904 · 101, C5 = 7.1615 · 101,

C6 = −6.2500 · 10−2, C7 = 4.000 · 10−4.

To test the accuracy of the constructed solver, let us define the error in the maximum
norm by e, and the experimental convergence rates in space and time by eh and eτ :

e(h, τ) = max
m

∣∣∣UN
m −U(xm

3 , T)
∣∣∣, eh(h) = log2

(
e(2h, τ)

e(h, τ)

)
, eτ(τ) = log2

(
e(h, 2τ)

e(h, τ)

)
.

Here, U(xm
3 , T) is a benchmark solution, which is computed using very small step sizes.

The results of experimental convergence tests are presented in Table 1 below. Here,
the functions gin(t) = 0.005 sin(2t), gout = 0.001et were used, and the problem was solved
for T = 1. We can see from the results of Table 1 that the experimental convergence rate
agrees well with the theoretical estimate.
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Table 1. Errors and experimental convergence rates for sequences of step sizes in space (left) and
time (right). The results confirm experimentally that the order of accuracy of the numerical scheme
is O(h2 + τ).

h e(h, τ) eh(h) τ e(h, τ) eτ(τ)

1 · 10−4 3.1982 · 10−6 2.0019 5 · 10−5 1.1683 · 10−10 1.0203
5 · 10−5 7.9850 · 10−7 1.9957 2.5 · 10−5 5.7601 · 10−11 1.0409

2.5 · 10−5 2.0022 · 10−7 1.9984 1.25 · 10−5 2.7996 · 10−11 1.0900
1.25 · 10−5 5.0111 · 10−8 2.0105 6.25 · 10−6 1.3152 · 10−11 0.9782

6. Numerical Comparison of the Approximate 1D Model and the
Full-Dimensional Problem

In the present section, we compare the numerical solutions of two problems: the full-
dimensional Navier–Stokes equations with the fluid–structure interaction (FSI) conditions
for the tubes with an elastic wall, and the EWPE approximation.

Solution in a single vessel

We consider two types of inflow/outflow boundary conditions: first, gin(t) = gout(t);
second, with gout(t) = gin(t+ δ); and compare the solutions in the middle point of the tube
(Figures 2 and 3).

Figure 2. (a) presents the average velocity computed by EWPE (the fourth order PDE (37)) over
time, (b) depicts the average solution (velocity) of the full Navier–Stokes model. In both cases,
gin = 0.005 sin(2t), gout = 0.005 sin(2t + 0.02) and the solution was taken from the middle cross-
section of the tube.
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Figure 3. (a) presents the average velocity according to the EWPE approximation over time, (b) depicts the
average velocity of the full Navier–Stokes model. In both cases, gin = 0.005 sin(2t), gout = 0.005 sin(2t +
0.1) and the solution was taken from the middle cross-section of the tube. Note that here we
deliberately simulate a case of large displacement of the wall, in order to explore the limitations of
the ansatz.

For δ = 0 and δ = 0.1, the difference between the solutions is less than 10 per cent.
When δ increases (δ = 0.2, δ = 0.25), the difference is more significant. This can be
explained by important variations of the cross-section (more than two times). In this case,
the assumption of small displacements of the wall is no more realistic, and so the model
must take into consideration the difference between Eulerian and Lagrangian approaches.

Solution in a Y-shaped network of vessels

Next, we compare the solutions acquired from (37) and the full Navier–Stokes in a Y-shaped
network (see Figure 4), where the inflow is on the left and two outflows are on the right. The cor-
responding boundary conditions are gin = 0.005 sin(2t) and gout = 0.0025 sin(2t + 0.02) for
each of the two outlets to the right, while the Young modulus is E = 106 Pa for the tube-shaped
blood vessel wall and E = 1010 Pa for the sphere-shaped connection of three tubes, the Poisson
ratio ν̂ = 0.35, the length of each of the three tubes 10−2 m, the radius 10−3 m, the wall
thickness ε = 10−4 m, and the dynamic viscosity of blood ν = 4 · 10−3 Pa·s. The large Young’s
modulus of the wall in the bifurcation zone simulates the no-slip boundary condition there.
It corresponds to the experimental observation that, near the bifurcations, the vessels become
much stiffer than the “tube” walls.

Figure 4. Geometry of the Y-shaped bifurcation model.

The EWPE approximation uses the following junction conditions at the bifurcation
node: (1) the flux 4πε4

1Q coming from the left tube is equal to the sum of the fluxes going
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out into the left tubes (this condition corresponds to a stiffer bifurcation zone of vessels);
(2) the first derivatives ∂Q

∂x3
= 0 for all tubes at the bifurcation node; and (3) the second

derivatives ∂2Q
∂x2

3
= 0 at the bifurcation node for the tubes on the right.

Figures 5 and 6 display the graphs of average velocity in the midpoints of the left and
right vessels, respectively, up to T = 10.

Figure 5. (a) presents the average velocity given by the EWPE approximation (37) over time,
(b) depicts the average velocity given by the full Navier–Stokes model. In both cases, gin =

0.005 sin(2t), gout = 0.0025 sin(2t + 0.02), and the solution was taken from the middle cross-section
of the left tube.

Figure 6. (a) presents the average velocity given by the EWPE approximation (37) over time,
(b) depicts the average velocity given by the full Navier–Stokes model. In both cases, gin =

0.005 sin(2t), gout = 0.0025 sin(2t + 0.02), and the solution was taken from the middle cross-section
of either of the right tubes.

7. Conclusions

A 1D elastic wall quasi-Poiseuille approximation for the fluid–structure interaction
problem in a cylindrical tube is introduced and tested numerically by comparison with
the full-dimensional Navier–Stokes–elastic shell FSI problem. One-tube and tube network
geometries are considered. The inflows and outflows with and without flux conservation
are tested. The results show a good approximation for the fluid–structure interaction model
in the case of small displacements of the wall and modest Reynolds numbers.
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