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Abstract

We demonstrate the application of a Recurrent Neural Network to perform multi-

step and multivariate time-series performance predictions for stirred and static mixers

as exemplars of complex multiphase systems. We employ two Long-Short-Term Memory

(LSTM) frameworks in this study which are trained on high-fidelity, three-dimensional,

computational fluid dynamics simulations of the mixer performance, in the presence
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and absence of surfactants, in terms of drop size distributions and interfacial areas

as a function of system parameters; these include physico-chemical properties, mixer

geometry, and operating conditions. Our results demonstrate that whilst it is possible to

train a LSTM with a single fully-connected layer more efficiently than a LSTM Encoder-

decoder, the latter is shown to be more capable of learning the dynamics underlying

dispersion metrics. Details of the methodology are presented, which include data

pre-processing, LSTM model exploration, methods for model performance visualisation;

an ensemble-based procedure is also introduced to provide a measure of the model

uncertainty. The workflow is designed to be generic and can be deployed to make

predictions in other industrial applications with similar time-series data.

Introduction

Multiphase dispersion processes, and in particular liquid-liquid (L-L) mixing, are of central

importance to a broad range of industrial applications, ranging from microscopically-

manufactured (‘structured’) emulsions in the manufacturing of fast-moving consumer goods

and pharmaceuticals, to chemical reactions (e.g., nitration, sulfonation, etc.) in the energy

sector.1–3 These operations greatly depend on several key performance indicators such as

the interfacial area of the dispersed phase governing mass transfer-controlled reaction rates,

as well as the droplet size distribution (DSD) and count determining the stability and

physical properties of emulsions. Consequently, numerous studies have focused on developing

predictive (semi)-empirical correlations to estimate metrics such as the mean/maximum drop

size based on a given set of flow conditions and fluid properties4–8 and a broad range of

mixing devices, designs, and flow regimes.9–14 Lately, robust numerical frameworks have

been developed aiming to improve the predictive capabilities of previous empirical models

by providing a physics-based understanding of the governing phenomena via Computational

Fluid Dynamics (CFD) simulations and Population-Balance Modelling (PBM).15–18

While it is true that substantial ground has already been covered, both experimentally and
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numerically, multiple challenges still exist when modelling complex and industrially relevant

mixing processes. A prevalent scenario in L-L systems is the presence of surface-active agents

(surfactants), originating either as contaminants or additives. Such systems require a much

more comprehensive computational framework to accurately describe the dispersion dynamics

unfolding, such as the inclusion of equations of state and surfactant mass transport modelling

to account for the intertwined effect between interfacial tension and surfactant concentration.

Analogous non-idealities in multiphase mixing flows, such as highly concentrated, turbulent

or non-Newtonian systems, lead to a similar challenge. Consequently, this situation gives

rise to a challenging trade-off between model robustness and accuracy on the one hand,

and resource consumption on the other. Therefore, it is unsurprising that no general model

has been established thus far to provide sufficiently accurate predictions of the dispersion

performance under analogous scenarios.

Fortunately, the rapid development of Artificial Intelligence (AI) and data-driven

techniques has granted us access to a powerful and cost-effective toolkit of computational

alternatives to circumvent the challenges set out above. In recent years, with the increase in

available simulation data, Machine Learning (ML) has become a popular method to accelerate

CFD simulations in multiple fields, such as chemical engineering,19 built environment20 and so

forth. Among the different types of ML-based techniques, Recurrent Neural Networks (RNNs)

stand out due to their capability to handle sequential data. Specifically, its variant, Long Short-

Term Memory (LSTM), which is designed to solve the so-called vanishing problem21,22 seen

in the conventional RNNs, has been commonly used in ranges of applications. For example,

neural networks with LSTM embedded have been trained using simulation data to perform

prediction of scenarios including material leakage position23,24 and bio-oil yield of fluidized

bed.25 Moreover, the LSTM architecture has been coupled with Reduced Ordered Modelling

(ROM) to model the key features underlying turbulent flows.26 Similarly, combination of

the two frameworks has been applied to carry out transonic aeroelastic analysis.27 More

recently, novel models based on LSTM have been proposed to forecast the hydrodynamics of

3



submarine prototypes28 and the behaviour of ocean waves.29

Inspired by the prior work reviewed in the foregoing, this study seeks to develop an

inexpensive time-series model using RNNs by capitalising on a comprehensive set of high-

fidelity three-dimensional CFD simulations, some of which have been exploited in recent

works30–33 to unravel the fundamental governing mechanisms underlying extensively utilised

mixing systems handling L-L dispersions across a range of industrially-relevant scenarios.

These simulations have been conducted with a state-of-the-art code, which comprises a

hybrid Front-tracking/Level-set interface-tracking algorithm, embedded along a well-validated

multiphase solver for surfactant transport at the interface and in the bulk phase.34 This

framework unlocks an unprecedented level of detail on the interfacial dynamics unfolding

and thus provides an accurate, physics-based estimation of the temporal evolution of key

performance metrics, such as interfacial area growth, drop generation, and DSD. The works

by Liang at al. 2022, 2023 explored a pitch-blade stirred vessel mixer with varying impeller

speeds and different surfactant profiles, whereas those by Valdes et al. 2023a, 2023b ran

simulations with a SMX static mixer considering different inlet configurations and types of

surfactants.

The time-series model implemented in this work aims to supersede the CFD model

in predicting the key dispersion metrics previously mentioned based solely on their initial

behaviour during the early stages of the process. More importantly, we intend to investigate

the model’s capability to identify different initial performance signatures, inherently linked

to mixer design, operational conditions or surfactant physicochemical profile, and extrapolate

their future behaviour accordingly. To achieve this, we develop a general predictive workflow

around three mixing performance metrics, with the implementation of LSTM at its core,

as shown in Figure 3. The trained model is then initialised with early-stage CFD data

and set to self-iterate on its output in a ‘rollout’ procedure to generate future performance

predictions. Finally, we perform an uncertainty quantification analysis on the trained model

via ensemble perturbation to track the evolving model uncertainty and its performance
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through the prediction propagation via ’rollout’ .

The rest of this paper is organised as follows: Section 2 covers the main theoretical

concepts of RNNs and LSTM relevant to our work; Section 3 presents the overall framework

development and deployment, from CFD data acquisition, pre-processing and re-conditioning,

to model training, tuning, and sequence generation via rollout methodology, discussing two

separate model architectures and exploring their accuracy and uncertainty. The predictions

vs. CFD, which are treated as the ground truth data generated for both stirred vessels

and static mixers and the corresponding discussion around the model’s explainability, are

presented in Section 4. Finally, concluding remarks are given in Section 5.

Theoretical background: RNNs and LSTM

We aim to perform sequence prediction via deep learning, which is different from the other

types of learning problems since it imposes an order on the observations that must be preserved

for model training and deployment. Recurrent neural networks (RNNs) are specifically

designed to address such problems where they have loops that allow the information from one-

time-step to be passed to the next. As shown in Figure 1a, when an RNN is trained to predict

a dynamical quantity in the future from the past, the network incorporates the information

from the input observations x into the hidden state h, which is passed forward through

time. The circuit depicts that the current state is fed back into the network influencing its

future state, and the black square indicates that such interaction takes place with a delay of

one-time-step. Once the whole historical sequence, xt, is scanned, the RNN learns a summary,

ht, of the relevant aspects in the past up to time t. Following this, an extra architecture layer,

known as output layer, will be added to read information out of the ht to make predictions.

A traditional RNN has only one hidden state, ht, which is sensitive to short-term inputs.

However, when the sequence length grows, it becomes unable to learn the summary that

connects the current state with the state further back in time.35 To address this issue,
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Figure 1: (a) Circuit diagram of a RNN with no output layers; (b) Circuit diagram (left) and
its unrolled view (right) until a final time-step labelled as sequence length (SL) of a LSTM
network.

Long Short-Term Memory (LSTM) networks harness a cell state Ct to store the long-term

information, as shown in Figure 1b. As with RNNs, the information flows through time in

LSTM networks, but both short-term and long-term memory are carefully carried via hidden

state and cell state, respectively. Several variants of the LSTM unit have been developed36,37

since the LSTM unit was first proposed.38 The standard LSTM36 is used in the current study

as it has been proved to outperform other variants39 and has been used extensively over a

broad range of applications.40,41

The core advantage of LSTM is its ability to control information deletion from or addition

to the cell state. As depicted in Figure 2, the cell state runs through the LSTM unit at the

top of the diagram with some minor interactions, indicating the information stored in the cell

state could flow along with slight or no changes. These interactions are carefully regulated by

different gates.38 The role of the first one, the Forget Gate, is to decide how much information

from Ct−1 should be discarded. This decision is made by a Sigmoidal activation function

σ(x) = 1/(1 + e−x) looking at the previous hidden state, ht−1, and the current input, xt:

ft = σ(Wfht−1 + Wfxt + bf ). (1)
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Figure 2: Diagram of different gates in one standard LSTM unit.

The subsequent Input Gate determines the new information to be memorised in Ct:

it = σ(Wiht−1 + Wixt + bi),

C̃t = tanh(WCht−1 + WCxt + bC). (2)

Herein, the candidate cell state, C̃t, is introduced to describe the current input. Later, the

cell state is updated by:

Ct = ft ⊙ Ct−1 + it ⊙ C̃t, (3)

where ⊙ denotes the Hadamard product of vectors and matrices. Lastly, the output gate is

applied to settle the final output of the LSTM cell:

ot = σ(Woht−1 + Woxt + bo),

ht = ot ⊙ tanh(Ct), (4)

which contains the ht, a cache of the recent information from ht−1, and long-period aspects

from Ct. In the equations above, W and b are trainable parameters of the LSTM unit,
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representing the weight vectors and the offset term for different gates, respectively. These

equations are computed for each time-step, and hence with a subscript t denoting the time-

step. As described above, LSTM is capable of learning aspects in long-time sequences and

thus has been used in modelling dynamical systems.23–25 Detailed architecture of the model

employed in the current study will be presented in the following section.

Methodology

The computational framework presented in this work adheres to a three-stage workflow

consisting of 1) Data acquisition, 2) Data re-conditioning, and 3) Model training, deployment

and explainability, as illustrated in Figure 3 and detailed throughout this section. At its core,

we constructed a multivariate LSTM model capable of carrying out multi-step predictions

of the temporal evolution of key multidimensional dispersion performance metrics, whilst

remaining agnostic to the specifics around the mixing process itself. It is worth noting

that two separate LSTM models were trained, one for each mixing device. This separation

stemmed from a disparity in the time-series dimensions between mixing systems (stirred

vessel cases have three times as many time-steps in comparison), which poses a challenge for

the model to handle, as we will discuss further in this section.

Data acquisition

Problem statement: CFD simulations of mixing systems

This study utilises high-fidelity CFD data of two widely employed mixing systems in the

industry: stirred tanks and static mixers—handling two-phase L-L flows. Each mixer

operates in a completely different flow regime, with the former handling transitional/turbulent

flows (Re = ρND2
r/µ ≈ [9000, 18000]), and the latter operating under laminar conditions

(Re = ρUrDr/µ = 1.63). For brevity, specifics on the problem formulation of each system will

not be described herein, but readers are encouraged to refer to previous publications detailing
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Figure 3: Flowchart detailing the overall framework architecture developed to train and
deploy a multivariate multi-step LSTM model with two-phase mixing performance data from
high fidelity CFD simulations. Colour-coded blocks refer to general data pre-processing (teal)
and model operations and exploration (violet).

the geometrical and operational specifications, fluid properties, numerical considerations (e.g.,

grid refinement) and validation.30–33 The extracted datasets comprise multidimensional time-

series data encompassing three key metrics integral to the dispersion performance: interfacial

area growth (IA), drop count (ND) and droplet size distribution (DSD), calculated as the

approximate volume of cells resolving a fully-detached structure or ‘drop’. The choice of these

parameters capitalises on the explicit and robust nature of the interface-tracking scheme

(Level-Contour Reconstruction Method, LCRM) embedded in the CFD code used, which
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furnishes a more accurate and well-resolved representation of the intricate interfacial dynamics

compared to other traditional schemes (e.g., level-set methods).42

A comprehensive set of 43 simulations was performed: fourteen cases involved stirred

vessels, exploring various rotational speeds (Nrot) and surfactant profiles, while the remaining

29 cases focused on static mixers, investigating different inlet configurations, geometry

arrangements, and types of surfactants. While the former 14 cases are divided between clean

(varying Nrot) and surfactant-laden systems, the latter 29 overlap inlet setup and geometry

arrangement with clean and contaminated scenarios. The specific parameters, combinations,

and value ranges explored for each set of cases are detailed in Table 1.

Simulations were carried out using in-house code BLUE,34,42,43 which considers a three-

dimensional single-field formulation of the Navier-Stokes equations in a Cartesian domain:

∇ · u = 0, (5)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇P + ρg + ∇ ·
[
µ(∇u + ∇uT )

]
+ F, (6)

where t, P , u, g, and F denote time, pressure, velocity, gravity, and a local surface force. For

clean systems, this term follows a hybrid formulation of the form,

F = σκH∇H, (7)

where σ is a constant interfacial tension coefficient, κH is twice the mean interface curvature

field, and H (x, t) stands for a numerical Heaviside function, generated through a vector

distance function from the interface φ(x), and solved numerically with a smooth 3-4 grid

cells transition.32,43 This same function is used to define density and viscosity throughout

the domain, which are respectively given by

ρ (x, t) = ρa + (ρo − ρa) H (x, t) ,

µ (x, t) = µa + (µo − µa) H (x, t) ,
(8)
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Table 1: Simulation cases considered in this study, categorised into three broad groups
according to the focus of each study: varying surfactant properties, modifications in the
operating conditions and different mixing element arrangements, specific to static mixers.

Mixer/Case Stirred Mixer # Cases Static Mixer # Cases

Surfactant-laden
Bi = [0.001,1]
β = [0.5,0.9]

5
3

3-drop inlet
Bi = [0.01,1]
β = [0.3,0.9]
Da = [0.01,1]

3
3
3

Operational
configuration

Rotational speed (Cl) Clean pre-mix (pm)
Inlet = [Coarse, Fine, 3-drop] 3

Nrot (Hz) = [5,10] 6 Surfactant-Laden (Coarse)
Bipm = [0.01,0.1]
βpm = [0.6,0.9]
Dapm = [0.1]

2
2
1

Geometrical
arrangement

N/A N/A

Clean
Coarse pm = [Alt1, Alt2, Alt3]

Fine pm = [Alt4]
3
1

Surfactant-Laden
· 3-drop inlet (Alt 4):

βalt4 = [0.3,0.9]
Bialt4 = [0.01,1]

3
3

· Pre-mixed inlet:
Coarseβ=0.9 = [Alt1, Alt4] 2

where H (x, t) has a value of 1 for the oil phase (subscript o) and zero for the aqueous phase

(subscript a). Additional terms are added to the formulation in Equation 6 when dealing with

stirred tanks. Firstly, a Smagorinsky-Lilly LES turbulence model is implemented, adding the

filter
(
µvis + ρC2

s ∆2
∣∣∣S̄∣∣∣) to the dissipation term, and secondly a Direct Forcing Method is

added with the inclusion of a fluid-solid interaction force, Ffsi.30

In the presence of surfactants, the force F is decomposed into its normal (σκn) and
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tangential components (∇sσ), as shown in Equation 9,

F =
∫

A
[σκn + ∇sσ]δ(x − xf )dA, (9)

where κ denotes the interface curvature, ∇s stands for the surface gradient operator, and

n is the normal unit vector pointing away from the interface. The 3D Dirac delta function

δ(x − xf) is set to 0 everywhere except at the interface, which is located at x = xf .33 In

surfactant-laden cases, σ is no longer constant but is modelled through a Langmuir EoS of

the form σ = σcl + RTΓ∞ ln
(
1 − Γ

Γ∞

)
, where Γ refers to the surfactant surface concentration.

The chemical nature of the surfactant is parameterised by the following dimensionless numbers

β =
RTΓ∞

σcl

, Bi =
kdLr

Ur

, Da =
Γ∞

LrC∞
, (10)

where β, Bi, and Da stand for the elasticity, Biot, and Damkohler numbers, characterising

surfactant ‘strength’ (interfacial tension sensitivity on concentration), desorptive capability

vs. convective surface transport, and adsorption depth into the bulk, respectively.33 These

parameters are used to label the surfactant-laden cases employed herein and broadly describe

the nature of each surfactant modelled (e.g., highly/weakly adsorptive/desorptive, etc).

Further details into the equations governing surfactant transport and the specifics behind the

interface-tracking algorithm (i.e., LCRM) are found in previous publications.31,33,34,42

Data pre-processing: Scaling, smoothing and DSD binning

The initial set of features considered in this study consists of two scalar quantities, namely

IA and ND, and a variable-sized list of scalars (i.e., drop volumes) representing the DSD. To

maintain dimensional consistency in the former two features across all cases sharing the same

mixing system, a post-sequence truncation is implemented up to a final time-step τf (see table

illustrations in Figure 4), which corresponds to the length of the shortest sequence within a
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given mixer’s pool of cases. However, the length of the DSD feature remains dependent on

the number of drops at each time-step t (NDt), which is inherently linked to the governing

physics of each case. This inconsistency effectively renders a three-feature input sequence

with a case-specific, uneven feature size of (1, 1, NDt) per time-step t.

Handling input sequences with varying feature lengths represents a challenge for the

model architecture implemented here, as standard LSTM networks are designed to have

a fixed topology a priori (i.e., invariant parameter size),44 thus requiring to be fed with

fixed-sized input sequences of equal feature lengths.45,46 This fixed-size requirement aims to

prevent potential issues such as information loss and limitations on the model’s capability to

learn meaningful long-term dependencies. Previous works have implemented techniques to

circumvent this flaw, such as padding, truncation, or ‘attention’ mechanisms. The former two

are common approaches implemented in text recognition47 and image processing,46 where

the length of the longest (padding) or shortest (truncation) sequence is set as the standard,

and each sequence is either filled with zeros or has data removed accordingly.46 Despite

the benefits of longer padded sequences (Khotijah et al. demonstrated consistently higher

model accuracy when handling longer sequences) or the easiness of dealing with truncating

datasets, other studies have suggested alternatives (e.g., nearest neighbour interpolation)

arguing that padding can be computationally demanding and naive truncation methods can

lead to critical information loss.48 More sophisticated methods such as attention layers 49

have shown remarkable potential in adequately filtering relevant input subsets. Still, they

have been seen to fail when handling long-time-step predictions.50

Based on the above, we explored an application-specific approach to address the fluctuating

DSD feature size without compromising the integrity of the datasets or substantially increasing

the model’s complexity and resource requirements. Our proposed method, depicted in Figure 4,

consists of transforming drop volume data into discrete drop counts for different size ranges.

These counts can be then partitioned into a fixed number of M bins ([B0, BM−1]), serving as

individual features which monitor the number of drops entering or exiting a given size range

13



· · ·

0 1 2 3 M − 1

Small Large
Drop size

size range 1 size range 3 size range (M − 3)

Nbins = M

t

ND IA DSD [m3 × 10−8]

ND0 = 0 IA0 = 1 (0), s = [0]

ND1 = 5 IA1 = 1.1 (4.54, ..., 1.12), s=[5]

ND2 = 10 IA2 = 1.2 (6.61, ..., 2.59), s = [10]

...
...

...

NDτf −1 = 130 IAτf −1 = 1.8 (0.1, ..., 0.29), s = [130]

NDτf = 125 IAτf = 1.8 (0.24, ..., 0.28), s = [125]

ND IA Drop count [s = M ]

ND0 = 0 IA0 = 1 (0, 0, ..., 0, 0, ..., 0, 0)

ND1 = 5 IA1 = 1.1 (0, 0, ..., 0, 2, ..., 2, 3)

ND2 = 10 IA2 = 1.2 (0, 0, ..., 0, 3..., 5, 1)

...
...

...

NDτf −1 = 130 IAτf −1 = 1.8 (2, 7, ..., 32, 45, ..., 3, 1)

NDτf = 125 IAτf = 1.8 (3, 10, ..., 28, 42, ..., 3, 1)

Figure 4: Schematic detailing DSD binning transformation. Top diagram showcases the
drop size sorting and counting process in each size range, while the bottom tables show
the transition from variable-sized volume lists (s = NDt) to discrete drop counts in a fixed
number of bins (s = M).

over time. These features are subsequently scaled between 0 and 1 through a normalised

probability density estimation procedure, using the count of each bin as a density estimate

as showcased in Equation 11 and Equation 12 for a bin Bl ∈ [B0, BM−1] at a time t,

p̂l,t = p̂(Cl,t) =
Cl,t

NDt × wl

, (11)

n̂l,t = n̂(Cl,t) = p̂l(Cl,t)∑M−1
j=0 p̂l(Cj,t)

, (12)

where p̂l,t and n̂l,t denote the probability and normalised density estimators, respectively, for a

drop count value Cl,t corresponding to Bl at time t; NDt stands for total drop count at time t,

and wl denotes the width of Bl. Our proposed approach introduces M additional features to

the LSTM model, thus increasing the computational resources needed for training. However,
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the resolution of the DSD (M) can be adjusted depending on the system studied, thus acting

as a refinement parameter that balances accuracy and computational cost. In this work, M

was initially set to 20 and 12 for the stirred and static mixing cases, respectively, aiming

to provide sufficient resolution for the DSD data based on statistical analyses conducted in

previous publications.31,33 To eliminate outliers and uninteresting features (i.e., bins that

mostly remain as 0 throughout the time domain), M was ultimately cut to 10 bins for both

mixers (B0 − B9), dropping the boundary bins at each end of the size range proportionally,

yielding 12 features overall for the LSTM to handle.

Finally, the ND and IA features were scaled and smoothed to mitigate potential biases

arising from their substantially different scales (∼ O(102) vs. ∼ O(1)), and the sharply

fluctuating trend noticed for the ND data. The scaling was executed through a linear sklearn

MinMaxScaler method, applied to a range of [0,1]. Subsequently, three smoothing techniques

were tested, namely moving average, Savitzky-Golay filter and Locally Weighted Scatterplot

Smoothing, or ‘Lowess’. After preliminary tests, the Lowess method, with a fraction of

δ = 0.06, and the Savitzky-Golay filter, with a window size of 5 and a third-order poly fit,

yielded the best behaviour for the stirred and static mixer datasets, respectively. The former

method conducts a weighted linear regression at each point using a cubic weight function

W (x) = (1 − |x|)3, based on the nearest N × δ data points. Meanwhile, the latter performs

a k-order polynomial fitting within a specified window length based on the least squares

principle.51 The normalised density estimations from the binned DSD data were not subjected

to smoothing due to their extremely noisy behaviour (see Figure 12 and Figure 13 (e),(f)).

The methods probed herein proved insufficient when attempting to retain the most relevant

temporal trends, particularly for the boundary bins (i.e., largest or smallest sizes).

Data re-conditioning: Augmentation through windowing

Data augmentation is the process of generating synthetic data that incorporates existing

knowledge about invariant properties of the original data against specific transformations. This
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procedure lowers the risk of model over-fitting and enhances its accuracy and generalisation

capabilities by providing a diverse yet realistic dataset.52 Data augmentation has been actively

probed for classification models in the field of computer vision (e.g., flipping, rotating, scaling

images, adding Gaussian noise/distortion), but has been less explored in time-series scenarios

given their vulnerability to transformation procedures.52,53 Methods used for image data

augmentation are not well generalised with time-series data, since some of their intrinsic

properties (i.e., temporal dependency) are not fully leveraged by such methods and there is

no assurance that the meaning of the raw data will remain unchanged.53,54

While it is possible to perform a frequency domain transformation to the time-series

data to facilitate the application of some of these methods, additional complications emerge

when dealing with complex or inherently intertwined multivariate time series data,54 as is

the case for the features studied herein. In such scenarios, it is advised to develop a tailored

augmentation methodology that conserves the original data semantics.53 Considering the

above, and given the limited number of simulation runs available for training, we devised a

basic time domain sequence-to-sequence (S2S) rolling window augmentation technique, which

aims to expand the training data available while preserving their original semantics. Let us

first examine the characteristics of the data and the training procedure without augmentation.

Let X be the original time-series array of a case under consideration with dimensions

D = (τf + 1, M + 2), where τf + 1 and M + 2 correspond to the total number of time-steps

and features. A schematic of the time-series array is shown in Equation 13,

X =



x0

x1

...

xτf


=



ND0 IA0 n̂0,0 · · · n̂M−1,0

ND1 IA1 n̂0,1 · · · n̂M−1,1

... ... ... ...

NDτf
IAτf

n̂0,τf
· · · n̂M−1,τf


, (13)

where xt ∈ RM+2. The LSTM model training requires the original time series, X, to be

divided into input (x) and target (y) arrays, the latter acting as the ground truth for the
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model to evaluate its predictions. Accordingly, we define ni as the number of input steps

aimed to be fed into the LSTM model and nk as the number of target steps to predict into the

future. Assuming τf = ni + nk − 1, we can then define subsets x(ni), y(nk) ∈ X, denoting the

input and target sequences from the original time-series, with dimensions Dx = (ni, M + 2)

and Dy = (nk, M + 2), respectively, as given by Equation 14.

x(ni) =



x0

x1

...

xni−1


, y(nk) =



xni

xni+1

...

xni+nk−1


. (14)

This method would render an insufficient 10 or fewer training datasets for either mixing

system (1 set per case). Therefore, the case-wise windowing approach implemented here seeks

to augment the number of input-target sequence pairs {x(ni), y(nk)} from a single data-set, as

explained below and shown schematically in Figure 5:

1. Window creation: The aim is to split the original data-set, X, into a set of nw+1 input

and target sequences, denoted as
{
Xw

j , yw
j

}nw

j=0
, with arbitrarily reduced dimensions

DXw and Dyw , following the same definitions introduced earlier for ni and nk, but now

considering ni + nk << τf . The input/target pair is referred to as ‘window’, and its size

along the temporal axis is defined as sw = ni + nk. The procedure starts by building

Window 0 from t0 to tsw−1, as seen in Figure 5. This can be expressed as:

Xw
0 = X[0 : ni − 1, :], yw

0 = X[ni : sw − 1, :].

2. Window rolling: Window 0 is then rolled forward to generate Window 1:

Xw
1 = X[1 : ni, :], yw

1 = X[ni + 1 : sw, :],
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N I n̂0 · · · n̂M−1

ND0 IA0 n̂0,0 n̂M−1,0

ND1 IA1 n̂0,1 · · · n̂M−1,1

ND2 IA2 n̂0,2 n̂M−1,2

ND3 IA3 n̂0,3 n̂M−1,3

ND4 IA4 n̂0,4 · · · n̂M−1,4

ND5 IA5 n̂0,5 n̂M−1,5

ND6 IA6 n̂0,6 n̂M−1,6

ND7 IA7 n̂0,7 n̂M−1,7

... ... ... ... ...
NDτf −2 IAτf −2 n̂0,τf −2 n̂M−1,τf −2

NDτf −1 IAτf −1 n̂0,τf −1 · · · n̂M−1,τf −1

NDτf
IAτf

n̂0,τf
n̂M−1,τf

Xw
0

yw
0

Window
roll

s = 1

N I n̂0 · · · n̂M−1

ND0 IA0 n̂0,0 n̂M−1,0

ND1 IA1 n̂0,1 n̂M−1,1

ND2 IA2 n̂0,2 · · · n̂M−1,2

ND3 IA3 n̂0,3 n̂M−1,3

ND4 IA4 n̂0,4 n̂M−1,4

ND5 IA5 n̂0,5 · · · n̂M−1,5

ND6 IA6 n̂0,6 n̂M−1,6

ND7 IA7 n̂0,7 n̂M−1,7

... ... ... ... ...
NDτf −2 IAτf −2 n̂0,τf −2 n̂M−1,τf −2

NDτf −1 IAτf −1 n̂0,τf −1 · · · n̂M−1,τf −1

NDτf
IAτf

n̂0,τf
n̂M−1,τf

Xw
1

yw
1

Last
window

roll

N I n̂0 · · · n̂M−1

ND0 IA0 n̂0,0 n̂M−1,0

ND1 IA1 n̂0,1 n̂M−1,1

ND2 IA2 n̂0,2 · · · n̂M−1,2

ND3 IA3 n̂0,3 n̂M−1,3

ND4 IA4 n̂0,4 n̂M−1,4

... ... ... ... ...
NDτf −5 IAτf −5 n̂0,τf −5 n̂M−1,τf −5

NDτf −4 IAτf −4 n̂0,τf −4 · · · n̂M−1,τf −4

NDτf −3 IAτf −3 n̂0,τf −3 n̂M−1,τf −3

NDτf −2 IAτf −2 n̂0,τf −2 n̂M−1,τf −2

NDτf −1 IAτf −1 n̂0,τf −1 n̂M−1,τf −1

NDτf
IAτf

n̂0,τf
· · · n̂M−1,τf

Xw
nw

yw
nw

Window 0: {Xw
0 , yw

0 } Window 1: {Xw
1 , yw

1 } Window nw: {Xw
nw

, yw
nw

}

Figure 5: Schematic representation of the time-domain S2S windowing procedure implemented
in this study. Top part provides a tabular representation of the windowed datasets, while
bottom figures illustrate the rolling window procedure on top of a generic feature. Here,
the window size is set to sw = 6, where the number of input and target steps is ni = 4 and
nk = 2, respectively. The window is shown to be rolled with a stride of s = 1.

where the rolling obeys a user-defined stride s, which was set to s = 1 in this work (see

Figure 5). In general, the window for the next iteration j + 1 with s = 1 is:

Xw
j+1 = X[j + 1 : j + ni, :], yw

j+1 = X[j + ni + 1 : j + sw, :].

3. Data stacking: The rolling procedure in step 2 is repeated nw times, where nw is

determined by the expression nw = τf + 1 − sw, taking s = 1. After each roll, the

generated input/target sequences {Xw
j , yw

j } in each window are stacked separately into
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new tensors WX , Wy, respectively, as shown in Equation 15:

WX = {Xw
0 , · · · , Xw

j , · · · , Xw
nw

} =



x0 x1 · · · xni−1

x1 x2 · · · xni

... ... · · · ...

xτf +1−sw xτf +2−sw · · · xτf −nk


,

Wy = {yw
0 , · · · , yw

j , · · · , yw
nw

} =



xni
xni+1 · · · xni+nk−1

xni+1 xni+2 · · · xni+nk

... ... · · · ...

xτf −nk+1 xτf −nk+2 · · · xτf


,

(15)

where xt = (NDt, IAt, {n̂l,t}M−1
l=0 ) ∈ RM+2, WX ∈ Rnw×ni×(M+2) and Wy ∈ Rnw×nk×(M+2).

In this work, ni and nk constitute user-defined parameters in the LSTM architecture. These

parameters serve a dual function: instructing the network on the number of input and output

steps it will handle and constraining the number of windows created. On the other hand, τf

is an intrinsic characteristic of the original time-series dataset. It is worth mentioning that

ni, nk, and thus nw, may affect the outcome of the LSTM training and rollout procedure, as

they determine how many times the model iterates over its output, and consequently how

much error propagation the results are exposed to (as we will discuss further on). However,

this aspect of the model was not treated as a tunable hyperparameter as it would entail

re-processing the entire raw dataset for every model training variation tested. Consequently,

this would impose a substantial increase in computational expenditure.

Model training, deployment and explainability

LSTM model architectures & Training procedure

As mentioned at the onset of this section, we aim to construct a multivariate LSTM network

to perform multi-step time-series predictions. The LSTM layers implemented herein were
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built using Python package PyTorch, since its framework inherently supports multi-step

input/target sequences with a constant number of features. The first architecture tested in

this study is a simple neural net composed of a single LSTM layer and one fully-connected

layer (LSTM-FC), where the latter reads the hidden state, ht, from the former to yield a

predicted sequence. As seen in Figure 6, the LSTM processes a complete input sequence of

ni elements sequentially. Each element, xt ∈ RM+2, contains all M + 2 features per time-step,

as previously introduced. Subsequently, the hidden state from the last time-step, hni−1,

is fed into the FC layer to generate the predicted output sequence. This output sequence

comprises nk elements, each holding the same dimensions as those assigned to the elements

within the input sequence. Connecting with the prior discussion, Figure 6 showcases the

LSTM-FC network handling Window 0, where it reads the first element W0
X = {Xw

0 } as an

input sequence and predicts ŷw
0 , corresponding to the target sequence pair W0

y = {yw
0 }.

LSTM
unit

LSTM
unit · · · LSTM

unit
LSTM

unit

Fully
connected

layer

hni−1

x0 x1 · · · xni−2 xni−1

ŷw
0 = (x̂ni

, x̂ni+1, · · · , x̂ni+nk−1)

Figure 6: Diagram of a LSTM-FC neural network architecture.

Despite the simplicity of the previous neural net, more specialised architectures have

been specifically designed to tackle multi-step forecasting. A common example is the LSTM

Encoder-Decoder architecture, which comprises two LSTM sub-networks. The input network,

referred to as the Encoder, derives a compressed representation of the input sequence, referred

to as the encoded state. The second sub-network, referred to as the Decoder, interprets the

encoded representation and exploits it to generate the predicted target sequence. Unlike

the previous model, predictions in this approach are computed sequentially from the hidden
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states of the LSTM units themselves, instead of coming from a single re-shaping layer at

the end of the network. As depicted in Figure 7, the last element of the input sequence,

xni−1, and the encoded state of the last LSTM unit in the Encoder layer (corresponding to

its hidden and cell state, cni−1, hni−1, respectively) are sent into the Decoder layer, which is

the one responsible for generating a time-step prediction per LSTM unit.

LSTM
unit

LSTM
unit · · · LSTM

unit
LSTM

unit

E
nc

od
ed

St
at

e

LSTM
unit

LSTM
unit · · · LSTM

unit
LSTM

unit

x0 x1 xni−2 xni−1

x̂ni
x̂ni+1

xni+nk−3

x̂ni+nk−2 x̂ni+nk−1
Encoder

Decoder

Figure 7: Diagram of a LSTM Encoder-decoder architecture, implementing mixed teacher
forcing training.

A noteworthy advantage of this more intricate architecture over the LSTM-FC is its

flexibility when it comes to training methodologies. Firstly, the predicted output of each

LSTM unit in the Decoder layer can be recursively fed back into the following unit, until an

output of the desired length is generated; this process is generally referred to as recursive

prediction. Alternatively, true/target data can be exclusively fed into the LSTM Decoder

units to make computations, similar to the Encoder layer, which is known as prediction

via teacher forcing. Finally, both predicted outputs and true data can be alternately fed

throughout the Decoder layer; in such a scenario, the model is said to be generated via mixed

teacher forcing. For the latter method, a teacher forcing ratio parameter or t.f. ratio can be

defined, which determines how much true data will be fed to the LSTM units in the Decoder

layer vs. how much the model will re-use its predicted outputs to forecast the next step.

Moreover, a boolean dynamic teacher forcing (d.t.f.) parameter can be introduced. When

this parameter is set as ‘True’, the teacher forcing ratio is gently reduced at each epoch (i.e.,

one complete pass of the training dataset during model training). In this way, the model is
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trained to learn patterns from the target data at the early times but it gradually acquires

knowledge from its output, relying more on it to generate future predictions.

In this study, a shuffled batch-wise training methodology was adopted for both LSTM

architectures. This procedure consists of dividing the windowed tensors, WX,y, into smaller

subsets or ‘batches’, thereby limiting the number of samples shown to the network during

training before each weight update, and thus enhancing computational efficiency. In this

approach, a set of input/target sequence pairs or windows, packed together into a batch

Wbatch = {Xw
j , yw

j }batch size
j , are indexed and randomly shuffled before being fed into the

network. Batching and randomising sequences enhance the model’s ability to generalise

effectively across different datasets, improves its capability to discern common patterns, and

prevents it from learning biases associated with the order of the data.

In addition, a custom loss function was introduced during the training procedure, consisting

of a standard Mean Square Error (MSE) loss function with an added penalty term that adopts

the expression wp ∗ 1
N

∑N
i=1(ReLU(−ŷw

j )), where wp stands for a user-defined penalty weight,

ReLU(x) denotes the Rectified Linear Unit activation function, defined as max(0, x), and ŷw
j

denotes a predicted sequence. This penalty term is meant to avoid negative predictions, which,

in the context of this work, would yield non-physical results (i.e., negative drop count). This

is done by isolating and averaging all initially estimated negative values by the network and

then adding a fraction of this average as penalty. In this way, loss decreases when negative

predictions are minimised. Furthermore, two regularisation terms L1 and L2, also known as

Lasso and Ridge regressions, were added to the loss function to help manage overfitting. L1

introduces a penalty term based on the absolute value of the coefficient magnitudes, expressed

as l1
∑ |β|, while L2 adds a penalty based on the square magnitude of the coefficients, given

by l2
∑

β2. Both penalty terms are regulated by coefficients l1, l2, respectively.

In the final stage of model training, we introduced two key strategies: an early-stopping

procedure and a ‘ReduceLROnPlateau’ scheduler. The early-stopping mechanism continuously

monitors improvements in the validation loss score and saves the best-performing model before
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any degradation occurs, effectively preventing overfitting. The scheduler optimises model

convergence by dynamically reducing the learning rate once the model performance stagnates

(i.e., validation loss stops improving). It is worth noting that the scheduler implemented here

uses the well-known Adam (Adaptive Moment Estimation) optimiser, which is also employed

for the backpropagation process throughout training.

Hyperparameter tuning

Before initiating the training procedure to estimate the network’s learnable parameters

(i.e., weights and biases), we carried out a comprehensive parametric sweep to optimise the

framework’s user-defined parameters, also known as ‘hyperparameters’. As highlighted earlier,

the input and target sequence sizes (ni, nk) were not included in this tuning step due to

computational constraints. The remaining hyperparameters tuned in this study and shared

by both architectures include the hidden size (hidden state dimension), learning rate (step

size for adjusting model weights during training), and batch size (number of windows fed

during training before weight update), as well as loss-related weight parameters such as the

custom penalty weight wp, and the l1, l2 coefficients controlling the corresponding regression

penalty terms described prior. On top of the above, the LSTM Encoder-Decoder model

considers an additional hyperparameter related to the training method adopted, namely the

t.f. ratio. The d.t.f. feature was fixed as ‘True’ for all Encoder-Decoder tuning cases tested

to reduce the size of the sample space and prioritise other hyperparameters.

We performed four separate exhaustive searches of over 2000 parameter combinations,

one for each model and mixing system. These parametric explorations were carried out

through PyTorch package Ray Tune, in search of each specific case’s optimal configuration.

The hyperparameter sample space explored is detailed in Table 2, along with each case’s

best-performing model configuration. The parameter candidate values were selected based

on early sensitivity trials and their relevance in the context of this study. For instance, a

finer batch size sample space was explored given the relatively modest dataset available for
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Table 2: Hyperparameter search space and best-performing model configuration for each
corresponding architecture and mixing system studied.
∗ batch size range lies between 8 and 40, with a step of 4, rendering 9 parameter values.

Hyperparameters Value ranges Best performing model

LSTM-FC Encoder-decoder

Stirred Static Stirred Static

Hidden size 64, 128, 256 256 64 256 64
Learning rate 0.002, 0.005, 0.01 0.002 0.01 0.002 0.005

Batch size (8∼40, 4)∗ 36 36 40 24
Penalty weight (wp) 0.01, 0.1, 1, 10 0.1 0.1 0.1 0.1

Prediction type Recursive, t.f., mixed — Mixed Mixed
t.f. ratio 0.02, 0.1, 0.2, 0.4 N/A 0.1 0.02

l1 coefficient (Lasso) 0, 1 × 10−5, 1 × 10−4 0 0 0 0
l2 coefficient (Ridge) 0, 1 × 10−5, 1 × 10−4 0 1 × 10−5 0 0

training and validation, which causes noise effects introduced from varying batch sizes to be

more impactful in the generalisation performance of the model. This is reflected in the widely

different sizes obtained for each scenario. Other settings yielded expected results, such as

larger hidden sizes for the stirred mixer given its substantially larger datasets, or a constant

penalty weight, wp, given the similar nature of all features and datasets. Similarly, the L1, L2

penalty terms were essentially deemed unnecessary, as overfitting has already been mitigated

in various other ways, as previously described (e.g., batch randomisation). On the other

hand, the Encoder-Decoder architecture always preferred a mixed teacher forcing training

method with small t.f. ratios, implying that the model mostly does not rely on the ground

truth to carry out predictions throughout the Decoder layer, but still prefers to have some

access early on to improve its performance, rather than running exclusively on its output.

Future work is suggested to explore the inclusion of the d.t.f feature in the hyperparameter

tuning exercise, as it might show the true dependency of the model on the ground truth.
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Prediction via sequence generation (Rollout)

As explained earlier with the introduction of the windowing process and the model

architectures, the LSTM network is designed to map an input sequence of length ni to

an output sequence of fixed length, nk, where nk + ni << τf . Recall that our objective is

to predict the entire temporal evolution of the dispersion features up to the final time-step,

τf , where simulations are terminated. To achieve this, a rollout procedure is implemented,

wherein the trained model is iteratively reused until the desired time-step is reached. During

each iteration, the previous output sequence is fed back into the trained model to predict

the next nk sequence. The number of iterations or ‘rollouts’ is therefore determined by the

length of the output sequence, following the expression r = (τf − ni)/nk.

The selection of ni and nk is not a trivial task since these two values determine the

size and number of data samples available for the model to be trained with (refer to

subsection Data re-conditioning), which naturally has a direct effect on model performance

and uncertainty. Considering the differing lengths of the time-series datasets for each

simulation case, acknowledging that they have been truncated for each mixing system

(τf = 385 and τf = 98 for the stirred and static mixer, respectively), the values for ni, nk

were fixed to (50, 50) and (40, 30) for the stirred and static mixer, respectively. These values

were subjected to an early sensitivity test, but a full-scale tuning process would be required

to discover the optimal configuration for each mixing case study. Accordingly, the number of

rollouts, r, is computed as 7 and 2 for the stirred and static mixer, respectively.

Uncertainty quantification from an ensemble of perturbed inputs

After adequately training the model, the next logical step is to estimate its prediction

uncertainty. Regarding this, many researchers have contributed to understanding and

quantifying the uncertainty in a neural network’s prediction (see the comprehensive review

by Gawlikowski et al.). Yet, an approach to uncertainty quantification applicable in our

current work is required to cope with the fact that the trained model iterates over its output
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numerous times, as described above through the rollout procedure. In other words, we require

a method that is capable of tracking the evolving model uncertainty and granting us access

to the model performance through the propagation. To achieve this, an ensemble-based

procedure, adapted from the ensemble forecasting technique that has been extensively used

in numerical weather prediction,56–58 is proposed herein.

(ND0 + ϵ0, ND1 + ϵ1, · · · , NDni−1 + ϵni−1)

(ND0 + ϵ′
0, ND1 + ϵ′

1, · · · , NDni−1 + ϵ′
ni−1)

...

(ND0 + ϵ′′
0, ND1 + ϵ′′

1, · · · , NDni−1 + ϵ′′
ni−1)

(ND0, ND1, · · · , NDni−1)

ϵ ∼ N (0, 0.042)
Trained

LSTM -FC/
Encoder-decoder

(N̂Dni
, · · · , N̂Dτf

)

(N̂D′
ni

, · · · , N̂D′
τf

)

...

(N̂D′′
ni

, · · · , N̂D′′
τf

)

r iterations

Ensemble of perturbed inputs
(sequence length= ni)

Predicted sequences
from perturbed inputs

(sequence length= τf + 1 − ni)

Figure 8: Diagram showcasing the procedure of ensemble-based uncertainty quantification.
Take ND as an example, perturbations are introduced to the input sequence by adding
noises, ϵ, drawn from a Gaussian distribution, N (0, 0.042), at each time-step, giving rise to
the ensemble of perturbed inputs. All of the ensemble members are fed into the trained
model which progressively produces the ensemble of predicted sequences (with a sequence
length of τf + 1 − ni). r is the number of iterations determined by the target sequence length,
r = (τ − ni)/nk.

As showcased in Figure 8, we start by introducing perturbations parameterised by ϵ to

the input sequence. This involves adding noise, drawn from a distribution, to the feature

values at each time-step (Figure 8 takes ND as an example). Herein, a Gaussian distribution

with mean µ = 0 and standard deviation (referred to as std. dev. henceforth) σs.d. = 0.04 is

used, namely ϵ ∼ N (0, 0.042), such that the feature values in the perturbed input sequence

represent a probable uncertainty arising from observed feature values at early dispersion. For

instance, for a given mixing system, the measured dispersed drop count at early times could

be a few drops off if measurement errors are considered. It is worth noting here that the

added noise could lead to negative feature values in the perturbed input sequence, which

would be physically unrealistic; nonetheless, the purpose of their inclusion is to examine the

capability of the trained model to handle any type of disturbance in the input data. In this
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way, an arbitrary perturbed input ensemble containing 200 members is generated, which

subsequently enters the trained model to produce an ensemble of corresponding predicted

sequences.

With the sequences above, we first compute the std. dev. across the 200 ensemble members

at each time-step using the empirical std. dev. expression per sample:

σs.d. =

√√√√∑(bi − b̄)2

Ne − 1 ,

where bi, b̄, and Ne denote the ith member in the ensemble, the ensemble average, and the

ensemble size (Ne = 200), respectively. Then, a prediction interval is calculated to give an

overview of the range wherein the model prediction is likely to occur (with a 95% confidence)

given the unperturbed input sequence, which could be written as:

[µ − zσs.d., µ + zσs.d.], z = 1.96.

Lastly, we made use of the prediction interval to suggest a fair indicator of the model

performance, namely the absolute residual between the targeted perturbed evolution and

its predicted counterpart from the trained model using the unperturbed input sequence.

Corresponding results and relevant discussion are presented in the ensuing section.

Results and discussion

This section is subdivided as follows: firstly, a brief discussion on the model’s generalisation

based on its performance on both training and validation datasets. Secondly, we present an

in-depth exploration of the framework’s performance on the testing datasets. This involves

a thorough analysis of the predicted temporal evolution for all features, namely ND, IA,

and DSD, across both mixing systems and network architectures. In particular, the DSD

predictions are interpreted through selected bins, i.e., B3, B5, B6, and B8, for both mixers,

27



containing the normalised density estimators, n̂l,t, introduced for the binning procedure in the

Methodology section. The drop size is recovered from the density estimators as a log-scale

normalised drop volume, log10(Vd/Vcap), where Vd is the volume of the dispersed drop and

Vcap denotes the volume of a spherical drop whose diameter corresponds to the capillary

length scale, λc =
√

σcl

(ρa−ρo)g . Accordingly, the drop sizes covered in this work lie in a range of

log10(Vd/Vcap) = [−4.5, 0.0] and [−7.25, −0.5] for the stirred and static mixer, respectively.

Following the binning procedure described earlier, the actual volumes corresponding to each

of the bins treated in this section are listed in Table 3. Lastly, the ensemble-based approach

implemented to quantify the model’s uncertainty is showcased using features ND and IA

from one testing case.

Table 3: Volumes of the dispersed entities corresponding to the size ranges presented in
Figure 12 and Figure 13.

Bin Stirred mixer Static mixer
λc = 0.0045[m] λc = 0.0030[m]

Bin edge Actual size Bin edge Actual size
log10(Vd/Vcap) [m3 × 10−8] log10(Vd/Vcap) [m3 × 10−8]

B3 [-3.50, -3.00] [1.54 × 10−3 , 4.86 × 10−3] [-5.75, -5.00] [2.54 × 10−6, 1.43 × 10−5]
B5 [-2.50, -2.00] [0.02, 0.05] [-4.25, -3.50] [8.04 × 10−5, 4.52 × 10−4]
B6 [-2.00 -1.50] [0.05, 0.15] [-3.50, -2.75] [4.52 × 10−4, 2.54 × 10−3]
B8 [-1.00, -0.50] [0.49, 1.54] [-2.00, -1.25] [0.01, 0.08]

Model generalisation: performance on training and validation data

Prior to analysing model performance on the testing sets, we first compare the performance

of both trained networks on the training and validation datasets, depicted in Figure 9 and

Figure 10. As displayed, the predicted values relevant to the training dataset align reasonably

well with the true data; in contrast, a deviation between predictions and the ground truth

slightly develops when looking at the validation set. An evident deviation at low values

(data point < 0.3) can be observed, not only for train and validation but also for testing
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(a) (b)

(c) (d)

Figure 9: LSTM-FC predicted vs. true data error dispersion plots for all 12 features considered
in this study. A ± 20 % deviation area is included. Sub-figures to the left ((a), (c)) showcase
training and validation data for stirred mixers, while those to the right ((b), (d)) illustrate
training and validation data for static mixers, respectively.

predictions (refer to Figure 11). Therefore, relevant discussion on this observation will be

included up next to avoid redundancy. In addition, to give a clear overview, the root mean

squared error (RMSE) and the coefficient of determination, R2, are computed and listed in

Table 4 to evaluate the training and validation performance. The consistently small values of

RMSE for both the stirred mixer (0.0571 training, 0.0577 validation) and static mixer (0.0321

training, 0.0467 validation), coupled with their marginal increase relative to the training
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(a) (b)

(c) (d)

Figure 10: LSTM Encoder-decoder predicted vs. true data error dispersion plots for all 12
features considered in this study. A ± 20 % deviation area is included. Sub-figures to the left
((a), (c)) showcase training and validation data for stirred mixers, while those to the right
((b), (d)) illustrate training and validation data for static mixers, respectively. Plot legends
are shared with Figure 9, and thus not included here to avoid redundancy.

dataset, suggest that the trained LSTM-FC model adeptly captures underlying patterns in

the dispersion dynamics and can generalise this knowledge to new data, indicating robustness

against overfitting and ensuring reliable predictions on unseen data. Similar performance can

be seen from the RMSE values for the LSTM Encoder-decoder, which is also supported by the

corresponding values of R2. From the dispersion clouds displayed in Figure 9 and Figure 10,

no major differences are apparent between the two architectures when examining the static
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mixer. On the contrary, the LSTM Encoder-decoder seems to provide a better-trained state

for the stirred vessel, as most of the sequences above 20% deviation are eliminated, especially

for the clean and low Bi < 0.1 cases. This observation holds for the validation set, where only

a small section is underpredicted beyond a 20% deviation for the encoder-decoder structure,

unlike the LSTM-FC which heavily over-predicts the surfactant-laden case.

Table 4: Evaluation metrics for model performance on training and validation data. The
values in the bracket refer to the corresponding metrics for datasets: (training, validation).

Metrics Stirred mixer Static mixer

LSTM-FC LSTM
Encoder-decoder

LSTM-FC LSTM
Encoder-decoder

RMSE (0.0571,0.0577) (0.0500,0.0502) (0.0321,0.0467) (0.0424,0.0491)
R2 (0.9516,0.9513) (0.9629,0.9630) (0.9853,0.9678) (0.9745,0.9644)

Model performance: prediction via rollout

This section dives into the model rollout predictions on the testing datasets for both mixing

systems and LSTM architectures. Similar to what we have shown for the training and

validation datasets, Figure 11 presents error dispersion plots for the testing cases, which

contain all 12 target scaled features (ND, IA and 10 bins). This figure offers a broad overview

of each model’s performance for all testing cases. However, it falls short when pinpointing the

specific features associated with a particular error cloud or region. This association can only

be achieved by correlating it with the subsequent figures showcasing the rollout predictions

for each feature (Figure 12 and Figure 13).

Starting with the LSTM-FC model in Figure 11−(b), the dots corresponding to the

surfactant-free case of Fine Pre-Mix (coloured light yellow) are mostly found above the black

solid parity line (y = x). This implies that the model is inclined to overestimate the dispersion

metrics for this particular setup, predicting a larger interfacial area, and more, larger dispersed

drops overall. We believe the overestimation is due to the trained LSTM failing to learn the
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(a) (b)

(c) (d)

Figure 11: Predicted vs true data error dispersion plots for testing datasets, with a ± 20 %
deviation area included. Sub-figures a) and c) showcase rollout prediction data dispersion
for the stirred mixer via FC and Encoder-Decoder architecture, while subfigures b) and d)
illustrate rollout prediction data for the static mixer via FC and Encoder-Decoder, respectively.

relationship between surfactant and the distribution of ND and IA, whereby the absence of

surfactant in the Fine Pre-Mix case naturally leads to markedly smaller ND and IA values

due to higher interfacial tension when compared to other surfactant cases.

Another example is the Alt 2 static mixer case in Figure 11−(b), where its predicted values

(coloured red-orange) are entirely underestimated, signifying that the distinct dispersion

performance patterns induced by an alteration in the mixer’s geometry, rather than a change
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(a) (b)

(c) (d)

(e)

(f)

Figure 12: Plots comparing the model target sequences (lines) and predicted sequences via
rollout procedure (dots) of LSTM-FC for both mixers. The results of predicted drop size
distribution are exemplified using B3, B5, B6 and B8 for both mixers ((e), (f)).
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in the chemical nature of the species (e.g., surfactant profile), is not learned properly. In

contrast, the predicted values via LSTM-FC for the stirred mixer cases are distributed over

both sides of the parity line y = x, as shown in Figure 11−(a), implying that there isn’t a

defined bias in the accuracy of the model. Figure 12 offers a detailed perspective on the

rollout predictions concerning each feature. In all cases, encompassing both mixers, noticeable

variations beyond ±20% are observed at low true data values (data point < 0.3). These

discrepancies predominantly align with early time-step predictions for any feature. This

deviation is most likely due to the sensitivity of DSD to perturbations in the total drop count

during the early stages of dispersion formation, especially at the edges of the distribution

(i.e., small or large drops). More discussion relevant to this will be presented along with

subsequent figures.

As mentioned previously, Figure 12 compares the target and predicted values for each

feature via LSTM-FC. The initial observation drawn from this figure indicates that the

predicted values for features ND and IA (at early times) exhibit a much better agreement

with the targets compared to that seen for the selected bins exemplified herein. This

corroborates our earlier assertion regarding the origin of the large deviations associated with

low-value true data. Moreover, the trained LSTM-FC correctly captures the hierarchy of the

stirred mixer’s cases for all features (see Figure 12−(a), (c), (e)), particularly at the early

time-steps of the predicted sequence. Taking ND as an example, the order, Cl: 8 Hz >

Bi = 0.002 > Bi = 1 is then reproduced for time-steps ∼ 50 − 200. However, the trained

LSTM-FC is unable to predict this ranking further down the time range, as displayed in

Figure 12−(a): the predicted ND for Cl: 8 Hz is lower than that for Bi = 0.002. This can

be attributed to the model’s inability to extract the correct physical knowledge from the

Cl: 8 Hz case, failing to recognise that this particular case has a higher impeller speed, thus

resulting in an extended duration of dispersed drop generation. A similar scenario can be seen

for the static mixer (see Figure 12-(b), (d), (f)) wherein the trained LSTM-FC is capable of

recovering the hierarchy at early times, but since the gap between the prior input information
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(a) (b)

(c) (d)

(e)

(f)

Figure 13: Plots comparing the model target sequences (lines) and predicted sequences via
rollout procedure (dots) of LSTM-FC for both mixers.The results of predicted drop size
distribution are exemplified using B3, B5, B6 and B8 for both mixers ((e), (f)).
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and the point where it is needed becomes larger, the model starts to perform poorly to some

degree.

The overall performance of the LSTM Encoder-decoder in terms of the stirred mixer is

comparable to that of the LSTM-FC (see Figure 11−(c)): except for the scattered cloud

seen at the initial steps, where most of the predicted values are located within the 20%

deviation area from the parity line y = x. However, obvious discrepancies arise from the Fine

Pre-Mix and Da = 1 (coloured purple) cases when dealing with the static mixer, whereas the

predicted values for other cases remain closer to the parity line y = x (see Figure 11−(d)).

As for the performance on each feature, Figure 13 proves that the capability of the LSTM

Encoder-decoder is similar to that of the LSTM-FC, correctly capturing the case hierarchy at

the early times. Furthermore, Figure 13−(b), (d), (f) clearly show the deviation highlighted

above for the static mixer (the case of Fine Pre-Mix) in terms of each feature. This provides

evidence to support the fact that the deviation is mainly caused by the poor performance

on the bins prediction. From these figures, we infer that the underestimated B3 and the

overestimated B5 and B6 correspond to the dots occur beyond ±20% in Figure 11.

From the discussion presented above, it is clear that the prediction accuracy is high

at early times and deteriorates subsequently for both the LSTM-FC and LSTM Encoder-

decoder; however, this occurs for different reasons related to the different architectures. As

described in the previous section, LSTM-FC is trained to map an entire output sequence

with its input, while LSTM Encoder-decoder learns to progressively generate the output

sequence; this could enable the LSTM Encoder-decoder to have a superior performance when

dealing with sequence generation (i.e., prediction via rollout herein) since the LSTM-FC has

not been trained to utilise the previous prediction for the generation of the next sequence.

Consequently, the LSTM Encoder-decoder is likely to perform particularly well given that

the dispersion dynamics underlying the data have been learned. For instance, as presented in

Figure 13−(c), the trained LSTM Encoder-decoder accurately predicts the increase in the

case of Cl: 8 Hz as well as the descending trend for Bi = 0.002 and Bi = 1.
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Nonetheless, additional observations from Figure 13 indicate that the trained LSTM

Encoder-decoder performs relatively poorly on some features (or cases), e.g., the ND

predictions exhibit deviations from their target values for various stirred mixer cases. Similarly,

for static mixers (e.g., see B5 in Figure 13−(f)), the case of Fine Pre-Mix deviates substantially

from its target, while the trend for Bialt4 = 0.01 is properly captured. These observations

suggest that the trained LSTM Encoder-decoder must be improved to achieve a better

understanding of the features and the mechanisms underlying the data presented in this work;

this could be achieved by training on larger datasets and further tuning the hyperparameters.

Although simply mapping between input and output sequences makes it comparatively easier

to train an LSTM-FC, its performance would be globally inferior to that of a well-trained

and finely-tuned LSTM Encoder-decoder; this is due to the feature evolution embedded in

the sequence in the latter, which is absent in LSTM-FC.

Figure 14 presents examples of the predictions of the DSD in the form of histograms

containing all the bins involved in the predictions. This figure, along with the rollout

predictions relevant to bins presented above, forms an integrated visualisation of model

performance concerning DSD prediction. For the case of stirred vessels, it can be seen

from Figure 12−(e) and Figure 13−(e) that the two models perform reasonably well on the

bins of Cl: 8 Hz, which agrees with what is shown in Figure 14−(a), (c) that the predicted

distribution of Cl: 8 Hz fairly matches its target. Likewise, from the latter figure, B8 for

the case of Bi = 1 is underestimated which is consistent with that displayed in the previous

plots.

To give an overview of the difference between the targeted and predicted distributions,

we computed the Wasserstein distance using the built-in functions from SciPy library in

Python, which is a measurement originating from studying optimal transport problems.59

Intuitively, if each distribution is treated as piles of soils, this metric quantifies the masses

and corresponding distance that must be moved around to turn one distribution into the

other; hence, this metric is also known as earth mover’s distance (EMD). It is ubiquitous
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(a) LSTM-FC: Stirred mixer (b) LSTM-FC: Static mixer

(c) LSTM Encoder-decoder: Stirred mixer (d) LSTM Encoder-decoder: Static mixer

Figure 14: Exemplified histograms presenting the predicted drop size distribution via LSTM-
FC ((a), (b)) and LSTM Encoder-decoder ((c), (d)) for both mixers. In the case of stirred
mixer, three test cases are shown for time-step t = 280: Bi = 1, Bi = 0.002 and Cl: 8 Hz,
whereas the results of static mixer are demonstrated using test cases, βalt4 = 0.6, β = 0.6 and
βpm = 0.9 at time-step t = 74. The numeric labels in the figure denote the corresponding
bins (B3, B5, B6 and B8) shown in Figure 12 and Figure 13.

in the field of statistical analysis to address the dissimilarity quantification between two

probability distributions (see a comprehensive review by Panaretos and Zemel).

In general, the EMD can be considered as the distance (or divergence) between two

distributions; hence, lower values of this score indicate higher similarity. With this in mind,

the information drawn from Figure 15 is that, initially, the predicted DSDs via both LSTM-FC

and LSTM Encoder-decoder tend to significantly deviate from the target; the deviation then

slowly diminishes with increasing time-step. This strongly supports our previous hypothesis

that the small amount of dispersed drops produced during the early stages of dispersion

formation gives rise to a "statistically unstable" distribution that is rather sensitive to small

changes in the drop count of each bin. In addition, the statistical instability could be
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(a) (b) (c) (d)

Figure 15: Temporal plots presenting the divergence between targeted and predicted drop
size distribution via LSTM-FC ((a), (b)) and Encoder-decoder ((c), (d)) for both mixers, using
metrics, Wasserstein distance.

inherently linked to the grid resolution of our simulations, which indicates that non-physical

drops are appearing or disappearing from the domain, causing stochastic irregularity in the

data. Recall that as shown in Figure 11, the poor performance related to bins at the early

stages of dispersion formation is mirrored by the widely spread dots in the lower left corner

of the figure. Nevertheless, with an increase in drop count, the trained models capture the

DSD more faithfully with a low level of dissimilarity as reflected by the EMD scores (< 0.2)

in Figure 15.

Uncertainty quantification

In this section, we present the uncertainty quantification of the two trained models, by

demonstrating the procedure using two features ND and IA of the test case Bi = 0.002 for

a stirred mixer and β = 0.6 for a static mixer.

The results shown in Figure 16 correspond to a comparison among the model target,

model prediction from an unperturbed input sequence, and the prediction interval region from

a perturbed input ensemble. The first observation from this figure is the different spread sizes

of the prediction interval region for the two model architectures. As illustrated previously,

perturbation noise is sampled from the distribution N (0, 0.042), which generates a spread of

the input ensemble with corresponding std. dev., σs.d. ≈ 0.04. However, the spread of the
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(a) (b)

(c) (d)

Figure 16: Uncertainty quantification plots, comparing the model target, model predictions
from unperturbed input and the ensemble prediction interval region, for LSTM-FC ((a), (b))
and Encoder-decoder ((c), (d)). The dots cloud displayed at the early times represents the
ensemble of perturbed input sequences.

prediction ensemble via LSTM-FC is narrower than that of the input ensemble. This suggests

a low level of sensitivity of the LSTM-FC to input noise. Meanwhile, an apparent deviation

of the target (solid line) from the spread is seen, particularly in the case of the stirred mixers;

in comparison, the spread relating to the static mixer captures the target trends for longer

periods.

A possible explanation of LSTM-FC’s improved performance for static mixers is that

more simulation cases and shorter data lengths are involved, which forms a relatively less

challenging learning task. As for the case of stirred mixers, wherever LSTM-FC must deal

with longer sequences, either larger training datasets and/or more a sophisticated model

is required for a better performance. In contrast, the LSTM Encoder-decoder presents

40



a wider prediction interval region for both mixers, which mirrors a higher sensitivity to

the added noise. Nonetheless, this wider spread correctly captures the target evolution of

features relevant to stirred mixers. Such an improvement in performance as well as the higher

sensitivity could be attributed to the sequential procedure of the LSTM Encoder-decoder

when generating an output sequence: the model is trained to learn the trend step-by-step;

therefore, fluctuations in feature values have a profound effect on the model prediction for

the next time-step.

(a) (b)

(c) (d)

Figure 17: Temporal plots comparing the evolution of spread size and model performance
(i.e., absolute residual between model prediction and target at each time-step, |ŷt − yt|).

Furthermore, we investigate the correlation between the spread size of the prediction

interval region and the model performance along the time axis; here, the model performance

is expressed in terms of the divergence of the prediction from its corresponding target at

each time-step, which is simply calculated as |ŷt − yt|. Pearson’s Correlation Coefficient

(PCC)61 is also computed to compare the strength and direction of the relationship between

the prediction and the associated target. As presented in Figure 17, in terms of the PCC
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(≥ 0.4), the LSTM-FC-based model performance for the features obtained from both mixers

is well captured by the spread size. Similarly, the spread size generated via the LSTM

Encoder-decoder in the case of the static mixer presents a fairly strong positive correlation

with the model performance indicated by a PCC ≥ 0.4. However, the PCC values relevant to

the stirred mixer are relatively low, especially for the feature ND, PCC=-0.03. Nonetheless,

related studies have suggested that researchers should not rely on the correlation coefficients

for identifying the relation between datasets,62,63 instead, it is essential to plot the data for

visual inspection.61,64 From this perspective, plots shown in Figure 17 provide an insight into

the temporal similarity between the spread size and the model performance. It can be seen

that, though the spread size does not mirror the exact amplitude of the model performance,

it can correctly capture the core trend of the latter. For instance, the exponential increase in

IA of stirred mixer (see Figure 17−(a)), and the subsequent increase following the reduction

in IA of static mixer (see Figure 17−(b)). More importantly, we note that the local extrema

of the model performance and spread size align (see Figure 17−(c)). Thus, the extrema of

the spread size signals the deviation of model predictions from the target. This is beneficial

when performing sequential prediction since the spread size could help to identify the point

where the accuracy of the model prediction begins to deteriorate.

From the above, we suggest that the spread size of the prediction interval region provides

an appropriate indicator of model performance and reliability along the sequence generation.

This is particularly valid in the case where the trained model is deployed to predict mixing

systems that had not been included in the training dataset and for which no access to the

model target, or ‘truth’, is possible.

Conclusions

The current study has demonstrated the application of Recurrent Neural Networks (RNN) to

predict the temporal behaviour of key dispersion performance metrics for complex multiphase
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mixing systems. Specifically, two Long-Short-Term Memory network architectures, LSTM-FC

and LSTM Encoder-decoder, have been finely trained and deployed to predict interfacial area

growth, drop count, and their size distribution for future time-steps. Taking advantage of

our previous work, the LSTM models developed herein have been trained with data obtained

from high-fidelity, three-dimensional, CFD simulations of two mixing systems, carried out for

stirred30,31 and static32,33 mixers. In particular, the LSTM model has been assigned the task

of learning and capturing the influence of varying physicochemical properties, operational

conditions, and mixer geometrical characteristics on dispersion performance. Concerning the

network architecture, the LSTM-FC has been taught to map a single long output sequence

from the input sequence alone, while the LSTM Encoder-decoder has learned to progressively

generate future output sequences based on its previous predictions.

We have presented the model performance in terms of the prediction of each dispersion

metric obtained for stirred and static mixers. For both model architectures, the prediction

accuracy is high at early times and subsequently deteriorates. We have reasoned this to the

nature of rollout procedure, wherein the entire dispersion metrics evolution are extrapolated

based solely on their initial behaviour during the early stages of the process. In addition, we

have demonstrated that it is easier to train an LSTM-FC due to its simplicity, despite, inferior

model performance has been seen, which is cause by that the feature evolution of embedded

in the sequence is absent. By contrast, the trained LSTM Encoder-decoder is capable of

recovering the dispersion dynamics that is incorrectly predicted when the trained LSTM-FC is

applied. However, we have suggested that the trained LSTM Encoder-decoder in the current

work must be improved since non-trivial deviation on some features is seen. In particular,

we present different methods to visualise the model performance relevant to the drop size

distribution. These methods include the temporal drop counts in each bin representing

a specific drop size range and the histogram of all bins at one time-step. Additionally,

Wasserstein distances have been computed to track the similarity between the predicted and

targeted distributions. With this score, we have shown the evident discrepancies occur at
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the early times, where the corresponding DSD is sensitive to the perturbation in the total

drop count due to its small value initially; hence, the deviation gradually diminishes with

increase in drop numbers. Lastly, we have proposed an ensemble-based procedure to quantify

the model uncertainty where we have further investigated the correlation between the spread

size of the prediction interval region and the model performance during prediction via rollout.

We have illustrated the high sensitivity of the LSTM Encoder-decoder when concerning

the added noise drawn from the same Gaussian distribution as LSTM-FC; meanwhile, the

prediction interval via the former verifies its robustness by correctly capturing the true data.

Moreover, throughout the correlation investigation, we suggest that the spread size could

serve as an appropriate indicator of the evolution of model reliability through the rollout.

Throughout this work, we have delineated a baseline procedure for data pre-processing,

re-conditioning and LSTM RNN deployment in the field of complex multi-phase mixing.

More importantly, we have implemented a system-agnostic framework capable of seamlessly

handling any time-series data with similar structures from other applications, regardless of

their origin (i.e., numerical data or experimental measurements), and performing analogous

temporal evolution predictions of key metrics. Thus, this study could significantly benefit

the chemical engineering community and industrial practitioners by introducing a cost-

effective yet robust alternative to the standard CFD modelling tools used nowadays. A

spectrum of additional hyperparameters not considered in this work could also affect the

model performance, such as the number of LSTM layers, different learning rate schedulers,

or dynamic teacher forcing (d.t.f.). Future work is suggested to keep exploring the optimal

configuration for the LSTM network and implementing variations in the model’s architecture.
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