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Abstract. Sufficient dimension reduction has received much interest over the past 30
years. Most existing approaches focus on statistical models linking the response to the
covariate through a regression equation, and as such are not adapted to binary classification
problems. We address the question of dimension reduction for binary classification by fitting
a localized nearest-neighbor logistic model with ℓ1-penalty in order to estimate the gradient
of the conditional probability of interest. Our theoretical analysis shows that the pointwise
convergence rate of the gradient estimator is optimal under very mild conditions. The
dimension reduction subspace is estimated using an outer product of such gradient estimates
at several points in the covariate space. Our implementation uses cross-validation on the
misclassification rate to estimate the dimension of this subspace. We find that the proposed
approach outperforms existing competitors in synthetic and real data applications.

AMS Subject Classifications: 62G08, 62G20, 62J07, 62J12

Keywords: Binary classification, Cross-entropy, Dimension reduction, Local linear estimation,
Nearest neighbors, Penalization, Weak convergence.

1 Introduction

A number of statistical problems require predicting whether an event of interest A happens
given auxiliary information in the form of a random covariate X ∈ Rp. In finance, for example,
it is of interest to predict whether a given customer, characterized by information such as age,
occupation and net income, is going to default on a loan. In hydrology, one may have to predict
whether flood defenses are going to be breached during a storm based on weather variables
and local topographical information. Marketing studies often try to assess customer churn
within slices of a customer database, which amounts to predicting whether a customer is going
to stop using a product given their past behavior and responses to marketing communications.
In each of those problems, a natural approach is to set Y = 1A, the indicator function of A,
and to model the conditional probability P(Y = 1 | X). A first, naive solution is then to model
this conditional probability as P(Y = 1 | X) = exp(βTX)/(1 + exp(βTX)) and to estimate
the direction β ∈ Rp with logistic regression. This is a well-understood methodology, part
of generalized linear modelling, for which an excellent reference is Agresti (2013). Logistic
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regression, and its alternatives such as probit regression or log-log regression, is sensitive to
misspecification like any other parametric technique. Moreover, it relies on all the information
brought by X about Y to lie in a single projection of X, meaning that up to rotation within
the covariate space, only a single component of X should contain information about the event
of interest. These strong restrictions have motivated the construction and study of several
nonparametric and semiparametric regression methods over the past 30 years.

Many such methods are partly built on a class of techniques aimed at estimating so-
called sufficient dimension reduction subspaces. A dimension reduction subspace E for the
distribution of a random pair (X, Y) ∈ Rp × R is any linear subspace of Rp spanned by the
(p−dimensional) columns of a matrix B ∈ Rp×d with p rows and d columns such that Y and
X are conditionally independent in the sense of Dawid (1979) given the vector BTX ∈ Rd;
the notion of conditional independence, which is linked to fundamental statistical notions
such as sufficiency and ancillarity, is also discussed from a different viewpoint in Basu and
Pereira (1983). Of course, dimension reduction subspaces always exist and are not unique in
general, but the central subspace, that is, the intersection of all dimension reduction subspaces,
is identifiable and is in many cases a dimension reduction subspace as well (Cook, 1994,
1996; Portier and Delyon, 2013). An interesting case occurs when the central subspace has
dimension d = 1, which is the so-called single-index regression situation (Hall, 1989) where
the distribution of Y given X is an unknown function of a single, unknown projection βTX
to be estimated. This model extends traditional parametric regression models by allowing
the link function g satisfying E(Y|X) = g(βTX) to be unknown. More generally, whenever
a matrix B forms a dimension reduction subspace, Y can in fact be written as a measurable
function of BTX and ε, where ε is independent from X; this makes the model Y = g(BTX) + ε,
with g : Rd → [0, 1] unknown, a particularly appealing model for dimension reduction.

Among dimension reduction methods, Sliced Inverse Regression (SIR), pioneered by Li (1991),
seeks to estimate the central subspace by recovering the conditional expectation E(X|Y) from
a family of moments E(ψ(Y)X) depending on a class of (indicator) functions ψ encoding
whether Y belongs to a particular slice of the data. Several extensions have been proposed,
including Sliced Average Variance Estimation (SAVE) by Cook and Weisberg (1991). These
methods rely on the strong assumption that X has an elliptically symmetric distribution (Cook
and Weisberg, 1991). Directional Regression (DR) approaches as in Li and Wang (2007) make
assumptions that are weaker but related to elliptical symmetry, and Likelihood Acquired
Directions (LAD) as in Cook and Forzani (2009) assume that X given Y is Gaussian. Differently
from these techniques, the Principal Hessian Direction (PHD) approach developed by e.g. Li
(1992) for Gaussian multivariate data, and further investigated by Cook (1998) under conditions
akin to elliptical symmetry again, directly work on the conditional expectation E(Y|X) in
order to recover the central subspace. Li (2007) modifies these methods to obtain sparse (with
respect to the covariate index) dimension reduction subspaces. Adaptations of the SIR, SAVE,
and PHD methods to rare event classification were studied by Aghbalou et al. (2024).

Gradient-based estimation methods do not assume elliptical symmetry and are based on the
estimation of the gradient of a regression function in order to recover vectors in the space
of interest. Gradient estimation methods have been introduced by Härdle and Stoker (1989)
and Powell et al. (1989); the works by Klein and Spady (1993) and Huh and Park (2002)
focus specifically on binary regression but only allows for a one-dimensional dimension
reduction subspace. These ideas have been extended in various ways using local linear
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estimation, see for example Hristache et al. (2001), which improves the average derivative
estimator by focusing on the hyperplane orthogonal to the target direction in a single-index
model, the Minimum Average Variance Estimation (MAVE) procedure of Xia et al. (2002) that
simultaneously estimates the conditional variance of the observations given directions in the
data and minimizes this quantity with respect to these directions, the method of Dalalyan
et al. (2008) combining local linear estimation with an ℓ∞−type Principal Component Analysis
technique, and nearest-neighbor local linear estimators combined with a LASSO penalization
devised by Ausset et al. (2021) in order to handle the high-dimensional setting. Local linear
estimation, for which a comprehensive reference is Fan and Gijbels (1996), provides an efficient
way to estimate the derivatives of the regression function and as such, it has an essential place
in many dimension reduction methods such as those we have just highlighted. Somewhat
tangentially, Delecroix et al. (2006) also build estimators based on minimizing general loss
functions. With the exception of the work by Klein and Spady (1993) and Delecroix et al.
(2006), the gradient-based methods outlined here are designed for dimension reduction in
location regression models of the form Y = g(βTX) + ε, which excludes the binary regression
and classification frameworks; however, Klein and Spady (1993) and Delecroix et al. (2006)
only handle single-index classification.

A more recent line of work has focused on using powerful modern tools of mathematical
statistics such as Reproducing Kernel Hilbert Spaces (RKHS). The use of RKHS in dimension
reduction appears to have been pioneered by Fukumizu et al. (2004), who use the covariance
operator to characterize the central subspace when the response and covariate are finite-
dimensional. Later, Hsing and Ren (2009) paired the use of RKHS with SIR to handle
dimension reduction when the covariate is a stochastic process. Subsequent work by Li et al.
(2011) unified the construction of linear and nonlinear dimension reduction subspaces again
using support vector machine approaches that can handle binary regression models; this
technique is closely linked to the Principal Optimal Transport Direction (POTD) method
investigated in Meng et al. (2020). The recent solution put forward by Kang and Shin (2022),
and building on earlier work by Mukherjee and Wu (2006), makes use of local estimation
techniques based on an RKHS representation theorem to fit the function as well as its gradient.
Their theory requires the true functions and gradient to lie within the RKHS space of interest,
and to specify the RKHS kernel correctly. Computationally speaking, their optimization
procedure relies on a risk function that is a second-order U-statistic involving n2 terms. Other
machine learning techniques, such as ensemble learning, have also been paired with local
estimation (see for example Cai et al., 2023) although they tend to rely on local least squares
and thus not on loss functions better suited to binary classification.

This article proposes a new dimension reduction framework tailored to classification, han-
dling dimension reduction subspaces not limited to a single projection, and able to perform
variable selection while dealing with the curse of dimensionality. Assume that Y satisfies

π(X) := P(Y = 1|X) = g(βTX)

for some β ∈ Rp×d, d ≤ p and a measurable function g : Rd → [0, 1]. The function g,
treated as a nuisance parameter, and the matrix β are both unknown. If we had d = 1 and
g(t) = expit(t) := exp(t)/(1 + exp(t)), then we would have logit(π(X)) := log(π(X)/(1 −
π(X))) = βTX, and β ∈ Rp would be exactly the gradient of ℓ := logit(π). Our main idea
is that, if the conditional probability π is sufficiently regular at a given point x then ℓ(X)

can be approximated by a linear function of X − x in a neighborhood of x, whose intercept
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a = a(x) is just ℓ(x) and whose gradient b = b(x) = ∇ℓ(x) belongs to the vector space span(β)

that is spanned by the columns of β. We then construct, at each point x, a nearest-neighbor,
penalized, local logistic (and hence convex) loss function depending on two arguments a ∈ R

and b ∈ Rp. The weak convergence of the estimator follows, under very mild conditions, from
a new general empirical process theory result on a family of nearest-neighbor estimators that
is of independent interest. The gradient estimates at several points are then aggregated using
the standard outer product of gradients of e.g. Section 3.1 in Xia et al. (2002), and span(β) is
recovered by finding the eigenspaces of this matrix corresponding to its d largest eigenvalues.
Using nearest neighbors (see Biau and Devroye (2015) for a recent textbook), instead of the
Nadaraya-Watson weights as in Fan et al. (1995), ensures an adaptive bandwidth choice while
keeping computational time reasonable thanks to algorithms such as k − d tree search. Our
use of a penalized loss function ensures sparsity of the estimated vectors in a similar spirit as
in Li (2007) but without requiring a first step non-sparse estimation and, unlike earlier local
generalized linear techniques such as that of Fan et al. (1995), makes it possible to deal with
potentially large dimensions (of the order of several dozens when the sample size is n = 1000).
While most of the existing dimension reduction methods select the number d of components
in the reduction subspace by using rank testing procedures (Bura and Yang, 2011; Portier and
Delyon, 2014), we here propose to rely on the underlying classification context by developing a
simple cross-validation approach comparing the different sets of ordered eigenvectors given by
the outer product of gradients. Surprisingly, this is helpful in improving the final accuracy of
the classification method even when the true dimension of the reduction subspace is known.

The paper is organized as follows. In Section 2.1, we describe our statistical framework in
detail and we then construct our nearest-neighbor, penalized local logistic loss function, whose
maximization gives rise to the proposed gradient estimator. In Section 2.2, we establish the
pointwise weak convergence of this estimator and in Section 2.3 we employ an outer-product of
gradients to estimate the central subspace. In Section 3, we discuss several practical aspects of
the proposed algorithm, we construct our classification method, and we compare our approach
to several competitors on synthetic and real data. The mathematical proofs and additional
finite-sample results are postponed to an online Supplementary Material document.

2 Statistical framework and main results

2.1 Background

Let Y ∈ {0, 1} be a binary response variable, with random covariate X ∈ Rp. The data at hand
is supposed to be made of independent copies (Yi, Xi) of the random pair (Y, X), for 1 ≤ i ≤ n.
Suppose that for an x in the support SX of X (assumed to have nonempty interior),

π(x) = P(Y = 1|X = x) = g(βTx),

for some unknown β ∈ Rp×d, d ≤ p and an unknown measurable function g : Rd → [0, 1]. The
Kullback-Leibler divergence of the Bernoulli distribution with parameter π ∈ (0, 1) from the
Bernoulli distribution with parameter q ∈ (0, 1) is

DKL(π||q) = π log
(

π

q

)
+ (1 − π) log

(
1 − π

1 − q

)
.
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Gibbs’ theorem entails DKL(π||q) ≥ 0, with equality if and only if π = q. Equivalently, the
cross-entropy function

H(π, q) = DKL(π||q)− {π log(π) + (1 − π) log(1 − π)} = −π log(q)− (1 − π) log(1 − q),

obtained by adding to DKL(π||q) the entropy of the Bernoulli distribution with parameter π,
is minimal if and only if π = q. In the classification setup, where the random covariate X has
distribution PX, the natural loss function to consider is the integrated cross-entropy∫

x∈SX

H(π(x), q(x))PX(dx) = −E[Y log(q(X)) + (1 − Y) log(1 − q(X))]

viewed as a function of the map x 7→ q(x). When g = g0 is known, one should search for a
function q of the form x 7→ g0(bTX), for some b ∈ Rp×d, meaning that one should minimize
−E[Y log(g0(bTX)) + (1 −Y) log(1 − g0(bTX))] as a function of b. This suggests the estimator

arg max
b∈Rp×d

n

∑
i=1

Yi log(g0(bTXi)) + (1 − Yi) log(1 − g0(bTXi)).

For d = 1 and g0 = expit, this is the logistic regression estimator, with the empirical integrated
cross-entropy loss being just the negative conditional log-likelihood in the logistic model.

When g is unknown, the logistic regression estimator is not guaranteed to be a consistent
estimator of β. However, if π is differentiable at x, then the gradient ∇π(x) of π at x satisfies

∇π(x) = β∇g(βTx).

As such, ∇π(x) ∈ span(β). If moreover 0 < π(x) < 1, then likewise

∇ℓ(x) =
1

π(x)(1 − π(x))
∇π(x) ∈ span(β), where ℓ = logit π.

To recover span(β), it then suffices to estimate enough gradients of the form ∇ℓ(xj). Now a
Taylor expansion of ℓ around x yields π(y) ≈ expit(a+ bT(y− x)), with a = logit(π(x)) = ℓ(x)
and b = ∇ logit(π(x)) = ∇ℓ(x), for y close to x. This suggests that the logistic regression
estimator can still be used to produce an estimator of ∇ℓ(x) if it is restricted to data points
close enough to x. Namely, one should expect the local integrated cross-entropy

−E[Y log(expit(a + bT(X − x))) + (1 − Y) log(1 − expit(a + bT(X − x))) | X ∈ B(x, ε)]

to be minimized at (aε(x), bε(x)) ≈ (ℓ(x),∇ℓ(x)) as ε ↓ 0, where B(x, ε) is the closed Euclidean
ball with center x and radius ε in Rp. This shall be the cornerstone of our methodology.

2.2 Nearest-neighbor penalized local logistic estimator

The localization induced by conditioning upon covariate values belonging to B(x, ε) is repro-
duced empirically using a nearest-neighbor procedure. Fix x ∈ Rp and let Nk(x) ⊂ {1, . . . , n}
be the set gathering the indices of the k-nearest neighbors Xi of the point x; we shall assume
in the theory below that the distribution of X has a density w.r.t. Lebesgue measure, so that
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ties will not happen with probability 1 and Nk(x) is well-defined. The empirical counterpart
of the local integrated cross-entropy is then

−1
k ∑

i∈Nk(x)
Yi log(expit(a + bT(Xi − x))) + (1 − Yi) log(1 − expit(a + bT(Xi − x))).

Introducing the LASSO penalty λ∥b∥1, where ∥ · ∥1 is the ℓ1−norm on Rp, and rescaling, we
naturally obtain a nearest-neighbor, penalized, local logistic estimator as

(ân(x), b̂n(x)) = arg max
(a,b)∈R×Rp

{Ln(a, b)− λ∥b∥1} (1)

with

Ln(a, b) = ∑
i∈Nk(x)

Yi log(expit(a + bT(Xi − x))) + (1 − Yi) log(1 − expit(a + bT(Xi − x))).

Our main theoretical result is that one can obtain the asymptotic distribution of this pair
of estimators under very weak assumptions on the distribution of X and the conditional
distribution of Y|X = x. We spell out these conditions and their interpretation below.

(A1) The distribution of X has a continuous density fX with respect to the Lebesgue measure
on Rp and fX(x) > 0.

(A2) The function π : Rp → [0, 1] is twice differentiable with continuous second order
derivatives at x and such that π(x) ∈ (0, 1).

Assumption (A1) ensures that there are enough points around x for the nearest-neighbor
procedure to work. It also ensures the good probabilistic behavior of the bandwidth

τ̂n,k(x) := inf

{
τ ≥ 0 :

n

∑
i=1

1B(x,τ)(Xi) ≥ k

}
corresponding to the smallest radius τ ≥ 0 such that the ball B(x, τ) contains at least k points
from the sample. Actually, the fact that X has a continuous distribution w.r.t. Lebesgue
measure yields

Ln(a, b)

=
n

∑
i=1

[Yi log(expit(a + bT(Xi − x))) + (1 − Yi) log(1 − expit(a + bT(Xi − x)))]1B(x,τ̂n,k(x))(Xi).

It also turns out that if k = kn → ∞ with k/n → 0, then under (A1), τ̂n,k(x)/τn,k(x) → 1 in
probability, where, if Vp denotes the volume of the Euclidean unit ball in Rp,

τn,k(x) =
(

k
n

1
fX(x)Vp

)1/p

.

See Lemma 1 in Portier (2021). It is then reasonable to write, for n large enough,

Ln(a, b) ≈ Ln(a, b)

=
n

∑
i=1

[Yi log(expit(a + bT(Xi − x))) + (1 − Yi) log(1 − expit(a + bT(Xi − x)))]1B(x,τn,k(x))(Xi).
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The asymptotic behavior of Ln(a, b) is much easier to study than that of Ln(a, b), since it is a
sum of independent and identically distributed random variables; like Ln(a, b), it defines a
concave objective function and therefore one should expect that (up to technical details) the
asymptotic behavior of (ân(x), b̂n(x)) will follow from the pointwise convergence of Ln(a, b).
The key result in order to make this intuition rigorous is of independent interest and is the first
main result of this paper. Here and throughout ∥ · ∥2 denotes the standard Euclidean norm.

Theorem 1 (Central limit theorem for nearest-neighbor estimators). Suppose that (A1) is fulfilled.
Assume that k := kn → ∞ is such that k/n → 0. Let Ψn : {0, 1} × Rp → Rq be a sequence of
measurable vector-valued functions and suppose that there is a positive integer n0 such that

sup
n≥n0

sup
z∈B(x,(3/2)1/pτn,k(x))

max(∥Ψn(0, z)∥2, ∥Ψn(1, z)∥2) < ∞.

Define a centered and càdlàg stochastic process (Zn(τ))τ>0 by

Zn(τ) =
1√
k

n

∑
i=1

{
Ψn(Yi, Xi)1B(x,τ)(Xi)− E[Ψn(Y, X)1B(x,τ)(X)]

}
.

(i) Then Zn(τ̂n,k(x)) = OP(1).

(ii) Let Σ2
n(X) = E[Ψn(Y, X)Ψn(Y, X)T|X]. If moreover there is a (positive semidefinite) matrix-

valued function t 7→ Σ2(t, x) such that

∀t ∈ [1/2, 3/2],
∫

B(0,1)
Σ2

n(x + τn,k(x)t1/pv)dv → VpΣ2(t, x),

then
Zn(τ̂n,k(x)) = Zn(τn,k(x)) + oP(1)

d−→ N (0, Σ2(1, x)).

Theorem 1(ii) is obtained by, first, showing that the empirical process (Zn(τ)) is tight and
converges weakly to a continuous Gaussian process within a suitable functional space when
the radius τ is restricted to being of similar order as the nearest neighbor radius τn,k(x), and
then by combining that with the fact that τ̂n,k(x)/τn,k(x) → 1 in probability, see Lemma 2.

Because of the LASSO penalty term in (1), the asymptotic distribution of b̂n(x)−∇ℓ(x) will
depend on the so-called local active set associated to ∇ℓ(x), defined as the set of indices j such
that ∇ℓj(x) ̸= 0. This is in line with the asymptotic distribution obtained for the standard least
squares LASSO regression estimator, see Knight and Fu (2000) and Zou (2006). Let, for any
real number t, the quantity sgn(t) = 1[0,∞)(t)− 1(−∞,0)(t) be the sign of t, that is, sgn(t) = 1
when t ≥ 0 and −1 otherwise. Finally, define

Γ(x) = π(x)(1 − π(x))

(
1 0T

p
0p

1
p+2 Ip

)

where 0p is the zero vector in Rp and Ip denotes the identity matrix of order p. Our first
main result provides the limiting distribution of the pair (ân(x), b̂n(x)). In this result, as-
sumption (A2) ensures that the gradient of ℓ = logit π is well-defined, with the second order
derivatives of π and hence of ℓ coming into play when evaluating the rate of convergence of
the bias term incurred when localizing. Denote by ∆π(x) the Laplacian of π at x.
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Theorem 2 (Convergence of nearest-neighbor penalized local logistic regression estimators).
Suppose that (A1) and (A2) are fulfilled. If k := kn → ∞ and λ := λn are such that k1+p/2/n → ∞,
k1+p/4/n is bounded and nλp/k1+p/2 → c ∈ [0, ∞) then we have( √

k(ân(x)− ℓ(x))
τn,k(x)

√
k(b̂n(x)−∇ℓ(x))

)
d
= arg max

u=(u0,u1,...,up)T∈Rp+1

{
uT(Wn(x) + Tn(x))− 1

2
uTΓ(x)u

− (c fX(x)Vp)
1/p

(
p

∑
j=1

sgn(∇ℓj(x))uj1{∇ℓj(x) ̸=0} + |uj|1{∇ℓj(x)=0}

)}
+ oP(1)

with Wn(x) d−→ N (0, Γ(x)) and

Tn(x) = τ2
n,k(x)

√
k
(

1
2(p + 2)

(
∆π(x)− 1 − 2π(x)

π(x)(1 − π(x))
∥∇π(x)∥2

2

)(
1
0p

)
+ oP(1)

)
.

The conditions on k and λ in Theorem 2 are equivalent to assuming that τn,k(x)
√

k →
∞, τ2

n,k(x)
√

k is bounded and λ/(τn,k(x)
√

k) converges to the finite constant (c fX(x)Vp)1/p.
Condition τn,k(x)

√
k → ∞ is necessary in order to be able to write a Taylor expansion of the

penalized component in the loss function (although it is, strictly speaking, not needed for
the analysis of the non-penalized local logistic maximum likelihood function, see Lemma 5).
In pointwise results on local linear kernel quasi-maximum likelihood estimation with one-
dimensional covariates, Theorem 1a in Fan et al. (1995) requires

√
nh3 = h

√
nh → ∞, where h is

the kernel bandwidth; note that h and τn,k(x) play the same role and that, for p = 1, the kernel
regression analogue of k is a quantity proportional to nh, so that conditions h

√
nh → ∞ and

τn,k(x)
√

k → ∞ are indeed analogous. Of course, condition τn,k(x)
√

k → ∞ is automatically
satisfied if τ2

n,k(x)
√

k converges to a finite positive limit, namely, when the nonparametric
bias-variance tradeoff is achieved. We also highlight that condition k/n → 0, which is standard
in nearest-neighbor estimation, follows from assuming that k → ∞ and τ2

n,k(x)
√

k is bounded.
It follows that, under conditions (A1) and (A2) plus classical conditions linking the number of

nearest neighbors and the penalizing constant λ, the two estimators ân(x) and b̂n(x) converge
respectively at the rate 1/

√
k and 1/(τn,k(x)

√
k). Note that for non-penalized local logistic

regression (λ = 0 and thus c = 0), the result of Theorem 2 is just( √
k(ân(x)− ℓ(x))

τn,k(x)
√

k(b̂n(x)−∇ℓ(x))

)
d
= N (0, Γ−1(x)) + OP(τ

2
n,k(x)

√
k) + oP(1).

In particular, if kτ4
n,k(x) → 0, a straightforward application of the delta-method yields

√
k(expit(ân(x))− π(x)) d−→ N (0, π(x)(1 − π(x)))

as expected from standard maximum likelihood theory when the logistic regression model is
valid. Condition kτ4

n,k(x) → 0, which makes the bias term Tn(x) vanish asymptotically, again
has a straightforward analogue in local linear kernel quasi-maximum likelihood estimation; for
p = 1, the corresponding condition is nh5 → 0, which is exactly the bias condition necessary
to eliminate the smoothing bias term in Theorem 1a in Fan et al. (1995).
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Another immediate corollary of Theorem 2 can also be given on the estimation rate of the
gradient ∇ℓ(x) by b̂n(x).

Corollary 3 (Rate of convergence of the gradient estimator). Under the conditions of Theorem 2,
b̂n(x) is a consistent estimator of ∇ℓ(x), and

b̂n(x)−∇ℓ(x) = OP

(
1

τn,k(x)
√

k

)
+ OP(τn,k(x)).

These results provide statistical guarantees on the estimation of directions belonging to the
dimension reduction subspace, and will therefore be useful in order to find such guarantees on
the dimension reduction procedure. The rate obtained in Corollary 3 has also been obtained as
part of non-asymptotic bounds on nearest neighbor estimation of the gradient of the regression
function, although this of course requires strong assumptions on the tail behavior of the noise,
see e.g. Theorem 1 in Ausset et al. (2021). The best achievable rate of convergence, obtained
for k = n4/(p+4), is n−1/(p+4) for the estimation of the gradient vector. This rate is optimal,
see Stone (1982), is the same as the one obtained in Ausset et al. (2021), and is better than the
rate n−1/(3(p+4)) obtained in Kang and Shin (2022).

The above results only require X to have a continuous density that is positive around x, and
the conditional probability to be twice continuously differentiable at x. As a consequence the
best that can be hoped for is, of course, a pointwise asymptotic convergence result in the spirit
of Theorem 2. Stronger results, such as uniform convergence results for b̂n(x) over compact
subsets of the support of X, could be obtained under much more restrictive conditions.

2.3 Aggregating the directions

The optimization procedure (1) allows to estimate ∇ℓ(x) which, as explained in Section 2.1,
belongs to the central subspace for each x ∈ SX. This subspace can be recovered by estimating
several such directions at different points x. To this aim, given a probability measure µ

supported on SX, let

M =
∫

Rp
∇ℓ(x)∇ℓ(x)Tµ(dx) = EX∗∼µ[∇ℓ(X∗)∇ℓ(X∗)T].

To estimate the matrix M, generate X∗
i ∼ µ, i = 1, . . . , m independently and compute

M̂ =
1
m

m

∑
i=1

b̂n(X∗
i )b̂n(X∗

i )
T. (2)

One can then define (β̂1, . . . , β̂p) as the set of orthogonal eigenvectors of M̂, ordered according
to their eigenvalues (in decreasing order). Finally, given d ∈ {1, . . . , p} (which is chosen in
practice by cross-validation, as we shall explain next), the projection matrix

P̂β̂ = P̂β̂,d =
d

∑
k=1

β̂k β̂T
k

defines an estimator of the projection on the central subspace of interest. A corollary from our
main results can now be stated on the estimation of M.
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Corollary 4. Suppose that µ is a finitely supported measure on SX and that for each x ∈ supp(µ),
assumptions (A1) and (A2) are satisfied. If k := kn → ∞ and λ := λn are such that k1+p/2/n → ∞,
k1+p/4/n is bounded and nλp/k1+p/2 converges to a finite constant, we have

M̂ − M = OP

(
1

τn,k(x)
√

k

)
+ OP(τn,k(x)) + OP

(
1√
m

)
.

The above rate of convergence can be extended to the eigenprojector P̂β̂ as indicated by
Lemma 4.1 in Tyler (1981). Also note that a natural choice for µ, which is also the one made
in our numerical experiments, is the empirical measure of X1, . . . , Xn. This is, of course, a
random measure whose number of atoms is not bounded with respect to n. From a theoretical
perspective, we conjecture, following results given in Hristache et al. (2001) and Dalalyan et al.
(2008), that such a choice would lead to a different rate of convergence compared to the one
given in the above corollary, under substantially stronger regularity assumptions than ours.

3 Numerical experiments

This section first explains how the algorithms for the proposed methods work to estimate the
dimension reduction matrix M. We then describe the different competitors and evaluation
metrics that we shall use. We next analyze synthetic data examples and finally consider real
data examples in order to showcase the benefits of our methodology in classification tasks.
The code that may be used to reproduce our experiments is publicly available on GitHub1.

3.1 The algorithm

3.1.1 Estimation of the dimension reduction matrix

For a given choice of m (the number of b’s used to estimate M), a given value of λ, the
penalization parameter in the optimization problem, and k the number of neighbors, the
computation of the dimension reduction matrix is straightforward, see Algorithm 1 below (the
optimization is carried out using the R function glmnet from the package of the same name).

Algorithm 1 Estimation of M
1: Input: (X1, Y1), . . . , (Xn, Yn) ∈ Rp × {0, 1}, λ > 0, k ∈ {1, . . . , n} and m ∈ {1, . . . , n}
2: Output: Dimension reduction matrix M̂
3: Draw uniformly a list Xm of m observations among X = (X1, . . . , Xn) without replacement
4: for each x ∈ Xm do
5: Compute Nk(x), the index of the k nearest neighbors to x among X
6: Compute ân(x) and b̂n(x) according to (1) using gradient descent
7: end for
8: Return M̂ = 1

m ∑x∈Xm
b̂n(x)b̂n(x)T

We now discuss the choice of the hyperparameters. Ideally, one should set m = n so that
the gradient is estimated at each data point; we set here m = n/4 to save computing time,
as in our experience this choice does not adversely affect finite-sample results substantially.

1https://github.com/touqeerahmadunipd/LLO_regression
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We also set k = ⌊
√

n⌋. Furthermore, to mitigate biases that may arise from imbalanced class
distributions, we exclude samples where after finding the closest neighbors, either class 0 or
class 1 is rare, defined here as having fewer than 5 points within one of the two classes.

To estimate the directions featured in (2), we use either the pure nearest-neighbor logistic
log-likelihood without penalization or its penalized version. For the latter, we require an
optimal choice of λ which balances the regularization and goodness-of-fit. We propose to
select the same parameter λ for all x ∈ Xm in order to alleviate the computational burden.
We therefore select λ by 10-fold cross-validation at the average point x = x = 1

n ∑n
i=1 Xi. In

other words, we divide the data into 10 randomly selected subsets of equal size, each subset
serving as a validation set while the remaining subsets are used for model fitting. The fitted
model is assessed on the validation set using the misclassification error, that is, the proportion
of observations whose label is not correctly predicted, which is nothing but the empirical
counterpart of the misclassification risk R(g) = P(g(X) ̸= Y) for a given classifier g; in this
cross-validation procedure, an observation is labeled as 1 if and only if its predicted probability
of success by the nearest-neighbor logistic log-likelihood estimator π̂n(x) = expit(ân(x))
exceeds 1/2. This evaluation of the quality of the fitted model is then done across a sequence
of λ values: more precisely, we use the R function cv.glmnet from the glmnet package with
type.measure=class, which automatically computes the average misclassification error across
all validation sets, and the regularization parameter λ selected is the one minimizing this error.

3.1.2 Selecting the dimension of the reduction subspace

Unlike some dimension reduction approaches such as that of the seminal paper by Li (1991),
we estimate the dimension of the reduction subspace using cross-validation on the underlying
prediction problem, and not from a test on the eigenvalues of the outer product of gradients
M̂. We refer to Bura and Yang (2011) and Portier and Delyon (2014) for more details on
the rank testing procedures used to estimate the dimension of the reduction subspace. Our
procedure first divides the data into a training set (Xtrain, Ytrain) and a testing set (Xtest, Ytest).
The matrix M̂ and its p orthogonal eigenvectors β̂1, . . . , β̂p, in decreasing order according
to their eigenvalues, are estimated from the training set following the procedure described
in Algorithm 1. For every d ∈ {1, . . . , p}, the first d eigenvectors are then gathered in a
matrix β̂(1:d) ∈ Rp×d, the sets of covariates Xtrain and Xtest are projected onto the sets of
lower-dimensional covariates Xtrain β̂(1:d) and Xtest β̂(1:d), and a classifier is learned based on the
training set (Xtrain β̂(1:d), Ytrain). We use here mainly the knn nearest-neighbor classifier, that is,
at a given point x, the result of the majority vote among the nearest neighbors of x within
the space of projections of the covariates in the training set (with ties broken at random). For
this classifier, the training step merely consists of storing the covariates in the training set
along with their labels, which will form the basis for the vote at each point. In the real data
analysis, we shall also compare our results with the Random Forest classifier, whose training
step is nontrivial. The performance of the chosen classifier is then evaluated on the test set
(Xtest β̂(1:d), Ytest), and the dimension retained is the one for which the classifier has the lowest
misclassification risk. This forward iterative procedure, summarized in Algorithm 2, makes
it possible to strike a balance between dimension reduction and the preservation of relevant
information within the dataset. We shall compare the results obtained with the situation where
the correct dimension of the reduction subspace is known in order to assess the influence of
the dimension selection step.
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Algorithm 2 Estimation of the dimension d
Input: Dataset (X, Y) with X ∈ Rn×p and Y ∈ {0, 1}n, classification algorithm g (kNN,
random forest...), and parameters λ > 0, k ∈ {1, . . . , n}, m ∈ {1, . . . , n} and K ≥ 2

2: Output: Dimension of reduction subspace
Estimate M̂ using algorithm 1 and compute the eigenvectors β̂1, . . . , β̂p of M̂

4: Split (X, Y) into K folds (X(j), Y(j))j=1,...,K
for each d ∈ {1, . . . , p} do

6: Define β̂(1:d) = [β̂1 · · · β̂d]

for each j ∈ {1, . . . , K} do
8: Define (Xtrain, Ytrain) = (X, Y)\(X(j), Y(j))

Train the classification rule g on data (Xtrain β̂(1:d), Ytrain)

10: Evaluate its misclassification risk Rj,d using (X(j) β̂(1:d), Y(j))

end for
12: Compute Rd = 1

K ∑K
j=1 Rj,d

end for
14: Return: d minimizing Rd

3.2 Simulation study

In all the examples presented below, (Xi, Yi)i=1,...,n is a collection of independent and identically
distributed random copies of the pair (X, Y), and X is a vector of independent centered and
unit Gaussian covariates with dimension p ≥ 8. We consider the following four examples:
Example 1. The binary response Y has a Bernoulli distribution with parameter expit(X1).
Example 2. The binary response is Y = sign{sin(X1) + X2

2 + 0.2ϵ}, where ϵ ∼ N (0, 1).
Example 3. The binary response is Y = sign{(X1 + 0.5)(X2 − 0.5)2 + 0.2ϵ}, where ϵ ∼ N (0, 1).
Example 4. The binary response is Y = sign{log(X2

1)(X2
2 + X3) + 0.2ϵ}, where ϵ ∼ N (0, 1).

Example 1 is the simplest instance of a logistic regression model with a single relevant
feature, while Examples 2, 3, and 4 are closely related to examples considered by Meng et al.
(2020). We compare the proposed approach, with penalization (denoted by LLO(λ > 0)) and
without penalization (called LLO(λ = 0)) with three existing competitors: SAVE and PHD,
which are inverse regression techniques (Cook and Weisberg, 1991; Li, 1992) (both using the dr
function from the R package of the same name) and POTD, relying on optimal transport (Meng
et al., 2020). These methods are compared using, on the one hand, the distance between the
estimated central subspace and the true central subspace using the Frobenius distance between
the projection matrices on these subspaces, that is, d(S(β̂),S(β)) = ∥Pβ̂ − Pβ∥F with Pβ = ββT

for any orthogonal matrix β of p−dimensional vectors. In each example, the central subspace
is explicit: in Example 1, the central subspace is spanned by the first vector of the canonical
basis in Rp, it is spanned by the first two vectors of this basis in Examples 2 and 3, and it is
spanned by the first three vectors of this basis in Example 4. As such, Examples 1 to 4 are
ranked in order of complexity of the dimension reduction problem.

On the other hand, these dimension reduction methods naturally give rise to classification
procedures, in the following way: if P denotes the projection matrix on an estimated central
subspace of dimension d, then a nearest-neighbor classifier at X = x is defined by the result
of the majority vote among the nearest neighbors of Px. We therefore compare the nearest-
neighbor classifiers obtained in this way using each of the dimension reduction procedures
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we consider; for this, and in each example, we generate independently a test data set on
which all the nearest-neighbor classifiers are run (for this classification task we take k = 10,
as in Section 5 of Meng et al. (2020)), and their misclassification rates on this test data set are
stored. It is worth noting that an easy dimension reduction problem may not automatically
translate into an easy classification problem: in Example 1, for instance, the conditional
probability that Y = 1 is often close to 1/2, meaning that the misclassification risk is bound
to be high even if the central subspace is correctly identified. The distance to the central
subspace and the misclassification risk thus give two different pieces of information about
the accuracy of each method and the difficulty of each problem. We consider sample sizes
n = 500, 1000, 2000, 3000, 4000, and in each case the misclassification risk and the distance to
the central subspace are averaged over N = 1000 independent replications.

Results are represented in Figures 1 and 2, first in the case when the dimension d of the
reduction subspace is assumed to be known and correctly specified in each example, and the
dimension of the full covariate space is p = 8. We observe that the penalized nearest-neighbor
local logistic method LLO(λ > 0) performs best in terms of estimation of the central subspace,
especially for low sample sizes. As expected, the non-penalized version of this method is
substantially less accurate, which highlights the importance of penalization. The nearest-
neighbor majority vote classifier fed with the estimated central subspace obtained using the
LLO(λ > 0) gradient estimates is also best among the tested methods as far as misclassification
risk is concerned, and performs almost as well as if the correct central subspace was used.
For larger sample sizes, the closest competitor overall seems to be the POTD approach; for
lower sample sizes, the worst two approaches are those based on the non-penalized local
logistic estimation of gradients and the PHD technique. In Figure 3, we moreover examine
how the methods perform when the correct dimension reduction subspace and sample size
are fixed but the dimensions of the ambient space and estimated central subspace vary, i.e.
we consider Example 4 for n = 1000 with X a vector of standard Gaussian random variables
having dimension p ∈ {8, 16, 32, 64}, and various dimensions 1 ≤ d ≤ 6 for the estimated
central subspace. The LLO(λ > 0) method again performs best overall, and markedly improves
over competitors when p ≤ 16. It is interesting to note that the best results for LLO(λ > 0)
are found when the dimension d is correctly specified if p ≤ 16; for higher dimensions this is
not necessarily the case, although a dimension close to the dimension of the correct central
subspace will tend to yield better results. The results related to Examples 1 to 3 are similar
and are deferred to Figures S.1–S.2 for the sake of brevity.

We finally assess the performance of our complete workflow, namely, dimension reduction
and selection through Algorithms 1 and 2 and then classification using the nearest-neighbor
classifier. Again, we focus on Example 4 for the sake of brevity, in the case n = 1000 with
X a vector of independent centered and unit Gaussian random variables covariates having
dimension p ∈ {8, 16, 32, 64}. We first ran a series of experiments to check the accuracy
of our cross-validation dimension selection procedure outlined in Algorithm 2 under the
same experimental design. It is seen in the left panel of Figure 4 that in the majority of
cases, the dimension selected is within one unit of the correct dimension, and that dimension
selection is typically quite accurate for p ≤ 16. In the right panel of Figure 4, we represent
the misclassification risks of the LLO(λ = 0) and LLO(λ > 0) methods following the full
workflow, and we compare their misclassification rates with the misclassification probability
of their versions when d is chosen as the dimension of the correct central subspace. It is
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striking that the rate of misclassification tends to be lower when following the full workflow
(and therefore when estimating the dimension by cross-validation on the misclassification
probability) than when using the correct dimension. The interpretation is that while using
the correct dimension is optimal as far as the estimation of the dimension reduction subspace
is concerned, it is not necessarily so regarding the misclassification rate, and for the latter, it
is better to get through the selection of d based on optimizing the misclassification risk. It is
also apparent that the performance of the full workflow tends to be slightly more robust to an
increase in the dimension of the ambient covariate space. The results in Examples 1 to 3 are
broadly similar and can be found in Figures S.3–S.4.

3.3 Real data analyses

We apply the proposed methodology to three real data sets, all freely available from the UCI
repository and on file with the authors:

• The Hill-Valley (HV) dataset2. Each data point is made of 100 real numbers xi =

(xi,j)1≤j≤100 which, when plotted in order, create a curve in the two-dimensional plane
that features a hill (a “bump” in the curve) or a valley (a “dip” in the curve). The data
consists of the n = 1212 pairs (Yi, xi) ∈ {0, 1} × R100, where Yi = 0 if the ith curve
features a valley and 1 if it features a hill.

• The Mice Protein Expression (MPE) dataset3. After data cleaning, the dataset contains
n = 1047 observations with p = 71 attributes, consisting of healthy mice and mice
diagnosed with Down’s syndrome.

• The Wisconsin Diagnostic Breast Cancer (WDBC) dataset4 used in Shin et al. (2014). A
total of n = 569 subjects are diagnosed with breast tumors, either benign or malignant.
Ten features of breast cell nuclei are measured for each subject, with the mean, standard
error, and largest values recorded for each feature, leading to p = 30 predictors in total.

Each dataset is divided at random into a training set and a testing set, approximately made
of 70% and 30% of the original data, respectively. Table 1 compares the performance of the
complete workflow (dimension reduction and selection and then classification) using the full
space of covariates, the covariates projected on the dimension reduction subspace provided by
the proposed LLO(λ > 0) method, and its version obtained using the non-penalized version
LLO(λ = 0), paired with either the knn or the RandomForest classifier, when applied to the
testing set. The classification procedure using LLO(λ > 0) generally has a comparable or
lower misclassification risk, a comparable or higher AUC (this can also be seen by comparing
the ROC curves of each classification procedure, see Figure S.6) with comparable or lower
computing time with respect to the non-penalized version, and always improves substantially
upon the classifier not featuring dimension reduction. It is interesting to note that, as expected,
the cross-validation procedure for the dimension of the reduction subspace involving the
estimation of the matrix M via LLO(λ > 0) tends to select fewer components than its analogue
using LLO(λ = 0), with comparable or higher accuracy, as shown in the top panels in Figure 5

2https://archive.ics.uci.edu/dataset/166/hill+valley
3https://archive.ics.uci.edu/dataset/342/mice+protein+expression
4https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic
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for the nearest neighbor classifier (see Figure S.5 for similar results with the Random Forest
classifier). It is noted that in the WBDC real data analysis, all the eigenvalues of the empirical
outer product M̂ were found to be 0 from dimension d = 15 and d = 22 onwards when using
the LLO(λ > 0) and LLO(λ = 0) method, respectively.

Table 1: Misclassification risk, the area under the ROC curve, and computing time for each
classifier applied to the three real datasets. In each case, the prediction exercise is
carried out on the selected testing set.

Classifier Random Forest knn

Miscl.
risk

AUC Est.
time
(secs)

Miscl.
risk

AUC Est.
time
(secs)

Hill-Valley (HV)
No dimension reduction 0.437 0.563 3.95 0.481 0.516 1.48
LLO(λ = 0) 0.212 0.855 3.16 0.429 0.597 0.73
LLO(λ > 0) 0.115 0.952 1.44 0.126 0.953 0.73
Mice Protein Expression (MPE)
No dimension reduction 0.019 0.998 1.78 0.105 0.962 1.04
LLO(λ = 0) 0.013 0.999 1.35 0.07 0.98 0.94
LLO(λ > 0) 0.013 0.999 0.62 0.08 0.985 0.41
Wisconsin Diagnostic Breast Cancer (WDBC)
No dimension reduction 0.064 0.979 0.88 0.058 0.972 0.41
LLO(λ = 0) 0.053 0.987 0.8 0.058 0.985 0.28
LLO(λ > 0) 0.035 0.99 0.69 0.029 0.982 0.32

We also compare these classifiers to those obtained following dimension reduction via the
SAVE, PHD, and POTD methods. The misclassification risk is compared for estimated central
subspaces of dimension d ∈ {2, 3, 4, 5, 10}. It can be seen in the bottom panels of Figure 5 that
the classifier obtained after dimension reduction through the proposed LLO(λ > 0) approach
is consistently superior to its competitors. The classifier based on LLO(λ = 0) dimension
reduction performs worse but its performance gets closer to that of the LLO(λ > 0)-based
classifier as the dimension of the reduction subspace increases. Similar conclusions can be
reached by considering the ROC curves of the different classifiers; see Figures S.7–S.9.
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(d) Misclassification risk

Figure 1: Simulation study – Distance to the central subspace (left, on the log scale) and
misclassification risk (right) in Example 1 (top) and Example 2 (bottom), averaged
over N = 1000 replications in each situation. The covariate has dimension p = 8
and the dimension d is chosen as the dimension of the correct population central
subspace (i.e. d = 1 in Example 1 and d = 2 in Example 2). In the right-hand panels,
the misclassification risk represented relates to the nearest neighbor majority vote
classifier using the set of projected covariates on the estimated subspace produced by
each method; in addition, “Full” denotes this classifier on the full, non-projected set
of covariates, and “Oracle” denotes this classifier using the covariates projected on
the correct population central subspace.
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(d) Misclassification risk

Figure 2: Simulation study – Distance to the central subspace (left) and misclassification
risk (right) in Example 3 (top) and Example 4 (bottom), averaged over N = 1000
replications in each situation. The covariate has dimension p = 8 and the dimension
d is chosen as the dimension of the correct population central subspace (i.e. d = 2 in
Example 3 and d = 3 in Example 4). In the right-hand panels, the misclassification
risk represented relates to the nearest neighbor majority vote classifier using the
set of projected covariates on the estimated subspace produced by each method; in
addition, “Full” denotes this classifier on the full, non-projected set of covariates,
and “Oracle” denotes this classifier using the covariates projected on the correct
population central subspace.
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(b) Misclassification risk

Figure 3: Simulation study – Distance to the central subspace (left) and misclassification risk
(right) in Example 4, averaged over N = 1000 replications of a sample of size
n = 1000, as a function of the dimension d ∈ {1, . . . , 6} of the estimated central
subspace and p ∈ {8, 16, 32, 64} of the full covariate space. In the right-hand panels,
the red dashed line corresponds to the nearest-neighbor classifier with d = p, and
the blue dashed line corresponds to this classifier using the covariates projected on
the correct population central subspace.
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Figure 4: Simulation study – Left panel: Dimension selection through Algorithm 2, where
the number indicated above the curve gives the number of times the dimension
selected in the (absolute or relative) majority of cases was chosen. Right panel:
Misclassification risk of the nearest-neighbor classifier with, from left to right, d = p
(red bar), the covariates projected on the correct population central subspace (blue
bar), the central subspace estimated using the non-penalized LLO(λ = 0) method
under correct specification of the dimension (green bar) and with the dimension
estimated by cross-validation (purple bar), and the central subspace estimated using
the penalized LLO(λ > 0) method under correct specification of the dimension
(orange bar) and with the dimension estimated by cross-validation (yellow bar). Both
panels are produced using N = 1000 independent replications of a sample of size
n = 1000 and dimensions p ∈ {8, 16, 32, 64} of the full covariate space are considered.
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Figure 5: Real data analysis - Top panels: Dimension selection through cross-validation for
LLO(λ = 0) and LLO(λ > 0), using the nearest neighbor classifier. Bottom panels:
Estimated misclassification risk related to the nearest neighbor classifier on the set
of projected covariates on the estimated subspace produced by each method for a
dimension d of the central subspace in {2, 3, 4, 5, 10}, with 95% asymptotic Gaussian
Wald-type confidence intervals (the sample size used is the size of the testing set).
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Supplementary material for

“Local logistic regression for dimension reduction in

classification”

S.1 Mathematical proofs

S.1.1 Weak convergence of argmins of convex functions

We first adapt a result from Hjort and Pollard (1993) to obtain a convergence result on the
minima of our loss function, which has a very specific structure due to the LASSO penalty.
Recall that a function F : Rq → R is said to be µ-strongly convex, for a given µ > 0, whenever
u 7→ F(u)− 1

2 µ∥u∥2
2 is convex. In particular:

• Strongly convex functions on Rq have a unique global minimum on Rq: this follows
from the fact that (i) strongly convex functions on Rq are strictly convex and continuous,
and (ii) an equivalent definition of strong convexity of F is that, for any x, x0 ∈ Rq and
any subgradient v of F at x0,

F(x) ≥ F(x0) + vT(x − x0) +
µ

2
∥x − x0∥2

2, (S.1)

and therefore strongly convex functions are bounded from below by strictly convex
polynomials of degree 2, meaning that they tend to +∞ as ∥x∥2 → +∞.

• If Γ ∈ Rq×q is symmetric and positive definite, and f : Rq → R is convex, then
F : u 7→ uTΓu + f (u) is µ-strongly convex, with µ/2 being the smallest eigenvalue of Γ.

We may now state our first result, on the convergence of minimizers of random convex
functions approximated pointwise by random strongly convex functions.

Lemma 1. Let F : Rq → R be µ-strongly convex, (Sn) be a random sequence and Bn : u ∈ Rq 7→
uTSn + F(u) ∈ R. Let βn = arg minu∈Rq Bn(u) = OP(1).

(i) If Sn = OP(1), then βn = OP(1).

(ii) Let moreover An : Rq → R, n ≥ 1, be a sequence of random convex functions. If, pointwise in
u ∈ Rq,

An(u)− Bn(u)
P−→ 0,

then arg minu∈Rq An(u) is nonempty for n large enough and one can construct a measurable
sequence αn ∈ Rq ∪ {∞}, n ≥ 1, such that αn ∈ arg minu∈Rq An(u) and ∥αn − βn∥2 = oP(1).

Proof of Lemma 1. (i) For an arbitrary s ∈ Rq, let Bs : u ∈ Rq 7→ uTs + F(u) ∈ R, so that
Bn ≡ BSn . Then Bs is µ-strongly convex and has a unique minimizer u(s) ∈ Rq for any s.
Let s, t ∈ Rq. The characterization (S.1) of strong convexity and the fact that u(s) (resp. u(t))
minimizes Bs (resp. Bt) together imply that

Bs(u(t))− Bs(u(s)) ≥
µ

2
∥u(t)− u(s)∥2

2 and Bt(u(s))− Bt(u(t)) ≥
µ

2
∥u(t)− u(s)∥2

2.

1



Consequently

µ∥u(t)− u(s)∥2
2 ≤ Bs(u(t))− Bt(u(t)) + Bt(u(s))− Bs(u(s))

= (u(t)− u(s))T(s − t)

≤ ∥u(t)− u(s)∥2∥t − s∥2.

It follows that u is Lipschitz continuous. Let now ε > 0. Since Sn = OP(1) and βn = u(Sn),
there is a compact set K ⊂ Rq such that lim infn→∞ P(βn ∈ u(K)) ≥ lim infn→∞ P(Sn ∈ K) ≥
1 − ε. By continuity of u, the image u(K) of K by u is compact, so that indeed βn = OP(1).

(ii) Lemma 2 in Hjort and Pollard (1993) and the discussion right before it (drawn from the
appendix in Niemiro, 1992) yield the existence of a measurable sequence of minima αn of An,
satisfying

P(|αn − βn| ≥ δ) ≤ P

(
sup

∥u−βn∥2≤δ

|An(u)− Bn(u)| ≥
1
2

inf
∥u−βn∥2=δ

(Bn(u)− Bn(βn))

)
.

By strong convexity of Bn,

P(|αn − βn| ≥ δ) ≤ P

(
sup

∥u−βn∥2≤δ

|An(u)− Bn(u)| ≥
δ2µ

4

)
.

Consequently, it is enough to show that

sup
∥u−βn∥≤δ

|An(u)− Bn(u)| = oP(1).

Let η > 0 and, for any compact set K ⊂ Rq, let Kδ be the (compact) set of those points x ∈ Rq

whose distance to K is not greater than δ. Then

P

(
sup

∥u−βn∥2≤δ

|An(u)− Bn(u)| > η

)
≤ P

(
sup
u∈Kδ

|An(u)− Bn(u)| > η

)
+ P(βn /∈ K).

Combine Lemma 1 in Hjort and Pollard (1993) and (i) of the present Lemma to obtain that the
left-hand side converges to 0, which is the required result.

S.1.2 Functional weak convergence of certain nearest-neighbor empirical

processes (proof of Theorem 1)

We first recall the following lemma on the convergence of the k-NN bandwidth; see Lemma 1
in Portier (2021).

Lemma 2 (Portier (2021)). Suppose that (A1) is fulfilled. Assume that k := kn → ∞ is such that
k/n → 0. Then τ̂n,k(x)/τn,k(x) P−→ 1.

Recall the notation

Zn(τ) =
1√
k

n

∑
i=1

{
Ψn(Yi, Xi)1B(x,τ)(Xi)− E[Ψn(Y, X)1B(x,τ)(X)]

}
.

2



We then state a result on the weak convergence of Zn(τ) as a stochastic process, which is the
key to the proof of Theorem 1. Set s ∧ t = min(s, t) and s ∨ t = max(s, t) for s, t ∈ R, and
recall the notation Vp for the volume of the unit Euclidean ball in Rp. Let also ℓ∞([1/2, 3/2])
denote the space of uniformly bounded vector-valued functions defined on [1/2, 3/2] (we do
not emphasize the dimension of the image space for the sake of notational convenience). This
is a metric space with respect to the uniform metric d( f , g) = supt∈[1/2,3/2] ∥ f (t)− g(t)∥2.

Lemma 3 (Tightness and weak convergence of Zn). Suppose that (A1) is fulfilled. Let Ψn :
{0, 1} × Rp → Rq be a sequence of measurable vector-valued functions and suppose that there is a
positive integer n0 such that

Ψ∞ := sup
n≥n0

sup
z∈B(x,(3/2)1/pτn,k(x))

max(∥Ψn(0, z)∥2, ∥Ψn(1, z)∥2) < ∞.

(i) If k := kn → ∞ is such that k/n → 0, then the stochastic process{
Zn(t1/pτn,k(x))

}
t∈[1/2,3/2]

is tight in ℓ∞([1/2, 3/2]).

(ii) Let Σ2
n(X) = E[Ψn(Y, X)Ψn(Y, X)T|X]. If moreover there is a (positive semidefinite) matrix-

valued function t 7→ Σ2(t, x) such that

∀t ∈ [1/2, 3/2],
∫

B(0,1)
Σ2

n(x + τn,k(x)t1/pv)dv → VpΣ2(t, x),

then this same stochastic process converges weakly in ℓ∞([1/2, 3/2]) to a continuous Gaussian
process with covariance function (s, t) 7→ (s ∧ t)Σ2(s ∧ t, x).

We shall prove (i) by showing tightness of any real-valued projection of the stochastic
process of interest with respect to the uniform metric on ℓ∞([1/2, 3/2]) using general empirical
process theory from van der Vaart and Wellner (1996) and van der Vaart (1998) linking weak
convergence on ℓ∞([1/2, 3/2]) to asymptotic uniform equicontinuity on [1/2, 3/2], equipped
with the standard distance between real numbers. Continuity of the limiting process in (ii) on
[1/2, 3/2] will then follow from Theorem 1.5.7 and Addendum 1.5.8 p.37 in van der Vaart and
Wellner (1996). As a side note, let us highlight that in doing so we shall in fact check the usual
tightness conditions of the space of continuous functions on [1/2, 3/2], see Theorem 7.3 p.82
in Billingsley (1999); since the stochastic process of interest actually lives in the space of càdlàg
functions on [1/2, 3/2], Theorem 13.4 p.142 in Billingsley (1999) and its Corollary provide an
alternative route to the proof of weak convergence and continuity of the limiting process.

We first recall a few definitions. Given a probability measure Q on a measurable space
(S,S), the metric space of square-integrable, Borel measurable real-valued functions on S with
respect to Q is defined as

L2(Q) =

{
g : (S,S) → (R,B(R)) such that ∥g∥2

L2(Q) := Q(g2) :=
∫

S
g2dQ < ∞

}
.

For two functions f , f ∈ L2(Q), the bracket [ f , f ] is the set of all functions g in L2(Q) such
that f ≤ g ≤ f on S. A bracket [ f , f ] such that ∥ f − f ∥L2(Q) ≤ ε is called an ε-bracket, and for
any G ⊂ L2(Q), the ε-bracketing number, denoted by N[ ](G, L2(Q), ε), is defined as the smallest
number of ε-brackets needed to cover G. Finally, call an envelope function for G any function
G : S 7→ R such that |g| ≤ G on S for any g ∈ G.
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Proof of Lemma 3. (i) Work on the space T = [1/2, 3/2] equipped with the usual distance
between real numbers. Fix u ∈ Rq \ {0}. Let P (resp. Pn) denote the probability measure of
(Y, X) (resp. the empirical probability measure on the set of pairs (Xi, Yi), 1 ≤ i ≤ n), so that
uTZn(t1/pτn,k(x)) =

√
n(Pn − P)( fn,t) with

fn,t(y, z) =
√

n
k

uTΨn(y, z)1B(x,t1/pτn,k(x))(z).

An obvious envelope function for the set of measurable functions Fn = { fn,t : t ∈ T} is

Fn(y, z) =
√

n
k
∥u∥2Ψ∞1B(x,(3/2)1/pτn,k(x))(z).

Notice that when n is large enough, fX(z) ≤ 2 fX(x) for any z ∈ B(x, (3/2)1/pτn,k(x)). There-
fore, for n large enough,

P(F2
n) ≤ 2 fX(x)∥u∥2

2Ψ2
∞ × n

k

∫
B(x,(3/2)1/pτn,k(x))

dz = 3Ψ2
∞ < ∞.

According to Theorem 2.11.23 p.221 in van der Vaart and Wellner (1996) (see also Theorem 19.28
on p.282 in van der Vaart, 1998), it is then sufficient to show that

∀η > 0, lim
n→∞

P(F2
n1{Fn>η

√
n}) = 0, (S.2)

and for every δn ↓ 0, lim
n→∞

sup
|t−s|≤δn

P[( fn,t − fn,s)
2] = 0 (S.3)

and lim
n→∞

∫ δn

0

√
logN[ ]

(
Fn, L2(P), ε∥Fn∥L2(P)

)
dε = 0. (S.4)

Clearly

∀η > 0, P(F2
n1{Fn>η

√
n}) ≤

n
k
∥u∥2

2Ψ2
∞1{∥u∥2Ψ∞>η

√
k} = 0 for n large enough.

This shows (S.2). To prove (S.3), pick s, t ∈ [1/2, 3/2] and write, for n large enough,

P[( fn,t − fn,s)
2] ≤ 2 fX(x)∥u∥2

2Ψ2
∞ × n

k

∫
Rp

(
1B(x,(s∨t)1/pτn,k(x))(z)− 1B(x,(s∧t)1/pτn,k(x))(z)

)
dz

= 2∥u∥2
2Ψ2

∞|t − s|.

This proves (S.3). Convergence (S.4) of the sequence of bracketing integrals is easily obtained by
following the proof of Lemma 2 in Portier (2021): brackets for

√ n
k1B(x,t1/pτn,k(x)), t ∈ [1/2, 3/2],

can be constructed as [√
n
k
1

B(x,t1/p
j τn,k(x))

,
√

n
k
1

B(x,t1/p
j+1τn,k(x))

]
where the tj make up an ε-spaced set of increasing points in [1/2, 3/2]. This concludes the
proof of (i).

(ii) Fix again u ∈ Rq \ {0} and pick s, t ∈ [1/2, 3/2]. By the Cramér-Wold device, and
according to Theorem 2.11.23 p.221 in van der Vaart and Wellner (1996), weak convergence
to a (tight) Gaussian process will be guaranteed if we can show that, with the notation of
(i), P( fn,t fn,s)− P( fn,t)P( fn,s) converges to (s ∧ t)uTΣ2(s ∧ t, x)u. This Gaussian process will

4



then necessarily be centered because Zn(τ) is so, and each of its univariate projections will be
continuous on [1/2, 3/2] by Theorem 1.5.7 p.37 in van der Vaart and Wellner (1996) and its
Addendum 1.5.8.

First of all, |P( fn,t)| ≤ P(Fn) and, for n large enough,

P(Fn) ≤ 2 fX(x)∥u∥2Ψ∞ ×
√

n
k

∫
B(x,(3/2)1/pτn,k(x))

dz = O

(√
k
n

)
→ 0.

It then suffices to prove that P( fn,t fn,s) → (s ∧ t)uTΣ2(s ∧ t, x)u. Now

P( fn,t fn,s) =
n
k

uTE[Ψn(Y, X)Ψn(Y, X)T
1B(x,(s∧t)1/pτn,k(x))(X)]u.

A change of variables gives

P( fn,t fn,s) =
n
k
(s ∧ t)τp

n,k(x)× uT
(∫

B(0,1)
( fXΣ2

n)(x + τn,k(x)(s ∧ t)1/pv)dv
)

u.

Finally∣∣∣∣uT
(∫

B(0,1)
( fX(x + τn,k(x)(s ∧ t)1/pv)− fX(x))Σ2

n(x + τn,k(x)(s ∧ t)1/pv)dv
)

u
∣∣∣∣

≤ sup
v∈B(0,1)

| fX(x + τn,k(x)(s ∧ t)1/pv)− fX(x)| × uT
(∫

B(0,1)
Σ2

n(x + τn,k(x)(s ∧ t)1/pv)dv
)

u

→ 0

and then P( fn,t fn,s) → (s ∧ t)uTΣ2(s ∧ t, x)u. The proof is complete.

We can now combine Lemmas 2 and 3 to write a proof of Theorem 1.

Proof of Theorem 1. Write

Zn(τ̂n,k(x)) = Zn(t
1/p
n τn,k(x)) = Zn(τn,k(x)) + {Zn(t

1/p
n τn,k(x))− Zn(τn,k(x))}

with tn = (τ̂n,k(x)/τn,k(x))p.

(i) By Lemma 2, tn
P−→ 1, so that by tightness of the stochastic process {Zn(t1/pτn,k(x))}t∈[1/2,3/2]

in ℓ∞([1/2, 3/2]) following from Lemma 3(i), one has Zn(τ̂n,k(x)) = OP(1).

(ii) By Lemma 3(ii), Zn(τn,k(x)) converges weakly to a Gaussian distribution with mean 0 and
covariance matrix Σ2(1, x), and the stochastic process {Zn(t1/pτn,k(x))}t∈[1/2,3/2] converges

weakly to a continuous Gaussian process in ℓ∞([1/2, 3/2]). It follows that |Zn(t
1/p
n τn,k(x))−

Zn(τn,k(x))| → 0 in probability, so that the desired weak convergence property of Zn(τ̂n,k(x))
holds.

Besides being the crucial tool in the asymptotic analysis of the nearest-neighbor local logistic
log-likelihood, Lemma 3 and Theorem 1 make it possible to obtain laws of large numbers for
certain weighted averages of nearest neighbors and nearest-neighbor weighted empirical Gram
matrices. These laws of large numbers will be used several times subsequently.
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Proposition 5 (Laws of large numbers for local linear nearest-neighbor estimators). Suppose
that (A1) is fulfilled. Let φ : Rp → R be measurable, and continuous at the point x. If k := kn → ∞ is
such that k/n → 0, then

1
k ∑

i∈Nk(x)
φ(Xi)

(
1

Xi−x
τn,k(x)

)(
1

Xi−x
τn,k(x)

)T
P−→ φ(x)

(
1 0T

p
0p

1
p+2 Ip

)
.

Moreover, for any symmetric matrix M ∈ Rp×p,

1
k ∑

i∈Nk(x)

(
Xi − x
τn,k(x)

)T

M
(

Xi − x
τn,k(x)

)(
1

Xi−x
τn,k(x)

)
P−→ tr(M)

p + 2

(
1
0p

)
.

Proof of Proposition 5. Identify in this proof the vector space of square matrices (p+ 1)× (p+ 1)
having real coefficients with R(p+1)2

equipped with its standard Euclidean norm ∥ · ∥2 and
consider the stochastic process

Zn(τ) =
1√
k

n

∑
i=1

{
Ψn(Yi, Xi)1B(x,τ)(Xi)− E[Ψn(Y, X)1B(x,τ)(X)]

}
with

Ψn(y, z) = φ(z)

(
1

z−x
τn,k(x)

)(
1

z−x
τn,k(x)

)T

.

Let |φ|∞ be a finite upper bound for |φ| in a sufficiently small neighborhood U of x, and let n0

be such that for n ≥ n0, B(x, (3/2)1/pτn,k(x)) ⊂ U. Then

sup
n≥n0

sup
z∈B(x,(3/2)1/pτn,k(x))

max(∥Ψn(0, z)∥2, ∥Ψn(1, z)∥2) ≤ |φ|∞

(
1 +

(
3
2

)2/p
)

.

Conclude, by Lemma 3(i), that the stochastic process {Zn(t1/pτn,k(x))}t∈[1/2,3/2] is tight in
ℓ∞([1/2, 3/2]). It follows that, first of all,

sup
t∈[1/2,3/2]

∥∥∥∥∥∥1
k

n

∑
i=1

φ(Xi)

(
1

Xi−x
τn,k(x)

)(
1

Xi−x
τn,k(x)

)T

1B(x,t1/pτn,k(x))(Xi)

−n
k

E

φ(X)

(
1

X−x
τn,k(x)

)(
1

X−x
τn,k(x)

)T

1B(x,t1/pτn,k(x))(X)

∥∥∥∥∥∥
2

P−→ 0.

Obviously
∫

B(0,1) dz = Vp and
∫

B(0,1) zdz = 0; moreover
∫

B(0,1) zizjdz = 0 when i ̸= j, so that
by rotational symmetry and a change to polar coordinates,∫

B(0,1)
zzTdz =

(∫
B(0,1)

z2
1dz
)

Ip =
1
p

(∫
B(0,1)

∥z∥2
2dz
)

Ip =
Vp

p + 2
Ip.

Using the continuity of φ and fX at x and a linear change of variables, one finds

sup
t∈[1/2,3/2]

∥∥∥∥∥∥n
k

E

φ(X)

(
1

X−x
τn,k(x)

)(
1

X−x
τn,k(x)

)T

1B(x,t1/pτn,k(x))(X)

− tφ(x)

(
1 0T

p

0p
t2/p

p+2 Ip

)∥∥∥∥∥∥
2

≤ 3
2
× n

k
τ

p
n,k(x) sup

t∈[1/2,3/2]

∥∥∥∥∫B(0,1)
((φ fX)(x + t1/pτn,k(x)z)− (φ fX)(x))

(
1 t1/pzT

t1/pz t2/pzzT

)
dz
∥∥∥∥

2

→ 0.
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Taking t = tn = (τ̂n,k(x)/τn,k(x))p, which converges to 1 in probability, then yields

1
k ∑

i∈Nk(x)
φ(Xi)

(
1

Xi−x
τn,k(x)

)(
1

Xi−x
τn,k(x)

)T

=
1
k

n

∑
i=1

φ(Xi)

(
1

Xi−x
τn,k(x)

)(
1

Xi−x
τn,k(x)

)T

1B(x,τ̂n,k(x))(Xi)

= φ(x)

(
1 0T

p
0p

1
p+2 Ip

)
+ oP(1).

This proves the first convergence. To show the second one, note it is an immediate consequence
of the first convergence that

1
k ∑

i∈Nk(x)

(
Xi − x
τn,k(x)

)T

M
(

Xi − x
τn,k(x)

)
P−→ tr(M)

p + 2
.

Finally, to show that

1
k ∑

i∈Nk(x)

{(
Xi − x
τn,k(x)

)T

M
(

Xi − x
τn,k(x)

)}
Xi − x
τn,k(x)

P−→ 0p,

repeat the proof of the first statement with the function

Ψn(y, z) =

{(
z − x

τn,k(x)

)T

M
(

z − x
τn,k(x)

)}
z − x

τn,k(x)

and note that for any i, j, k ∈ {1, . . . , p},
∫

B(0,1) zizjzkdz = 0.

S.1.3 Convergence properties of the nearest-neighbor local logistic

log-likelihood

It follows from (1) that proving Theorem 2 is equivalent to obtaining the convergence of

(
√

k(ân(x)− ℓ(x)), τn,k(x)
√

k(b̂n(x)−∇ℓ(x)))

= arg max
(a,b)∈R×Rp

{
Ln

(
ℓ(x) +

a√
k

,∇ℓ(x) +
b

τn,k(x)
√

k

)
− λ

∥∥∥∥∥∇ℓ(x) +
b

τn,k(x)
√

k

∥∥∥∥∥
1

}
.

The objective function is concave, so Lemma 1 suggests that it is enough to consider its
convergence properties in order to recover the convergence of its minimizer. The quantity
Ln(a, b) is a log-likelihood, so we analyze the convergence of the first term in the above
objective function using a Taylor expansion of order 2. This requires obtaining the asymptotic
behavior of the corresponding score function at (ℓ(x),∇ℓ(x)), that is

Sn(x) =
1√
k

∑
i∈Nk(x)

(Yi − expit(ℓ(x) +∇ℓ(x)T(Xi − x)))

(
1

Xi−x
τn,k(x)

)
,

and of its Hessian matrix at (ℓ(x),∇ℓ(x)), namely

Hn(x) = −1
k ∑

i∈Nk(x)
expit′(ℓ(x) +∇ℓ(x)T(Xi − x))

(
1

Xi−x
τn,k(x)

)(
1

Xi−x
τn,k(x)

)T

7



where expit′ : s 7→ expit(s)(1 − expit(s)) denotes the derivative of expit. Recall the notation

Γ(x) = π(x)(1 − π(x))

(
1 0T

p
0p

1
p+2 Ip

)
.

Write ∆π(x) for the Laplacian of π at x, i.e. the trace of its Hessian matrix.

Lemma 4 (Convergence of the score function and Hessian of the local logistic log-likelihood).
Suppose that (A1) and (A2) are fulfilled. If k := kn → ∞ is such that k/n → 0, it holds that
Sn(x) = Wn(x) + Tn(x), where

Wn(x) =
1√
k

∑
i∈Nk(x)

(Yi − π(Xi))

(
1

Xi−x
τn,k(x)

)
d−→ N (0, Γ(x))

and Tn(x) = τ2
n,k(x)

√
k
(

1
2(p + 2)

(
∆π(x)− 1 − 2π(x)

π(x)(1 − π(x))
∥∇π(x)∥2

2

)(
1
0p

)
+ oP(1)

)
.

Moreover, Hn(x) P−→ −Γ(x).

The control of Tn(x) uses the following consequence of the Taylor formula with integral form
of the remainder: let, for any function F : Rq → R that is twice continuously differentiable at
a point z, HF(z′) denote its Hessian matrix at the point z′ when z′ is close enough to z. Then

lim
η→0

sup
z′∈B(z,η)

z′ ̸=z

1
∥z′ − z∥2

2

∣∣∣∣F(z′)− F(z)− (z′ − z)T∇F(z)− 1
2
(z′ − z)T HF(z)(z′ − z)

∣∣∣∣ = 0. (S.5)

More precisely, for z′ ̸= z but close enough to z,

1
∥z′ − z∥2

2

∣∣∣∣F(z′)− F(z)− (z′ − z)T∇F(z)− 1
2
(z′ − z)T HF(z)(z′ − z)

∣∣∣∣
≤ 1

2
∥HF(z′)− HF(z)∥2 (S.6)

where in the upper bound ∥ · ∥2 is the operator norm induced by the Euclidean norm on Rq.

Proof of Lemma 4. Since expit′ = expit(1 − expit), the convergence in probability of Hn(x) to
−Γ(x) is an obvious consequence of Proposition 5. We concentrate on the convergence of
Sn(x). Write

Sn(x) =
1√
k

∑
i∈Nk(x)

(Yi − π(Xi))

(
1

Xi−x
τn,k(x)

)

− 1√
k

∑
i∈Nk(x)

(expit(ℓ(x) +∇ℓ(x)T(Xi − x))− π(Xi))

(
1

Xi−x
τn,k(x)

)
=: Wn(x) + Tn(x).

We study first the quantity Wn(x) and we then examine Tn(x).

Convergence of Wn(x): Consider the stochastic process

Zn(τ) =
1√
k

n

∑
i=1

{
Ψn(Yi, Xi)1B(x,τ)(Xi)− E[Ψn(Y, X)1B(x,τ)(X)]

}
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with

Ψn(y, z) = (y − π(z))

(
1

z−x
τn,k(x)

)
.

Then

sup
n≥1

sup
z∈B(x,(3/2)1/pτn,k(x))

max(∥Ψn(0, z)∥2, ∥Ψn(1, z)∥2) ≤

√
1 +

(
3
2

)2/p

< ∞.

Obviously E[Ψn(Y, X)1B(x,τ)(X)] = 0 since E[Y − π(X) | X] = 0, and

Σ2
n(X) := E

 (Y − π(X))2

(
1

X−x
τn,k(x)

)(
1

X−x
τn,k(x)

)T
∣∣∣∣∣∣ X


= π(X)(1 − π(X))

(
1

X−x
τn,k(x)

)(
1

X−x
τn,k(x)

)T

.

Recall also from the proof of Proposition 5 that∫
B(0,1)

zzTdz =
Vp

p + 2
Ip.

Assumption (A2) then yields, for any t > 0,

∫
B(0,1)

Σ2
n(x + τn,k(x)t1/pv)dv → Vpπ(x)(1 − π(x))

(
1 0T

p

0p
t2/p

p+2 Ip

)
.

For t = 1 the right-hand side is exactly VpΓ(x). Conclude, using Theorem 1(ii), that

Zn(τ̂n,k(x)) d−→ N (0, Γ(x)), that is,

1√
k

∑
i∈Nk(x)

(Yi − π(Xi))

(
1

Xi−x
τn,k(x)

)
=

1√
k

n

∑
i=1

(Yi − π(Xi))

(
1

Xi−x
τn,k(x)

)
1B(x,τ̂n,k(x))(Xi)

d−→ N (0, Γ(x))

as announced.

Convergence of Tn(x): Fix ε > 0. Write, for any z close enough to x,

expit(ℓ(x) +∇ℓ(x)T(z − x))− π(z) = expit(ℓ(x) +∇ℓ(x)T(z − x))− π(x)−∇π(x)T(z − x)

− (π(z)− π(x)−∇π(x)T(z − x)).

Recall that π 7→ logit(π) has derivative 1/(π(1−π)) on (0, 1). As a consequence, expit(ℓ(x))(1−
expit(ℓ(x)))∇ℓ(x) = ∇π(x). Moreover, s 7→ expit(s) has second derivative s 7→ expit(s)(1 −
expit(s))(1 − 2 expit(s)). Applying (S.5), first to the function expit and then to the function π,
which is twice continuously differentiable at x by (A2), leads to the existence of η > 0 such
that for all z ∈ B(x, η),∣∣∣∣expit(ℓ(x) +∇ℓ(x)T(z − x))− π(x)−∇π(x)T(z − x)− 1

2
1 − 2π(x)

π(x)(1 − π(x))
(∇π(x)T(z − x))2

∣∣∣∣
≤ ε

2
∥z − x∥2

2
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and ∣∣∣∣π(z)− π(x)−∇π(x)T(z − x)− 1
2
(z − x)T Hπ(x)(z − x)

∣∣∣∣ ≤ ε

2
∥z − x∥2

2.

Since by Lemma 2 we have τ̂n,k(x)/τn,k(x) → 1 in probability and τn,k(x) → 0, one may
conclude that

Tn(x) =
1

2
√

k
∑

i∈Nk(x)

(
(Xi − x)T Hπ(x)(Xi − x)− 1 − 2π(x)

π(x)(1 − π(x))
(∇π(x)T(Xi − x))2

)(
1

Xi−x
τn,k(x)

)
+ oP(τ

2
n,k(x)

√
k).

Now

1√
k

∑
i∈Nk(x)

(
(Xi − x)T Hπ(x)(Xi − x)− 1 − 2π(x)

π(x)(1 − π(x))
(∇π(x)T(Xi − x))2

)(
1

Xi−x
τn,k(x)

)

= τ2
n,k(x)

√
k

(
1
k ∑

i∈Nk(x)

(
Xi − x
τn,k(x)

)T

Hπ(x)
(

Xi − x
τn,k(x)

)(
1

Xi−x
τn,k(x)

)

−1
k ∑

i∈Nk(x)

1 − 2π(x)
π(x)(1 − π(x))

(
Xi − x
τn,k(x)

)T

∇π(x)∇π(x)T
(

Xi − x
τn,k(x)

)(
1

Xi−x
τn,k(x)

))

and the second convergence of Proposition 5 applies. The proof is complete.

S.1.4 Proof of Theorem 2

Note that k/n → 0 because τ2
n,k(x)

√
k is bounded. Let the sequence of rescaling matrices Dn

be defined as

Dn =
1√
k

(
1 0T

p
0p

1
τn,k(x) Ip

)
so that

∀(a, b) ∈ R × Rp,
1√
k

(
a
b

τn,k(x)

)
= Dn

(
a
b

)
.

We seek to apply Lemma 1(ii) with An(u) = −An,1(u) + An,2(u), where, for given u =

(u0, u1, . . . , up) ∈ Rp+1, we let

An,1(u) = Ln

((
ℓ(x)
∇ℓ(x)

)
+ Dnu

)
− Ln

(
ℓ(x)
∇ℓ(x)

)
,

An,2(u) = λ

{∥∥∥∥∥∇ℓ(x) +
1

τn,k(x)
√

k
u(1:p)

∥∥∥∥∥
1

− ∥∇ℓ(x)∥1

}
, with u(1:p) =

u1
...

up

 ,

and, if Sn = Sn(x) denotes the score function of Lemma 4,

Bn(u) = −uTSn(x) +
1
2

uTΓ(x)u

+ (c fX(x)Vp)
1/p

(
p

∑
j=1

sgn(∇ℓj(x))uj1{∇ℓj(x) ̸=0} + |uj|1{∇ℓj(x)=0}

)
.
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Since Γ(x) is a positive definite matrix and Sn(x) is bounded in probability by Lemma 4, the
function Bn satisfies the assumptions of Lemma 1. Noting that Ln is concave, it follows that An

is convex, so that it is enough to show that An − Bn converges pointwise to 0 in probability in
order to apply Lemma 1(ii). Given that Hn(x) converges to −Γ(x) in probability by Lemma 4
again, it is sufficient to prove that

Rn(u) = An,1(u)− uTSn(x)− 1
2

uT Hn(x)u P−→ 0

and An,2(u)
P−→ (c fX(x)Vp)

1/p

{
p

∑
j=1

sgn(∇ℓj(x))uj1{∇ℓj(x) ̸=0} + |uj|1{∇ℓj(x)=0}

}
.

The remainder term Rn(u) is dealt with using the following lemma.

Lemma 5 (Pointwise approximation of the nearest-neighbor local logistic log-likelihood).
Suppose that (A1) and (A2) are fulfilled. If k := kn → ∞ is such that k/n → 0, we have

∀u ∈ Rp+1, |Rn(u)| ≤
∥u∥3

2

2
√

2
× 1√

k

(
τ̂n,k(x)
τn,k(x)

∨ 1
)3

,

and in particular |Rn(u)| = OP(1/
√

k).

Proof of Lemma 5. From (S.6), we find that if F : Rp+1 → R is a twice continuously differentiable
function having a Lipschitz continuous Hessian matrix u 7→ HF(u), that is, there is C > 0 with
∥HF(v)− HF(u)∥2 ≤ C∥v − u∥2 for any u, v ∈ Rp+1, then∣∣∣∣F(v)− F(u)− (v − u)T∇F(u)− 1

2
(v − u)T HF(u)(v − u)

∣∣∣∣ ≤ C
2
∥v − u∥3

2. (S.7)

We apply (S.7) with F : u 7→ Ln(z + Dnu) where z = (ℓ(x),∇ℓ(x)T)T. We know that the
gradient of F at 0p+1 is Sn(x) and its Hessian matrix at 0p+1 is Hn(x); more generally

HF(u) = −1
k ∑

i∈Nk(x)
expit′

(
(z + Dnu)T

(
1

Xi − x

))(
1

Xi−x
τn,k(x)

)(
1

Xi−x
τn,k(x)

)T

.

Now s 7→ expit′′(s) = expit(s)(1− expit(s))(1− 2 expit(s)) is bounded by 1/4, so by the mean
value theorem,∣∣∣∣expit′

(
(z + Dnu)T

(
1

Xi − x

))
− expit′

(
zT
(

1
Xi − x

))∣∣∣∣ ≤ 1√
k
× 1

4
∥u∥2

∥∥∥∥∥
(

1
Xi−x

τn,k(x)

)∥∥∥∥∥
2

.

Therefore

∥HF(u)− HF(0p+1)∥2 ≤ 1√
k
× 1

4
∥u∥2 ×

1
k ∑

i∈Nk(x)

∥∥∥∥∥
(

1
Xi−x

τn,k(x)

)∥∥∥∥∥
3

2

.

Inequality (S.7) applies and yields, for any u ∈ Rp+1,

|Rn(u)| ≤
1√
k
× 1

8
∥u∥3

2 ×
1
k ∑

i∈Nk(x)

∥∥∥∥∥
(

1
Xi−x

τn,k(x)

)∥∥∥∥∥
3

2

≤ ∥u∥3
2

2
√

2
× 1√

k

(
τ̂n,k(x)
τn,k(x)

∨ 1
)3

as required. The conclusion on the rate of convergence of Rn(u) to 0 follows from Lemma 2.
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To show the convergence of An,2(u), note that for each z ̸= 0 and u ∈ R, there is t > 0
small enough such that |z + tu| − |z| = tu sgn(z); besides, if z = 0, then |z + tu| − |z| = t|u|.
Working componentwise then immediately yields the below lemma, from which the pointwise
limit of An,2 follows.

Lemma 6. For any u, v ∈ Rp, there exists t0 > 0 such that for all t ∈ [0, t0],

∥v + tu∥1 − ∥v∥1 = t
p

∑
j=1

sgn(vj)uj1{vj ̸=0} + |uj|1{vj=0}.

S.1.5 Proof of Corollary 4

The proof follows from the decomposition

∥M̂ − M∥F ≤
∥∥∥∥∥ 1

m

m

∑
i=1

{b̂n(X∗
i )b̂n(X∗

i )
T −∇ℓ(X∗

i )∇ℓ(X∗
i )

T}
∥∥∥∥∥

F

+

∥∥∥∥∥ 1
m

m

∑
i=1

∇ℓ(X∗
i )∇ℓ(X∗

i )
T −

∫
Rp

∇ℓ(x)∇ℓ(x)Tdµ(x)

∥∥∥∥∥
F

,

where ∥ · ∥F is the Frobenius norm. The first term in the above upper bound can be treated
using Theorem 2:∥∥∥∥∥ 1

m

m

∑
i=1

{b̂n(X∗
i )b̂n(X∗

i )
T −∇ℓ(X∗

i )∇ℓ(X∗
i )

T}
∥∥∥∥∥

F

≤ max
x∈supp(µ)

∥b̂n(x)b̂n(x)T −∇ℓ(x)∇ℓ(x)T∥F

= OP

(
1

τn,k(x)
√

k

)
+ OP(τn,k(x)).

The other term is controlled by computing its second moment:

E

∥∥∥∥∥ 1
m

m

∑
i=1

∇ℓ(X∗
i )∇ℓ(X∗

i )
T −

∫
Rp

∇ℓ(x)∇ℓ(x)Tdµ(x)

∥∥∥∥∥
2

F


=

1
m

E

(∥∥∥∥∇ℓ(X∗)∇ℓ(X∗)T −
∫

Rp
∇ℓ(x)∇ℓ(x)Tdµ(x)

∥∥∥∥2

F

)

≤ 1
m

E

(∥∥∥∇ℓ(X∗)∇ℓ(X∗)T
∥∥∥2

F

)
=

1
m

∫
Rp

∥∇ℓ(x)∥4
2 dµ(x) ≤ 1

m
max

x∈supp(µ)
∥∇ℓ(x)∥4

2 .

The upper bound is finite by assumption.

S.2 Additional numerical results

S.2.1 Simulation study

Similarly to Figure 3, we represent in Figures S.1 and S.2 the distance to the central subspace
and the misclassification risk in Examples 1, 2 and 3 when the correct dimension reduction
subspace and sample size are fixed but the dimensions of the ambient space and estimated

12



central subspace vary, i.e. we fix n = 1000, simulate a vector X of independent centered
and unit Gaussian random variables covariates having dimension p ∈ {8, 16, 32, 64}, and
the estimated central subspace has dimension 1 ≤ d ≤ 6. Again, the proposed LLO(λ > 0)
method consistently yields superior results across all evaluated settings. As p increases, the
performances of LLO(λ = 0) and LLO(λ > 0) get closer, while the performances of the
SAVE and POTD methods tend to substantially deteriorate. Similarly to Figure 4, we also
provide in Figures S.3 and S.4 results related to the dimension d selected through the full
workflow summarized in Algorithms 1 and 2 and the misclassification risk of the hence
obtained nearest-neighbor classifier in Examples 1, 2 and 3.

S.2.2 Real data analyses

Figures S.5–S.9 contain extra results about the number of selected components by the proposed
method with the random forest classifier, and further elements about the predictive quality of
the nearest neighbor and random forest classifiers when paired with one of the dimension
reduction methods we consider.
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Figure S.1: Simulation study – Distance to the central subspace and misclassification risk in
Examples 1, 2 and 3, averaged over N = 1000 replications of a sample of size
n = 1000, as a function of the dimension d ∈ {1, . . . , 6} of the estimated central
subspace and p ∈ {8, 16, 32, 64} of the full covariate space.
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Figure S.2: Simulation study – Misclassification risk in Examples 1, 2 and 3, averaged over
N = 1000 replications of a sample of size n = 1000, as a function of the dimension
d ∈ {1, . . . , 6} of the estimated central subspace and p ∈ {8, 16, 32, 64} of the full
covariate space. In the right-hand panels, the red dashed line corresponds to the
nearest-neighbor classifier with d = p, and the blue dashed line corresponds to this
classifier using the covariates projected on the correct population central subspace.
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Figure S.3: Simulation study – Dimension selection through Algorithm 2 over N = 1000 inde-
pendent replications of a sample of size n = 1000, as a function of the dimension
p ∈ {8, 16, 32, 64} of the full covariate space. In each panel the number indicated
above the curve gives the number of times the dimension selected in the (absolute
or relative) majority of cases was chosen.
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Figure S.4: Simulation study – Misclassification risk of the nearest-neighbor classifier with,
from left to right, d = p (red bar), the covariates projected on the correct population
central subspace (blue bar), the central subspace estimated using the non-penalized
LLO(λ = 0) method under correct specification of the dimension (green bar) and
with the dimension estimated by cross-validation (purple bar), and the central sub-
space estimated using the penalized LLO(λ > 0) method under correct specification
of the dimension (orange bar) and with the dimension estimated by cross-validation
(yellow bar). All panels are produced using N = 1000 independent replications of
a sample of size n = 1000 and considering dimensions p ∈ {8, 16, 32, 64} of the full
covariate space.
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Figure S.5: Real data analysis – Dimension selection through cross-validation for LLO(λ = 0)
and LLO(λ > 0), using the random forest classifier. In the WBDC real data
analysis, all the eigenvalues of the empirical outer product M̂ were found to be
0 from dimension d = 15 and d = 22 onwards when using the LLO(λ > 0) and
LLO(λ = 0), respectively.
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Figure S.6: Real data analysis – ROC curve of the nearest neighbor classifier (left) and random
forest classifier (right) with no dimension reduction (black curve), dimension re-
duction following the LLO(λ = 0) procedure (red curve) and dimension reduction
following the LLO(λ > 0) procedure (blue curve). In each case, the prediction
exercise is carried out on the selected testing set. 19
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Figure S.7: Real data analysis, HV dataset – ROC curve of the nearest neighbor classifier
following the LLO(λ = 0), LLO(λ > 0), SAVE, PHD and POTD dimension
reduction procedures, for a dimension d of the dimension reduction subspace in
{2, 3, 4, 5, 10}. In each case, the prediction exercise is carried out on the selected
testing set.
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Figure S.8: Real data analysis, MPE dataset – ROC curve of the nearest neighbor classifier
following the LLO(λ = 0), LLO(λ > 0), SAVE, PHD and POTD dimension
reduction procedures, for a dimension d of the dimension reduction subspace in
{2, 3, 4, 5, 10}. In each case, the prediction exercise is carried out on the selected
testing set.
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Figure S.9: Real data analysis, WDBC dataset – ROC curve of the nearest neighbor classifier
following the LLO(λ = 0), LLO(λ > 0), SAVE, PHD and POTD dimension
reduction procedures, for a dimension d of the dimension reduction subspace in
{2, 3, 4, 5, 10}. In each case, the prediction exercise is carried out on the selected
testing set.
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