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ABSTRACT 25 

Spreading time, the time that an impacting droplet attains the maximum wetting area on a 26 

solid surface, plays a critical role in many engineering applications particularly where heat 27 

transfer or chemical reactions are involved. Although the impact dynamics of a droplet 28 

significantly differ across the different spreading regimes depending on various collision 29 

parameters, it still remains unclear (i) how the spreading time changes for each spreading 30 

regime, and (ii) how the target curvature can affect the spreading time. In the present study, 31 

the spreading time during droplet impact on a spherical target is systematically studied at the 32 

three different spreading regimes for a wide range of impact parameters (Weber number, 33 

equilibrium contact angle, Ohnesorge number and droplet-to-target size ratio). The changes 34 

of spreading time depending on the impact parameters and underlying physical mechanisms 35 

are analyzed in detail at the level of three different spreading regimes. Our results show that 36 

the spreading time, proper time scales, dominant impact parameters and associated physical 37 

behaviors all significantly and non-linearly change across the three spreading regimes. An 38 

improved prediction model for the spreading time is also proposed for each regime, which is 39 

now based on only the controllable variables and has an explicit form. The effect of target 40 

curvature on the spreading time is further investigated, and finally, a data-driven prediction 41 

model is proposed to represent the complicated and non-linear nature of the spreading time 42 

broadly across the three spreading regimes. 43 

 44 

Keywords: droplet impact; spreading time; multiphase flow simulation; prediction model; 45 

data-driven analysis 46 
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I. INTRODUCTION 47 

 48 

Collisions of droplets with solid surfaces can be found not only in a broad range of 49 

modern technologies but also in everyday life [1,2]. Since droplet collision phenomena can 50 

play crucial roles in the performance of diverse engineering applications such as spray 51 

cooling and chilling [3], spray drying [4], wet-scrubbers [5], fluid catalytic cracking (FCC) 52 

[6], trickle-bed reactors [7], microfluidic-based encapsulation of biomaterials [8] and tablet 53 

coating [9], to name a few examples, their collision processes have naturally been of great 54 

interest across various fields of chemical, mechanical, pharmaceutical, food and bio 55 

industries [1,9-11]. In general, the collision behavior is dominated by a complicated 56 

competition and interaction among inertial, viscous, and capillary forces (sometimes 57 

including the gravitational force as well) at very small length and time scales [12,13]. 58 

For droplet impact problems with a solid surface much effort has focused on 59 

investigating the maximum spreading extent (normally characterized by the maximum 60 

spreading diameter) [14-17] and the spreading time [18-21]. The former measures “how 61 

much a droplet can spread over a target surface”, while the latter quantifies “how long it takes 62 

to reach the maximum spreading state”. Both quantities usually play critical roles in 63 

determining process performance and efficiency particularly in the context of controlling the 64 

droplet deposition process [1,12,19]. For example, the maximum spreading extent of a 65 

catalyst particle significantly affects the catalyst efficiency as well as the system performance 66 

of trickle-bed reactors [7] and the spreading time also plays an important role in collision 67 

processes where heat transfer (e.g., droplet solidification) [14] and/or chemical reactions 68 

(e.g., cracking reaction in the FCC system) [22] are involved. 69 

After Chandra and Avedisian’s work [23] which has initiated a series of energy-balance-70 
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based theoretical approaches for estimating the maximum spreading diameter of droplets 71 

numerous studies have been devoted to the spreading dynamics of droplets on a solid surface. 72 

Based on the concept of the energy-balance between the collision instant and the maximum 73 

spreading state Pasandideh-Fard et al. [24] proposed more refined length and time scales to 74 

evaluate the energy loss in the boundary layer where the viscous dissipation occurs and their 75 

approach has indeed provided a cornerstone for many later theoretical energy-balance-based 76 

approaches [25,26]. This type of analysis was also widely utilized for estimating the rebound 77 

criteria of bouncing droplets on a non-wettable surface [25] as well as the maximum 78 

spreading extent [23-26]. Afterward, Roisman [27] considered the full Navier-Stokes 79 

equations to estimate the flow field inside the droplet and proposed a semi-empirical model 80 

using the experimentally fitted data. Later, his model was experimentally demonstrated to be 81 

one of the most accurate models for the maximum spreading extent for a wide range of 82 

Weber number and surface wettability [14]. Wilderman et al. [17] presented an interesting 83 

analysis for high-speed drop impact problems. They showed that roughly one-half of the 84 

initial (impact) kinetic energy can be converted into surface energy owing to a universal head 85 

loss regardless of detailed impact conditions and energy dissipation mechanisms. More 86 

recently some other sources causing extra energy loss during the spreading stage of droplets 87 

have been found to affect the maximal spreading extent, e.g., residual kinetic energy in the 88 

form of vortical flow inside a droplet [16] or energy loss due to ‘interface relaxation’ near a 89 

solid surface [18]. Although there is still a debate on the maximum spreading extent [28], in 90 

general, scaling laws of We1/4 derived from momentum conservation [16] and We1/2 derived 91 

from energy conservation [29] have been experimentally shown to hold for the inviscid 92 

regime (for less viscous droplets) whereas a Re1/5 rule [30] has worked well for a viscous 93 

regime (for highly viscous droplets). 94 

There have also been several attempts to examine spreading dynamics for droplet 95 
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collision on curved surfaces such as a spherical target. Bakshi et al. [31] experimentally 96 

showed that the film thickness at the collision center undergoes three different phases: (i) 97 

initial drop-deformation, (ii) inertia-dominated and (iii) viscosity-dominated. The 98 

dimensionless film thickness profiles were collapsed on a single curve for the first and second 99 

phases. Malgarinos et al. [32] used volume-of-fluid (VOF) simulation to study the problem of 100 

drop collision on spherical targets. They investigated the boundary separating the coating 101 

from the rebound regime, the film thickness, and the wetted area. Afterward, they further 102 

performed extensive VOF simulations to study drop impact on a spherical particle including 103 

phase change and reaction phenomena in a high temperature environment (T ≥ 800 K) [33]. 104 

Zhang et al. presented two-dimensional [34] and three-dimensional [35] Lattice-Boltzmann 105 

simulations. They examined the effects of Weber and Reynolds numbers on the film thickness 106 

at the collision center, and their simulation results reproduced Bakshi et al.’s [31] 107 

experimental observations well. Liang et al. [36] experimentally studied drops impacting on 108 

wetted spherical targets, and they showed the drop-to-target curvature ratio played a critical 109 

role in not only the spreading characteristics but also determining the splashing threshold. 110 

Mitra et al. [37], Liu et al., [38], and Khurana et al. [39] proposed energy-balance-based 111 

prediction models for evaluating the spreading extent on a spherical surface and their models 112 

reproduced their experimental observations well. Yoon and Shin [40] also proposed scaling 113 

laws and an empirical correlation for the maximum spreading diameter of a droplet colliding 114 

with a spherical surface for a wide range of liquid viscosity. More recently, Yoon et al. [41] 115 

proposed a data-driven prediction model for the maximum spreading that can be applied to 116 

both a flat surface and a spherical surface. Although these studies reviewed above have 117 

provided useful relations to estimate the maximum spreading extent as well as have notably 118 

shed light on our understanding of the physical mechanisms of spreading droplets, they have 119 

mainly focused on the maximum spreading extent itself rather than on the spreading time. 120 
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We now review studies in the context of the spreading time which has been relatively 121 

less well-explored compared to the maximum spreading extent. Although it has long been 122 

understood that the contact time of a droplet is limited by the Rayleigh oscillation time [42] 123 

which is a function of the drop’s density, diameter and surface tension coefficient, the energy-124 

balance-based approaches, at the very early stage, simply approximated the spreading time τ 125 

ignoring the effect of surface tension. Chandra and Avedisian [23] considered τ to be τ = Dd / 126 

Vini, where Dd and Vini are the initial droplet diameter and the impact velocity, respectively. 127 

This is indeed the advective characteristic time scale which has normally been used to 128 

nondimensionalize the physical time scale [31], and also can be interpreted as the required 129 

time for a droplet to reach zero height from its initial diameter, Dd, at a constant impact 130 

velocity Vini. Pasandideh-Fard et al. [24] modified the spreading time to be τ = 8Dd / 3Vini 131 

based on a simple geometric assumption and mass conservation and their model has been 132 

widely used in many other theoretical studies [26,43]. Recently, Antonini and Amirfazli [14] 133 

experimentally showed that the spreading time τ is considerably affected by surface 134 

wettability. Lee et al. [44] also presented significant effects of liquid properties on τ. They 135 

replaced the initial drop diameter (Dd) in Pasandideh-Fard et al.’s model [24] with Dm (where 136 

Dm is the maximum spreading diameter), suggesting an empirical model, τ = b(Dm/Vini), 137 

where b is the ratio of the surface tension coefficient between a working droplet and a water 138 

droplet. Huang and Chen [18] and Wang et al. [45] also adopted a similar spreading time as 139 

the model of Lee et al. [44]. Lin et al. [19] presented a remarkable experimental study for the 140 

spreading time and systematically analyzed the effects of various collision parameters (e.g., 141 

impact velocity, liquid properties and surface wettability) on τ for a very wide range of 142 

collision conditions. They also proposed a new empirical model for the spreading time as a 143 

function of Weber number, i.e., τ* = 0.92We-0.43. Here, τ* is the rescaled spreading time using 144 

a modified capillary time scale (ρDm3/8σ)0.5 based on the maximal spreading diameter, Dm, 145 
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where ρ and σ are the density of a droplet and the surface tension coefficient, respectively. Du 146 

et al. [21] also proposed a similar empirical model (τ* = 1.47We-0.44) as Lin et al.’s model 147 

[19]. More recently, Aksoy et al. [20] showed the effect of liquid viscosity on the spreading 148 

time and proposed an empirical model as a function of both Weber and Reynolds number, i.e., 149 

τ* = 2We-0.45Re-0.09. 150 

Even considering the numerous studies heretofore undertaken, it still remains difficult to 151 

comprehensively understand how the spreading time of a droplet can be affected by various 152 

collision parameters for a wide range of impact parameters. In particular, one can find 153 

significant knowledge gaps as follows: 154 

 155 

(i) It is well-known that drop spreading dynamics vary significantly across the 156 

different spreading regimes. For example, a drop’s physical behavior and its 157 

maximum spreading extent change considerably across inviscid and viscous 158 

regimes [16,29,30]. However, it is still unclear how the spreading time (τ) 159 

changes for different spreading regimes, because the existing studies have usually 160 

studied the global behavior of spreading time at a general level, not focused on 161 

detailed changes and associated physical mechanisms at the level of each 162 

different spreading regime.  163 

 164 

(ii) Although the significant effects from impact parameters (e.g., We, Re, surface 165 

wettability, etc.) on the spreading time have been evidently demonstrated by 166 

many experiments [14,18-20,44], it is not easy yet to model the spreading time 167 

using those impact parameters. All recent scaling laws (or empirical models) 168 

reviewed above [18-21,44,45] have still been a function of the maximum 169 

spreading diameter (Dm) which is usually unknown. Since the effects of impact 170 
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parameters are already reflected in Dm [14-17,25,27], Dm cannot be considered as 171 

a controllable independent variable to model τ resulting in the limitation of direct 172 

“physical interpretation” of relations between the impact parameters and the 173 

spreading time. In addition, the existing models [18-21,44,45] cannot be 174 

explicitly solved due to the multiple unknown variables (i.e., the maximum 175 

spreading diameter and the spreading time) leading to inconvenience for users. 176 

 177 

(iii) The effect of surface curvature on the spreading time has not been systematically 178 

investigated so far. Although a few recent numerical studies [46,47] have 179 

demonstrated that the surface curvature can affect the spreading time of the 180 

droplet collision system, it is still unclear that how the spreading time changes 181 

depending on the surface curvature for different spreading regimes. In addition, 182 

to the best of our knowledge, there has not yet been a prediction model for the 183 

spreading time which can consider the effect of surface curvature. 184 

 185 

In this study, we expand our previous work [41] which examined the maximum 186 

spreading extent, now focusing on the systematic investigation of the spreading time which is 187 

another important design parameter in the droplet collision system. Based on our verified 188 

computational framework, effects of important impact parameters (i.e., collision velocity, 189 

surface wettability, liquid viscosity, surface tension and surface curvature) on the spreading 190 

time are quantified for a wide range of impact parameters. In particular, detailed changes in 191 

the spreading time and associated underlying mechanisms are analyzed for three different 192 

spreading regimes to better understand the complicated physical behaviors. A new prediction 193 

model for the spreading time using only controllable independent variables is presented for 194 

each regime, and a data-driven prediction model for the entire spreading regime is also 195 
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proposed broadly covering all ranges of impact parameters considered in the present study.  196 

The remainder of the current paper is organized as follows: Section II provides a brief 197 

introduction of the simulation methods used herein. Section III quantitatively and 198 

systematically examines the spreading time of a droplet collision system. Physical analysis 199 

and prediction models are also presented in this section. The major findings are summarized 200 

in Section IV. 201 

 202 

II. COMPUTATIONAL FORMULATION 203 

 204 

Since we primarily focus on understanding the physical characteristics of the spreading 205 

time, and have utilized the same computational framework as in our previous studies 206 

[40,41,48,49], we provide here a brief introduction of our numerical methods used in this 207 

study rather than a fully detailed explanation. For more algorithmic details and relevant 208 

techniques on our simulation methods, and for our various benchmark tests including grid 209 

convergence characteristics, readers can refer to our previous work [40,41,48,49]. Note also 210 

that our computational framework has been extensively applied to diverse droplet collision 211 

cases for various types of solid surface including flat substrates [49], spherical objects 212 

[40,41,48], cylindrical targets [50] and has also been streamlined (using an adaptive-mesh-213 

refinement approach [51]) and parallelized [52]. 214 

For incompressible flows the governing equations can be applied to all three phases 215 

(solid, liquid and gas) and are solved on a fixed Cartesian (Eulerian) grid as a single-field 216 

formulation: 217 

 218 

  (1) 219 0Ñ× =u
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 220 

  (2) 221 

 222 

where u, P and g are the velocity vector, the pressure, and the gravitational acceleration, 223 

respectively. ρ is the density and μ is the viscosity. The surface tension force F is considered 224 

only at the phase (gas-liquid) interface and can be modeled by the following hybrid 225 

representation based on the continuum-surface-force (CSF) formulation [53]:  226 

 227 

  (3) 228 

 229 

where κH is the curvature field. Note that I is the indicator function which has the 230 

characteristics of the Heaviside function, varying from 0 (zero) in one phase (liquid droplet) 231 

to 1 (one) in the other phase (ambient air). 232 

The physical properties of both phases (i.e., the ambient air and the liquid droplet) can 233 

also be assigned by using the indicator function I as follows:  234 

 235 

  (4) 236 

 237 

  (5) 238 

 239 

Here, the subscript “d” denotes droplet, whereas “a” denotes air. Note that this common 240 

approach has been broadly applied to various multiphase-flow simulations and more detailed 241 

techniques dealing with the surface tension force and the physical properties near the gas-242 

liquid phase interface can be found in Unverdi and Tryggvason [54] and Brackbill et al. [53]. 243 

( )TP
t

r r µ¶é ù+ ×Ñ = -Ñ + +Ñ× Ñ +Ñ +ê ú¶ë û

u u u g u u F

H Isk= ÑF

( )d a d Ir r r r= + -

( )d a d Iµ µ µ µ= + -
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Our dynamic contact angle modeling technique is given in Appendix A, and further details of 244 

the discretization of the governing equations, time-stepping, and other solution techniques 245 

used in the present study can also be found in Yoon et al. [41] and Yoon and Shin [48]. 246 

One of the most essential algorithms for this type of multiphase-flow simulation is an 247 

interface tracking method. Here we use the level contour reconstruction method (LCRM) [55-248 

57] to track the gas-liquid phase interface. The LCRM is a hybrid method benefitting from 249 

two of the most well-established and popular interface tracking methods, i.e., level set [58] 250 

and front tracking [54]. In the LCRM the phase interface is basically represented by using 251 

(Lagrangian) moving marker elements (lines in 2D simulations and triangles in 3D 252 

simulations, as in the original front tracking method) but the moving elements are re-meshed 253 

using the distance function which is the key feature of the level set method. Such a 254 

reconstruction procedure can allow us to avoid the algorithmic complexity of dealing with the 255 

connectivity among the moving interface elements which is the most well-known 256 

shortcoming of the original front tracking method. Note that each moving element can always 257 

be implicitly (naturally) interconnected without any further artificial connection technique 258 

because the reconstruction procedure is performed at each boundary between cells (i.e., at 259 

cell faces) on the fixed Cartesian grid. Note also that the LCRM retains the tracking 260 

capability of the original front tracking method (i.e., accurate representation of the phase 261 

interface using moving markers) while avoiding the complex algorithmic difficulties in 262 

handling the topology changes (e.g., deformation, pinch-off or coalescence of the phase 263 

interface). For more details on the LCRM readers can refer to Shin and Juric [55,56]. 264 

Figure 1 illustrates the simulation geometry and boundary conditions used in this study. 265 

All simulations are performed in a (two-dimensional) axi-symmetric domain. The axi-266 

symmetric boundary condition is set for the left boundary whereas open boundary conditions 267 

are set for the right, upper and lower boundaries. The lengths of the physical domain are set 268 
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as RL = 7.5 (in the radial r direction) and ZL = 20 (in the axial z direction) times the droplet 269 

radius, respectively, which are sufficiently large compared to the size of the droplet. Note that 270 

near the splashing threshold [59,60] the droplet rim may exhibit considerable asymmetric 271 

behavior along the circumferential direction (e.g., fingering or cusp of lamella [12,13]). 272 

Therefore, we set the simulation conditions sufficiently below the splashing threshold 273 

(specific conditions will be described later) to ensure that our axi-symmetric formulation can 274 

be a reasonable approach to reducing the necessary computational resources [41,51]. A 275 

droplet impacts onto a stationary spherical target at an initial impact velocity, (Vini) and Ds is 276 

the diameter of the spherical target where the subscript “s” denotes the target surface.  277 

 278 

III. RESULTS AND DISCUSSION 279 

 280 

The spreading dynamics of a droplet on a solid surface is primarily dominated by a 281 

complicated time-and-space dependent interplay among inertial, viscous, and capillary effects 282 

[12,13] and to characterize their relative importance, three non-dimensional variables, i.e., the 283 

Weber number (We = ρdVini2Dd/σ), the Reynolds number (Re = ρdViniDd/μd) and the 284 

Ohnesorge number [Oh = μd/(ρdσDd)0.5] have usually been used. Because Oh can also be 285 

represented by using We and Re (i.e., Oh = We0.5/Re) the spreading dynamics can basically 286 

be characterized by two of these numbers. Here we use We and Oh as impact parameters with 287 

two other variables, i.e., the equilibrium contact angle (θeqi) and the droplet-to-target size 288 

ratio (Ω) which characterize surface wettability and the curvature of the target surface, 289 

respectively.  290 

Three characteristic time scales are considered, i.e., the advective time, ta = Dd/Vini 291 

[30,61], the capillary time, tc = (ρDd3/8σ)0.5 [16,62], and the viscous time. tv = μdDd/σ [16,62]. 292 

The physical time scale, t, can be non-dimensionalized by the three characteristic time scales 293 
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above and the non-dimensional advective, capillary, and viscous time scales are denoted by 294 

ta* (ta* = t / ta), tc* (tc* = t / tc), tv* (tv* = t / tv), respectively. 295 

To sufficiently cover the broad range of impact parameters, and to systematically 296 

examine the effects of impact parameters on the spreading time, we consider a total of 2400 297 

collision cases. The droplet diameter and the density are fixed at Dd = 2 mm and ρd = 998.2 298 

kg/m3, respectively. The physical properties of the gas phase (ambient air) and the surface 299 

tension coefficient are also fixed (ρa = 1.2 kg/m3, μa = 0.000018 N s/m2, and σ = 0.0728 N/m). 300 

Four collision parameters, i.e., We, Oh, θeqi and Ω are varied by controlling the impact 301 

velocity (Vini), droplet viscosity (μd), equilibrium contact angle (θeqi) and the diameter of the 302 

target (Ds), respectively. The splashing threshold is usually described by We and Oh [59,63], 303 

and splashing can be observed more easily on a small spherical target compared to that on a 304 

flat substrate [63]. Since splashing can occur near We ~ 150 – 160 if Ω ~ 1/4 – 1/2 (for 305 

millimetric water drops, Oh ~ 0.0026) [48,63], we consider a range of Weber number below 306 

110 (1 ≤ We ≤ 110) to ensure that the collision outcomes would not fall into the splashing 307 

region. Therefore, a total of 12 cases of We (i.e., We = 1, 2, 4, 6, 8, 10, 20, 30, 50, 70, 90, and 308 

110) are selected (the initial impact velocity Vini is varied from 0.190 to 2.003 m/s).  309 

Also, we considered a broad range of Oh number (0.0013 ≤ Oh ≤ 0.7869), a total of 10 310 

cases of Oh (i.e., Oh = 0.0013, 0.0026, 0.0052, 0.0104, 0.0262, 0.0525, 0.1049, 0.2620, 311 

0.5246 and 0.7869) are selected (the droplet viscosity μd is varied from 0.0005 to 0.3 N s/m2). 312 

Note that such a range of droplet viscosity considered herein corresponds to a range of 0.5 – 313 

300 times the viscosity of a water droplet which covers a range of Oh of most practical 314 

interest among diverse engineering fields, e.g., gasoline (Oh ~ 0.0018), water (Oh ~ 0.0026), 315 

ethyl alcohol (Oh ~ 0.0063), squalene (Oh ~ 0.05), and printable ink (Oh ~ 0.1–1.0) with the 316 

given droplet diameter (2 mm) [64,65]. 5 cases of θeqi (i.e., θeqi = 20°, 55°, 90°, 125° and 317 

160°) are also selected to cover a wide range of surface wettability from hydrophilic to 318 
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(super) hydrophobic surfaces. 319 

The impact physics on a spherical target is practically identical to that on a flat substrate 320 

if a droplet collides onto a sufficiently large spherical target which has a diameter 10 times 321 

larger than the droplet (i.e., Ω ≤ 1/10) [38,47]. Note that this assumption has been 322 

experimentally [38] and numerically [40,41] confirmed. Conversely, collision dynamics can 323 

differ greatly on a sufficiently small spherical target because a target can be fully coated by 324 

the droplet. In this case the typical maximum spreading state cannot be observed and full 325 

coating can usually be observed where Ω ≥ 1/1.5 [39,48]. Therefore, we here examine the 326 

effect of target size between those two thresholds (1/10 ≤ Ω ≤ 1/1.5) and 4 cases of the 327 

droplet-to-target size ratio (i.e., Ω = 1/10, 1/4, 1/3, 1/2) are selected.  328 

As a result, a total of 2400 collision cases (12 Weber numbers, 10 Ohnesorge numbers, 5 329 

surface wettabilities and 4 droplet-to-target size ratios) are considered in the current study. 330 

This large dataset will also be used to train a deep neural network to formulate a data-driven 331 

prediction model as a non-linear regressor as well as to systematically examine the effects of 332 

4 collision parameters (We, Oh, θeqi and Ω) on the physical behavior of the spreading time. 333 

For more details of the simulation settings readers can also refer to our previous study 334 

[40,41]. 335 

 336 

A. Review of typical spreading dynamics 337 

The schematic diagram in Figure 2 summarizes the different spreading regimes for the 338 

droplet-solid collision system depending on its physical behavior. If a droplet collides onto a 339 

solid surface with sufficiently high inertia, splashing can occur where tiny re-atomized 340 

droplets are generated [12,13]. It has been found that higher We and lower Oh normally 341 

promote splashing [59] but the detailed threshold for the onset of splashing can also be 342 

affected by many other collision environments, e.g., surface roughness [63], target curvature 343 
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[63] and ambient gas pressure [60], etc. Conversely, if a droplet impacts onto a solid surface 344 

with very low inertia compared to surface tension, i.e., at very low Weber number (We ≤ 1), a 345 

droplet can behave like an elastic ball, sometimes bouncing off a solid surface numerous 346 

times [66]. This region is the so-called elastic regime. 347 

Between those two thresholds (i.e., above the elastic threshold and under the splashing 348 

threshold), in general, a droplet spreads over a solid surface and then reaches a maximum 349 

spreading state. Afterward, the droplet can retract and is eventually deposited on a surface (or 350 

can also bounce off a surface depending on surface hydrophobicity) [12,13]. Such a 351 

spreading regime can typically be categorized into the following three sub-regimes depending 352 

on the underlying physical mechanisms: (i) capillary-driven spreading at relatively low 353 

Weber number [41,61], (ii) inertia-driven but capillary-limited (inviscid) at high We and low 354 

Oh [16,40,62] and (iii) inertia-driven but viscous-limited at high We and high Oh [16,40,62].  355 

If We is sufficiently small (i.e., We on the order of 100), spreading dynamics is primarily 356 

driven by capillary effects acting on the three-phase triple contact line [61,67,68]. At such a 357 

capillary-driven spreading regime (i.e., regime 1 in Fig.2, also denoted as “CD regime” 358 

hereafter), surface wettability and the associated wetting nature can play more significant 359 

roles in the spreading process rather than inertial effects due to the low Weber number 360 

[18,41]. At a very early stage of contact the apparent contact angle (θap) is nearly 180° which 361 

is far from its equilibrium contact angle (θeqi). Therefore, the capillary force which can be 362 

scaled as Fc ~ σRw(θap – θeqi) (where Rw is the contact radius) starts to act near the contact line 363 

and drive the spreading process. Note that this capillary effect can make a droplet spread over 364 

a solid surface even if the initial collision velocity is zero and it has also been experimentally 365 

[15] and numerically [41] confirmed that the maximum spreading extent of millimetric 366 

droplets can be larger than the initial droplet diameter in cases of zero impact velocity. In 367 

Fig.2 the CD regime is indicated by the blue region. 368 
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If We is sufficiently large [i.e., We ≥ O(101)] but Oh is small [i.e., Oh ≤ O(10-2)], the 369 

spreading process is primarily governed by inertial effects but is terminated by the capillary 370 

limit [16,40,62]. At this inertia-driven but capillary-limited (inviscid) regime (i.e., regime 2 in 371 

Fig.2, also denoted as “IC regime” hereafter), the effects of surface wettability and viscous 372 

dissipation play minor roles in the spreading process, due to the high We and low Oh 373 

numbers. In other words, a droplet can spread over a surface until the interfacial deformation 374 

is no longer available. The spreading dynamics in the IC regime can also be characterized by 375 

the ejection of a thin liquid sheet (i.e., jetting lamella) at the initial stage [69], and 376 

considerable deformation of the leading edge outer rim can be expected during the 377 

subsequent spreading stage [27,40,70]. The maximum spreading extent can be scaled by the 378 

Weber number, and We1/4 [16,40,62] and We1/2 [29] rules have been shown to work well. In 379 

Fig.2 the IC regime is indicated by the red region. 380 

On the other hand, if both We and Oh are sufficiently large [i.e., We ≥ O(101) and Oh ≥ 381 

O(10-2)], the spreading process is primarily governed by inertial effects but is terminated by 382 

the viscous limit [16,40,62]. At this inertia-driven but viscous-limited spreading regime (i.e., 383 

regime 3 in Fig.2, also denoted as “IV regime” hereafter), the effect of viscous dissipation 384 

plays a significant role whereas the effect of surface wettability is still negligible due to the 385 

high We and Oh numbers. In other words, a droplet can spread over a surface until all the 386 

initial impact (kinetic) energy is dissipated by viscous damping. No lamella ejection is 387 

expected in this viscous regime [19] owing to the strong viscous resistance which hinders the 388 

interfacial deformation. The maximum spreading extent can be scaled by the Reynolds 389 

number and a Re1/5 rule has been found to hold well [16,29,40,62]. In Fig.2 the IV regime is 390 

indicated by the green region.  391 

Note that, in the present study, we focus on these three spreading regimes (i.e., CD, IC, 392 

and IV regimes). The other collision regimes (elastic regime and splashing regime) are 393 
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beyond the current scope due to their different collision phenomena and different area of 394 

interest among the scientific communities. 395 

Figure 3 depicts the typical spreading processes of droplets for the three different 396 

spreading regimes summarized in Fig.2 above. The morphological evolutions of spreading 397 

droplets for the CD, IC, and IV regimes are presented in Fig.3(a), (b), and (c), respectively. 398 

Note that the (non-dimensional) advective time scale (ta*) is used for all cases in Fig.3, since 399 

here we simply focus on describing the typical spreading processes rather than addressing 400 

their detailed physical interpretations. Note also that the collision cases where Ω = 1/10 401 

which can reasonably be regarded as a flat substrate [38,47] are considered in Fig.3 due to its 402 

generality. As seen in Fig.3(a), the capillary effect acting near the contact line drives the 403 

spreading process for the CD regime. The upper-part of the droplet can nearly maintain its 404 

spherical shape owing to the low Weber number (low impact velocity), whereas a capillary 405 

wave is formed above the contact line due to the local interfacial curvature [see ta* = 0.34 in 406 

Fig.3(a)] [18,19,68]. As the capillary waves propagate to the central part of the droplet, the 407 

droplet shows a staircase-like pyramidal structure [18,19,68] without significant interface 408 

deformation (0.34 ≤ ta* ≤ 0.50). After the maximum spreading state, the oscillatory motion of 409 

the central part is observed in the vertical direction and then the droplet reaches an 410 

equilibrium state (0.50 ≤ ta* ≤ 5.00). 411 

In the IC regime, as seen in Fig.3(b), a thin liquid sheet (lamella) is ejected above the 412 

solid surface due to the strong inertial effect overwhelming the surface tension without 413 

significant viscous resistance [see ta* = 0.25 in Fig.3(b)]. The droplet rapidly spreads over the 414 

surface and the thin lamella continues consuming liquid mass, forming a thick rim at the 415 

leading edge of the lamella (0.80 ≤ ta* ≤ 1.74) [27,40,61,70]. As the lamella spreads on a 416 

surface, the leading edge of the lamella is detached from the surface due to its strong radial 417 

motion at ta* = 0.80. After the maximum spreading state, the droplet starts its retraction 418 
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motion, driven by the capillary effect, to reduce the increased surface energy during the 419 

spreading stage (1.74 ≤ ta* ≤ 8.00). 420 

In the IV regime, as explained above, no notable lamella ejection is observed [19]. The 421 

interfacial deformation is significantly hindered by the strong viscous damping. After the 422 

maximum spreading state (ta* = 0.98), the central part of the droplet slightly and slowly rises 423 

again, reaching the equilibrium state, but no meaningful recoiling motion is seen in terms of 424 

its wetted area. Note that all these results showing the evolutions of the droplet morphologies 425 

for the three spreading regimes depicted in Fig.3 are consistent with the experimental 426 

observations of Lin et al. [19]. 427 

Figure 4 quantifies the temporal evolution of the spreading extent characterized by the 428 

non-dimensional spreading diameter β* (β* = β/Dd where β denotes the arc length of the 429 

droplet in contact with a solid target, see the inset in Fig.4) of the droplets for the three 430 

collision cases shown in Fig.3. Note that, for the CD and the IC regimes, detecting the 431 

spreading time with the maximum value of β* can be straightforward because the droplet 432 

starts its recoiling motion soon after the maximum spreading state (see black solid line and 433 

blue dashed line). The corresponding time for the maximum value of β* is visually evident. 434 

Conversely, as shown in Fig.3(c), usually no obvious recoiling stage occurs for the IV regime 435 

due to the high viscous resistance (see red dotted line in Fig.4). In this case, detecting the 436 

spreading time can be quite confusing and even a very small disturbance in β* can lead to a 437 

critical bias for measuring the spreading time. Therefore, to avoid such a complexity, the time 438 

when a droplet attains 95 % of the maximum value of β* is defined as the spreading time as 439 

marked by three triangles in Fig.4 (see also green arrow). Note that, hereafter, the non-440 

dimensional forms of the spreading time are denoted by τa (if the advective time scale is 441 

used), τc (if the capillary time scale is used) and τv (if the viscous time scale is used). 442 

 443 
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B. Validations 444 

In the above subsection, we addressed the typical spreading dynamics for the three 445 

different spreading regimes. Before we start analyzing the spreading time for each regime in 446 

more detail in this subsection, we validate our simulation method by comparisons with 447 

existing experimental results to check its capability for simulating the droplet collision 448 

phenomena in terms of the spreading time.  449 

Figure 5 compares our simulation results with the experimental data of Mitra et al. [2] 450 

and Banitabaei and Amirfazli [71] focusing on the collision behavior on spherical targets for 451 

a broad range of We (We = 0.9 – 155.5). First, Fig.5(a) depicts the temporal variation of β* 452 

and the morphological evolution of the droplet for the low Weber number case (We = 0.9). 453 

The insets in Fig.5(a) shows the interfacial shapes captured by the experiment (on the right 454 

side of each panel) [2] and by the current simulation (on the left side of each panel) at three 455 

different time instants (ta* = 0.24, 0.47, and 0.71). As seen, our simulation result shows a 456 

good agreement with the experimental observation. Fig.5(b) depicts the temporal variation of 457 

the non-dimensional film thickness, h* [h* = h/Dd, where h is the liquid film thickness 458 

measured on the impact center, see the inset on the lower-left corner in Fig.5(b)] and the 459 

morphological evolutions of the droplet for the high Weber number case (We = 155.5). The 460 

other insets in Fig.5(b) show the interfacial shapes captured by the experiment [71] and by 461 

the current simulation at four different time instants (ta* = 0.30, 0.60, 1.05 and 1.95). Again, 462 

our simulation result shows a good agreement with the experimental observation. Since the 463 

liquid film thickness is one of the most sensitive parameters to the mesh size in this type of 464 

numerical simulations [72], we here present our grid-convergence test result as well in 465 

Fig.5(b). As seen in the dashed gray box, our simulated h* almost converges at 32 CPR (cells 466 

per radius) as in our previous study [48,51]. Overall, our simulation result shows an excellent 467 

agreement with the experimental result [71] in terms of both qualitative and quantitative 468 
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comparisons. Note also that all simulation cases presented in the current study have been 469 

performed with 64 CPR to be on the safe side. 470 

In figure 6 we further validate our simulation results focusing on the quantification of the 471 

spreading time for a broad range of We and Oh. Fig.6(a) depicts the non-dimensional 472 

spreading time, τa, for the low Oh case (Oh = 0.0026 for a water drop). As seen, our 473 

simulation result is consistent with the experimentally measured data of Huang and Chen 474 

[18]. A small deviation can be attributed to the difference of the definition of spreading time 475 

(i.e., we defined the spreading time as the time that a droplet attains 95% of the maximum 476 

spreading extent. See Fig.4 and its explanation). In Fig.6(b), we compare the simulated τa 477 

with the existing numerical result [21] and empirical correlation [19] for the high Oh case 478 

(Oh = 0.62 in the case where the droplet is 240 times the viscosity of a water drop). Our 479 

result again shows an excellent agreement with the existing results [19,21].  480 

Further validation test results for drop impact problems are also extensively provided in 481 

Appendix B, which were presented in our previous study. From Figs.5 – 6 and Appendix B, 482 

we can conclude that our simulation methods used in this study can reasonably reproduce the 483 

experimental data for a wide range of collision parameters in the context of both qualitative 484 

and quantitative comparisons. Note that the current numerical framework has been widely 485 

applied to various droplet-solid collision problems and has been thoroughly validated against 486 

many existing experimental data [40,41,48,49,51]. Note also that the impact parameters 487 

considered in our current and previous validation tests reasonably cover the practical 488 

conditions used in the current study (0 ≤ We ≤ 110, 20° ≤ θeqi ≤ 160°, 0.0013 ≤ Oh ≤ 0.7869 489 

and 1/10 ≤ Ω ≤ 1/2). 490 

 491 

C. Effects of collision parameters on the spreading time and prediction 492 

models 493 
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We now analyze the spreading time for the three different spreading regimes addressed 494 

above, i.e., the capillary-driven (CD), the inertia-driven but capillary-limited (IC) and the 495 

inertia-driven but viscous-limited (IV) regimes in more detail and present a prediction model 496 

for each regime. Note that the collision cases for a flat surface (Ω = 1/10) are chosen first for 497 

demonstrating our results owing to its generality. Then we further extend our analysis 498 

considering the effect of the droplet-to-target size ratio (Ω). 499 

We first examine the spreading time for the CD regime (We ≤ 101). At this low We 500 

region the spreading dynamics is primarily governed by its wetting nature and the associated 501 

capillary effect where surface wettability plays a dominant role. Therefore, the capillary time 502 

scale, tc*, can be an appropriate time scale for analyzing physical characteristics of the 503 

spreading time in this regime [16,19]. 504 

Figure 7(a), (b), and (c) depict the effects of We, θeqi and Oh on the spreading profiles, 505 

respectively. As seen in Fig.7(a), the spreading time (τc) basically decreases as We increases 506 

whereas the maximum value of β* (denoted as β*max hereafter) increases with We. This result 507 

is natural because higher spreading velocity can be attained at the high We cases [19], thus a 508 

shorter spreading time is needed. Note that this is also consistent with the experimental 509 

observation of Lin et al. [19]. For the cases shown in Fig.7(a), τc , where We = 10 (τc = 0.69), 510 

is about 21 % shorter compared to that for the case where We = 2 (τc = 0.87). In Fig.7(b), as 511 

expected, the dominant effect of the surface wettability is seen. The droplet can spread for a 512 

longer time over the surface as θeqi decreases (i.e., as the surface becomes hydrophilic) and 513 

can attain a larger spreading extent as well owing to the strongly wettable nature of the 514 

hydrophilic surface. This result is also consistent with the existing experimental data [19,43]. 515 

For the cases shown in Fig.7(b), τc, where θeqi = 20° (τc = 1.38), is almost double the case 516 

where θeqi = 160° (τc = 0.70). 517 

It is interesting to observe the effect of Oh on τc. As depicted in Fig.7(c), for relatively 518 
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low Oh cases (Oh ≤ 0.0104, see 4 dashed lines), no meaningful effect of Oh is seen because 519 

the spreading process is primarily driven by the capillary effect and is also terminated by the 520 

capillary limit due to the negligible role of the viscous resistance at such low Oh numbers 521 

[16,40]. Note also that this trend is consistent with the existing experimental observation of 522 

Lee et al. [15] who showed that there was no notable difference of the spreading time 523 

between a water droplet (Oh ~ 0.0026) and a glycerol mixture (Oh ~ 0.0263, about 10 times 524 

the viscosity of a water droplet) under the given surface conditions (θeqi =52° – 61°) in the 525 

low We region (We < 2.5). Conversely, the spreading profiles start to be affected by Oh as Oh 526 

further increases above Oh ≥ 0.0262 [see solid lines in Fig.7(c)] and the recoiling stages 527 

disappear for much higher Oh cases (Oh ≥ 0.1049) owing to the significant viscous damping. 528 

The interesting point is that no notable difference of τc can be found even for higher Oh cases 529 

(τc is almost constant for the entire range of Oh). We found that this is because Oh primarily 530 

affects the spreading velocity, not the spreading time, for the higher Oh region. To check the 531 

effect of Oh on the spreading velocity in more detail, in Fig.7(d) and (e), we plot the non-532 

dimensional spreading velocity Vs* (defined as Vs* = β*max / τc) and the non-dimensional 533 

maximum spreading extent β*max for the cases shown in Fig.7(c), respectively. As seen, Vs* is 534 

nearly constant for the low Oh region (roughly where Oh ≤ 0.01), whereas it significantly 535 

decreases as Oh increases in the high Oh region (Oh ≥ 0.05). Since the effect of Oh on β*max 536 

(this result in Fig.7(e) is also consistent with the existing experimental result [16]) evidently 537 

shows exactly the same trend as the effect of Oh on Vs*, τc can be considered almost 538 

independent of Oh for the entire range of Oh. 539 

It is also interesting to compare the spreading mechanism for this CD regime with the 540 

retraction mechanism for high-speed impact cases. In fact, both processes (i.e., spreading of 541 

low-speed impact and retraction of high-speed impact) are presumably based on the same 542 

physical mechanism, i.e., capillary-driven motion under viscous resistance. In the high-speed 543 
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impact case, at the beginning of the retraction stage (i.e., right after the maximum spreading 544 

state), the droplet shows a severely deformed interfacial shape and its motion is almost 545 

stopped.  Then we begin to see the capillary-driven recoiling motion under viscous resistance, 546 

to reduce its increased surface energy caused by surface deformation during the former 547 

spreading stage [62]. Since the spreading stage in the CD regime is also driven by the 548 

capillary effect under viscous resistance, one can expect that there should essentially and 549 

naturally be consistent physical characteristics between the spreading behavior of the low-550 

speed impact in the CD regime and the retraction behavior of the high-speed impact cases. 551 

We found that the spreading velocity in the CD regime analyzed in Fig.7(d) demonstrates the 552 

same trend as the retraction characteristics which were experimentally observed by Bartolo et 553 

al. [62]. They showed that the retraction rate of a droplet is not affected by Oh where Oh < 554 

0.05, whereas it is strongly reduced as Oh increases where Oh > 0.05. Their result shows an 555 

excellent agreement with our findings described in Figs.7(c) and (d). 556 

In Fig.7 above, we observed the obvious effects of We and θeqi on τc, whereas the effect 557 

of Oh can be negligible. Therefore, τc in the CD regime can be properly represented by We 558 

and θeqi and we propose a prediction model: 559 

 560 

  (6) 561 

 562 

In figure 8, a total of 600 τc data are plotted with the prediction model in Eq.(6). As seen, 563 

all τc data for a range of We ≤ 10 can nearly be collapsed on the single curve (see black solid 564 

line), regardless of Oh. Above the threshold of We ~ 10 (i.e., beyond the CD regime) τc 565 

cannot be properly represented by Eq.(6). 566 

We now examine the spreading time for the IC regime [We ≥ O(101) and Oh ≤ O(10-2)]. 567 

At this high We but low Oh region, the spreading dynamics is primarily dominated by the 568 
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strong inertial effect but terminated by the capillary limit [16,40,62]. Therefore, the capillary 569 

time scale, tc*, can still be applicable for this regime [16,19]. 570 

Figure 9(a) depicts the effect of We on the spreading profiles. τc first decreases as We 571 

increases for the CD regime (see 5 dashed lines) as shown in Fig.7(a) above, but it increases 572 

again if We further increases (We ≥ 30) as the collision dynamics sufficiently enter the IC 573 

regime (see 6 solid lines). This somewhat interesting result can be attributed to the severe 574 

deformation of the leading edge of the lamella and its relaxation phenomena [40]. As the 575 

droplet spreads over the surface the leading edge of the lamella continues deforming. The tip 576 

of the lamella is detached from the surface, and it also continues growing as a rim by 577 

consuming the liquid mass from the central region of the droplet [27,70]. Note that such a 578 

deformed rim plays an important role in determining the maximum wetting area [70] since 579 

the volume of the rim is not small [27] and the maximum wetting area is attained during the 580 

relaxation period of the rim [40]. Therefore, a more deformed shape at higher We leads to the 581 

longer relaxation time of the rim and eventually the longer spreading time. Fan et al. [73] also 582 

experimentally showed that the spreading time of a water droplet on a spherical target first 583 

decreases as We increases, then it again increases with We if We ≥ 36.5, showing an 584 

agreement with our results in Fig.9(a). However, the authors think it would be ideal if our 585 

physical interpretation of the underlying mechanism shown in Fig.(b) could also be 586 

confirmed by additional experiments. 587 

Fig.9(b) illustrates such a deformation and relaxation process of the rim in more detail. 588 

For the relatively low We case (We = 20), as depicted on the left side of Fig.9(b), the droplet 589 

continues its spreading process until it reaches the maximum spreading state and no 590 

significant deformation of the lamella edge is observed because the spreading dynamics does 591 

not fully enter the IC regime yet. Conversely, for the high We case where We = 110 [see the 592 

right side of Fig.9(b)], a severe deformation of the rim detached from the surface is clearly 593 
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captured at tc* = 0.60τc (see black line). Then the rim begins its relaxation to reduce the 594 

surface energy and eventually reaches the maximum spreading state (see pink line). Note that 595 

the relaxation period takes quite a long time (about 40 % of τc in this case) eventually leading 596 

to the delayed τc. 597 

Fig.9(c) and (d) show the effects of θeqi and Oh on the spreading profiles, respectively. 598 

As seen, no meaningful effect of θeqi on τc is observed, because the effect of the surface 599 

wettability is overwhelmed by the strong inertial effect during most of the spreading stage 600 

[27,41]. Although the surface wettability plays a non-negligible role in the spreading profiles 601 

near the maximum spreading state and after τc (i.e., during the retraction stage) where the 602 

spreading velocity and the associated inertial effect are at a minimal level, the effect of θeqi on 603 

τc is almost negligible until the droplet reaches nearly the maximum spreading state. For this 604 

case τc can be considered to be a constant value regardless of the surface wettability. The 605 

effect of Oh on τc is also not meaningful if Oh is sufficiently small. As seen in Fig.9(d), τc is 606 

not affected by Oh if Oh < 10-2 (see 3 solid lines, i.e., at IC regime), whereas τc decreases as 607 

Oh increases if Oh > 10-2 (see 3 dashed lines, i.e., beyond the IC regime). This result is also 608 

consistent with the existing result of Zhu et al. [46] who demonstrated that the spreading 609 

dynamics is independent of Oh for low Oh, whereas it is strongly affected by Oh for high Oh 610 

under similar We conditions as the present study (We ≥ 25). Their proposed threshold (Oh ~ 611 

0.008) is also consistent with the current observation (Oh ~ 0.01). 612 

In Fig.9 above, we observed the obvious effect of We on τc, whereas the effects of θeqi 613 

and Oh can be negligible. Therefore, τc in the IC regime can be properly represented by We 614 

and we propose a prediction model: 615 

 616 

  (7) 617 
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In figure 10, a total of 150 τc data are plotted with the prediction model in Eq.(7). As 619 

seen, all τc data for a range of We > 30 can nearly be collapsed on the single curve (see black 620 

solid line) regardless of θeqi and Oh. 621 

We now examine the spreading time for the IV regime [We ≥ O(101) and Oh ≥ O(10-2)]. 622 

At this high We and Oh region the spreading dynamics is primarily dominated by the strong 623 

inertial effect but terminated by the viscous limit [16,40,62]. Therefore, the viscous time 624 

scale, tv*, would be the proper scale in this regime. 625 

Figure 11(a), (b), and (c) depict the effects of We, θeqi, and Oh on the spreading profiles, 626 

respectively. As seen in Fig.11(a), the spreading time, τv, naturally decreases as We increases 627 

due to the higher spreading velocity [19]. The delayed spreading time shown in the IC regime 628 

(caused by the relaxation period of the deformed lamella rim) is not observed in this IV 629 

regime because the interfacial deformation is significantly restricted by the strong viscous 630 

damping. No meaningful effect of θeqi on τv is seen [see Fig.11(b)] due to its minor role 631 

compared to the strong inertial and viscous effects. Conversely, as expected, the dominant 632 

effect of Oh on τv is obviously detected in Fig.11(c). Since the spreading stage is terminated 633 

much earlier for higher Oh cases under the given We due to increased viscous resistance (i.e., 634 

the initial kinetic energy is more quickly dissipated [44]), τv is significantly reduced for 635 

higher Oh conditions. Note that the effect of Oh on τv observed in Fig.11(c) is also consistent 636 

with the existing experimental observation [19,44]. 637 

In Fig.11 above, we observed the obvious effects of We and Oh on τv, whereas the effect 638 

of θeqi can still be negligible. Therefore, τv in the IV regime can be properly represented by 639 

We and Oh, and we propose a prediction model: 640 

 641 

  (8) 642 
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In figure 12, a total of 250 τv data are plotted with the prediction model in Eq.(8). As 644 

seen, all τv data for a range of We > 30 can nearly be collapsed on the single curve (see black 645 

solid line), regardless of θeqi. 646 

 647 

D. Effect of target curvature and data-driven prediction model 648 

In the above subsection, we addressed the effects of the three collision parameters (We, 649 

θeqi, and Oh) on the spreading time for the three different spreading regimes (CD, IC, and IV 650 

regimes) and a prediction model was presented for each regime for the cases where Ω = 1/10 651 

(for a flat surface). We now expand our analysis considering the surface curvature which has 652 

been relatively less explored. The effect of the target curvature characterized by the droplet-653 

to-target size ratio (Ω) on the spreading time and a new prediction model for the spreading 654 

time which can be applied to the entire range of the 4 collision parameters will be presented 655 

in this subsection. 656 

Figure 13(a), (b), and (c) depict the effects of Ω on the spreading profiles for the CD, the 657 

IC, and the IV regime, respectively. In the CD regime, as seen in Fig.13(a), τc increases with 658 

Ω (on the smaller target). This behavior is attributed to the reduced capillary force acting near 659 

the contact line for the smaller targets. As described above, at this low We level, the dominant 660 

force driving the spreading process is the capillary force Fc [which can be scaled as Fc ~ 661 

σRw(θap – θeqi)] formed at the initial stage of contact. At the instant that a droplet contacts a 662 

solid surface, its apparent contact angle (θap) is almost close to 180° and the difference 663 

between the apparent contact angle and the equilibrium contact angle results in the capillary 664 

force Fc on the contact line. Since such an apparent contact angle at the initial contact stage is 665 

formed at a lower level on the smaller target [see θap2 and yellow dashed line in the zoom-in 666 

of the dashed black box, in Fig.13(d)] compared to the bigger target (see θap1), θap – θeqi and 667 

Fc are reduced on the smaller targets eventually leading to lower spreading velocity and 668 
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longer spreading time. For the cases shown in Fig.13(a), τc where Ω = 1/2 (τc = 0.99) is about 669 

21 % longer compared to that for the flat surface (Ω = 1/10, τc = 0.82). 670 

As seen in Fig.13(b), the effect of Ω on τc is apparently observed also in the IC regime, 671 

i.e., τc increases on the smaller targets. Note that the trend of the effect of Ω on τc in the IC 672 

regime is also consistent with many existing studies [40,46,47] and this behavior is attributed 673 

to the reduced lamella deformation on the smaller target [40]. As already shown in Fig.3(b) 674 

above, a thin lamella sheet is ejected at the early stage of spreading. Although the motion of 675 

bulk liquid is primarily dominated by inviscid inertial effects [16,40,62], the dynamics in the 676 

vicinity of the lamella jet is locally but considerably affected by viscous effects [20,69]. Since 677 

the smaller targets provide more space in the vertical direction as in an expanding channel 678 

flow for the lamella sheet being ejected [i.e., higher ζ is provided on smaller targets as 679 

illustrated in the zoom-in of the dashed red box in Fig.13(d)] the local velocity of the radially 680 

expanding lamella jet is reduced on the smaller targets. Therefore, the lamella jet develops 681 

less sharply, having a more rounded and bluff shape [40,69]. This allows the droplet to 682 

expend its kinetic energy more efficiently for the spreading itself rather than the rim 683 

deformation detached from the surface eventually leading to the longer spreading time as 684 

well as the longer spreading extent compared to those on the larger targets (under the same 685 

kinetic energy level). A more detailed physical mechanism for the reduced lamella 686 

deformation on smaller targets can be found in the existing numerical study [40]. For the 687 

cases shown in Fig.13(b), τc, where Ω = 1/2 (τc = 0.80) is about 45 % longer compared to that 688 

for the flat surface (Ω = 1/10, τc = 0.55). 689 

The effect of Ω on τv in the IV regime is depicted in Fig.13(c). As seen, no meaningful 690 

effect of Ω on τv is observed for this highly viscous regime. Although the maximum 691 

spreading extent is slightly increased on the smaller targets due to the reduced energy 692 

dissipation [40], τv is almost constant in terms of its practical measurement. 693 
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In figure 14, we refine the regime map (shown in Fig.2 above) to summarize the major 694 

findings presented so far, including the details of the physical behaviors of the spreading 695 

time. The underlying physical mechanism governing the spreading process, the characteristic 696 

time scale, the effects of various collision parameters on the spreading time and the 697 

prediction model (for a flat surface) are also presented for each regime. Note that the effects 698 

of 4 collision parameters, i.e., We, θeqi, Oh, and Ω are indicated by 4 different markers, i.e., 699 

circles, squares, triangles and inverted triangles, respectively. If a certain parameter has a 700 

positive (or negative) effect on the spreading time, its effect is indicated by a red (or blue) 701 

marker, whereas an empty marker is used if its effect is negligible. For example, if the 702 

spreading time increases with We, the effect of We is marked by a filled red circle. 703 

Conversely, the effect of We is marked by a filled blue circle if the spreading time decreases 704 

as We increases. 705 

Fig.14 highlights the complex nature of the spreading time owing to the different 706 

physical mechanism for each regime. The effects of the impact parameters (We, θeqi, Oh and 707 

Ω) also play different roles. For instance, the effect of We is positively related to the 708 

spreading time for the CD and the IV regime, whereas it is negatively related to the spreading 709 

time for the IC regime. In particular, none of the 4 impact parameters shows a consistent 710 

effect across the three spreading regimes, which highlights the significant nonlinearity and 711 

complexity of the spreading time. The characteristic time scales are also different. 712 

Therefore, formulating a single correlation for the spreading time as a broad cross-over 713 

across the three different spreading regimes is quite difficult since it should cover all the 714 

different physical mechanisms, different characteristic time scales, and different effects of the 715 

collision parameters. In addition, if the effect of the target curvature (i.e., the effect of Ω) on 716 

the spreading time were to be considered together, the problem would be much more 717 

complicated. Rather than formulating a single correlation, therefore, we consider here a data-718 
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driven approach to model such complex and non-linear behavior of the spreading time across 719 

all the spreading regimes. 720 

Recently, data-driven approaches have been broadly applied to model complicated fluid 721 

phenomena such as turbulent flows [74] or multiphase flow systems [75]. For droplet impact 722 

problems as well, the maximum spreading extent [41], the splashing threshold [76], and the 723 

lamella area [77] have successfully been modeled using data-driven techniques, based on 724 

their powerful ability to correlate non-linear relations among large datasets and reduce the 725 

level of complexity. 726 

The spreading time can basically be modeled as a function of 4 impact parameters as 727 

follows: 728 

 729 

 τa = f (We, Oh, θeqi, Ω) (9) 730 

 731 

Here, the advective time scale is applied for our data-driven prediction model, in order to 732 

treat our dataset in a consistent manner. f is the non-linear and complicated (unknown) 733 

function between inputs (4 impact parameters) and output (τa) data which is now modeled by 734 

using an artificial intelligence technique. The multilayer neural network, also called the 735 

multilayer perceptron (MLP) [78], is utilized as a nonlinear regressor to model the function f. 736 

Figure 15 illustrates the schematic diagram of the typical MLP structure. The MLP consists of 737 

the input layer (marked by red nodes), the multiple hidden layers (marked by green nodes) 738 

and the output layer (marked by blue nodes). Each layer usually consists of a number of 739 

nodes (also called neurons), whereas the last output layer has only one output node. The 4 740 

input features (We, Oh, θeqi and Ω) are provided from the input layer to the first hidden layer 741 

and then linear combinations of the input features are calculated on each node. Such linear 742 

combinations are nonlinearized by using an activation function and then are delivered to the 743 
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next hidden layer. Such an operation is called a feedforward procedure and is applied to all 744 

the subsequent layers. The last output layer has no nonlinearization operation and provides 745 

the final output value. 746 

A total of 2400 impact cases (12 Weber numbers, 10 Ohnesorge numbers, 5 surface 747 

wettabilities, and 4 droplet-to-target size ratios) are utilized to set the dataset. The dataset is 748 

randomly split into 3 parts: the training dataset (70 %, 1680 data points), the validation 749 

dataset (15 %, 360 data points) and the test dataset (15 %, 360 data points). The training 750 

dataset and the test dataset are used to train our MLP model and finally test the accuracy of 751 

the trained model, respectively, whereas the validation dataset is utilized to check if 752 

overfitting occurs during the training process. More detailed information on our MLP 753 

modeling and its training procedure can be found in the Appendix C. 754 

Figure 16 compares the spreading time predicted by our data-driven model with the true 755 

values (measured values from our numerical simulations). 360 data points from the test 756 

dataset are plotted for comparison (see black circles). As can be seen, τa predicted by our 757 

MLP model demonstrates a good agreement with the true dataset, showing that the mean 758 

square error (MSE) is on the order of O(10-4) (MSE = 5.23 ´ 10-4). Note that, except for only 759 

a few cases, all the tested cases fall inside a deviation range of ± 15%. Note that all the test 760 

data samples shown in Fig.16 have not been used for the training process of our MLP model. 761 

To the best of our knowledge, our prediction model is the first data-driven model for the 762 

spreading time of the droplet collision system which can be applied for a curved spherical 763 

target. As one of the most universal models, the current model can cover a very broad range 764 

of impact parameters across not only the three spreading regimes (i.e., CD, IC, IV regimes 765 

and the transition area among them as well), but also a wide range of droplet-to-target size 766 

ratio (from a flat substrate to a small spherical target). 767 

Last but not least, the authors would like to clarify that there is no physics in the current 768 
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data-driven prediction model, which can indeed be understood as providing both pros and 769 

cons [75]. The fact that such a data-driven approach is not fully based on a physical 770 

background might be a reason for which it has been less attractive to some scientific 771 

communities compared to conventional approaches supported by strong physical principles 772 

[79,80]. However, both approaches share identical goals, i.e., modeling complicated 773 

phenomena which usually need to consider many multi-dimensional variables [80,81]. The 774 

advantages of data-driven approaches can also be that users would not need to consider 775 

physics models alone for those complex system because data-driven models basically don’t 776 

rely on constraints attributed to physics [75]. This characteristic allows them to work as a 777 

useful non-linear regressor. For example, the current data-driven prediction model can predict 778 

the spreading time even for transition regimes marked in the gray zones in Fig.14, which is 779 

apparently very difficult to predict using Eqs. 6 – 8 above due to their non-linear nature. This 780 

clearly shows the advantage of data-driven approaches at least in the context of engineering 781 

applications and practical usefulness. 782 

 783 

IV. CONCLUSION 784 

 785 

In this study we quantitatively and systematically investigate the spreading time of droplet 786 

impact onto a spherical target for a wide range of impact parameters (0 ≤ We ≤ 110, 20° ≤ 787 

θeqi ≤ 160°, 0.0013 ≤ Oh ≤ 0.7869 and 1/10 ≤ Ω ≤ 1/2). A total of 2400 collision cases are 788 

simulated and are used to better understand the physical behavior of the spreading time. This 789 

large simulation dataset is also used for training a data-driven prediction model as well as for 790 

the derivation of prediction models. 791 

For the three different spreading regimes, i.e., the capillary-driven (CD), the inertia-792 
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driven but capillary-limited (IC) and the inertia-driven but viscous-limited (IV) regimes, the 793 

effects of the impact parameters on the spreading time are analyzed in detail. Not only the 794 

spreading time, but also proper time scales, dominant impact parameters and associated 795 

physical behaviors all significantly and non-linearly change across the three spreading 796 

regimes. The spreading time is primarily dominated by the We and θeqi in the CD regime 797 

whereas only the Weber number plays a meaningful role in the IC regime. In the IV regime it 798 

is mainly affected by We and Oh. An improved prediction model is also presented for each 799 

regime. To the best of our knowledge, these proposed prediction models (Eqs. 6-8) are the 800 

first models for the spreading time using only the controllable independent variables (e.g., 801 

We, Oh and θeqi) in explicit form which can provide more straightforward solutions compared 802 

to the existing models [18-21,44,45].  803 

The effect of target curvature on the spreading time is also analyzed in detail for the 804 

three different spreading regimes, showing complicated trends due to its non-linear nature. 805 

Finally, a data-driven prediction model is proposed to predict the spreading time broadly 806 

across the three different spreading regimes. Our proposed data-driven model shows good 807 

prediction capability for the full ranges of impact parameters considered in the present study 808 

and also shows a good agreement with our simulation dataset. 809 

The limitation of the current study is as follows: (i) As in the existing models, prediction 810 

models (Eqs. 6-8) are still not derived from physical background. Further efforts are needed 811 

to combine “physics-based models” which could be helpful in understanding such 812 

complicated behavior within the existing empirical results. (ii) Users need to be careful in 813 

using the proposed data-driven model. Although our numerical methods have thoroughly 814 

been validated, the number of current data samples (2400 cases) is still insufficient to model 815 

the spreading time for the entire spreading regime compared to other common data-driven 816 

models trained using “big-data”. Our numerical data used for the training are also confined to 817 
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the current impact conditions (0 ≤ We ≤ 110, 20° ≤ θeqi ≤ 160°, 0.0013 ≤ Oh ≤ 0.7869 and 818 

1/10 ≤ Ω ≤ 1/2). Broader ranges of impact parameters, and more precise and abundant data 819 

samples can improve the applicability and accuracy of the current model. (iii) While the 820 

current axi-symmetric simulation code is sufficiently validated, full three-dimensional 821 

simulations are still essential to better understand those complicated physical phenomena. In 822 

particular, impact dynamics at high We and low Oh where the liquid sheets and rim can be 823 

highly deformed still need to be captured more precisely. We are currently working on these 824 

issues. 825 

 826 

APPENDIX A: Details of the dynamic contact angle 827 

modeling 828 

 829 

The dynamic contact angle θdyn is basically modeled as a function of the equilibrium 830 

contact angle and the velocity of the contact line, as in well-known previous numerical 831 

studies on drop impact problems [82,83]. In the present study, we use the model of Yokoi et 832 

al. [83]: 833 

 834 

  (A1) 835 

 836 

Ca is the capillary number (Ca = μUCL/σ), where UCL is the velocity of the contact line. 837 

Contact angle hysteresis is represented by the difference between the allowable minimum 838 
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(θmdr) and maximum (θmda) contact angles, and the dynamic contact angle (θdyn) can always 839 

be maintained between θmdr and θmda. q1 and q2 are experimentally measured constants, and 840 

the same values as in Yokoi et al. [83] (q1 = 9.0 ´ 10−9 and q2 = 9.0 ´ 10−8) are applied to the 841 

current study. 842 

 843 

APPENDIX B: Validation tests in our previous studies 844 

 845 

We here introduce our validation test results presented in our previous studies. Figure 846 

17(a) compares the maximum spreading extent β*max computed by our simulation with Mao 847 

et al. [25]’s semi-empirical model which is well-known as one of the most accurate models 848 

that can be applied for a wide range of drop viscosity [84]. β*max shows generally good 849 

agreement with the existing model of Mao et al. [25] for a wide range of We number (30 ≤ 850 

We ≤ 90) and Oh number (0.0013 ≤ Oh ≤ 0.7869). Note that a discrepancy shown at the very 851 

low Oh region (Oh ≤ 0.0026) is attributed to the limitation of shape approximation in Mao et 852 

al.’s model [25], which overestimates β*max if the viscosity is very low and the surface tension 853 

force plays an important role [25,84]. Therefore, in figure 17(b), we compare our simulated 854 

β*max again with the well-known viscous-free scaling law proposed by Clanet et al. [16]. As 855 

can be seen, for cases with very low Oh number (Oh = 0.0026), our simulation result shows 856 

an excellent agreement with the existing scaling law [16]. 857 

In figure 17(c), we further compare our simulated time-dependent non-dimensional 858 

spreading diameter β* with three existing experimental results to see if our numerical 859 

framework can simulate the impact phenomena well on spherical targets. The solid lines in 860 

Fig. 17(c) depict the simulation results, whereas the red squares, blue circles, and black 861 

crosses show the experimental results from Mitra et al. [2], Liu et al. [38], and Khurana et al. 862 

[39], respectively. Our simulation results also show good agreement with the existing 863 
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experimental observations in the literature, in the context of dynamic spreading 864 

characteristics. Overall, we concluded that our simulation framework can simulate the drop 865 

impact phenomena on both flat and spherical targets well for a wide range of collision 866 

parameters. Note again that these validation tests shown in figure 17 are not new tests, but 867 

were already presented in our previous study [40]. 868 

 869 

APPENDIX C: Details of MLP training 870 

 871 

The output value on the nth node in the mth layer is: 872 

 873 

  (C1) 874 

 875 

Here, N stands for the number of nodes of each layer. The function g denotes the nonlinear 876 

activation function. wnl is the weight between the lth node of the previous layer and the nth 877 

node of the current layer whereas b is the bias.  878 

The weights (w) and biases (b) are adjustable coefficients and are first initialized as 879 

random variables and zero, respectively. w and b are continuously updated during the training 880 

process, minimizing the loss function based on the back-propagation algorithm [85]. In the 881 

current study, the mean square error (MSE) is used as a loss function: 882 

 883 

  (C2) 884 

 885 

where M is the number of data points considered and τa(p) is the predicted value of the 886 
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spreading time using the trained MLP model.  887 

Three hyperparameters (i.e., the activation function, the number of nodes at each hidden 888 

layer and the number of hidden layers) can usually be selected by the user. We chose the 889 

common rectified linear unit function (generally called ReLU) as our activation function 890 

owing to its well-known capability for deep neural networks [86]. The ReLU can be written 891 

as: 892 

 893 

 g(x) = ReLU(x) = max(x, 0) (C3) 894 

 895 

Two other hyperparameters are set by manual search because the current dataset is relatively 896 

very simple. Finally, a 4 × 30 (4 hidden layers and 30 neurons in each hidden layer) 897 

architecture is chosen as the MLP network. The ADAM optimization procedure [87,88] is 898 

used for the MLP training and the computational implementation for the MLP training is 899 

performed using the open-source libraries Keras [89] and TensorFlow [90]. For more details 900 

on the deep learning architecture and its training techniques readers can refer to Nielsen [91]. 901 

The training of our MLP model is carried out until the validation MSE (measured from 902 

the validation dataset) reaches a steady state. After 3300 training epochs the validation MSE 903 

converges to a steady state of about 4.62 × 10-4 (see Fig.18). 904 

 905 

 906 

 907 

 908 

 909 

 910 
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Fig. 1. Simulation geometry and boundary conditions for the droplet impact system. 1290 
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 1313 
Fig. 2. Schematic regime-map for droplet spreading dynamics. Three different spreading 1314 
regimes, i.e., the capillary-driven (CD), the inertia-driven but capillary-limited (IC), and the 1315 
inertia-driven but viscous-limited (IV) regimes are marked by the blue, red and green areas, 1316 
respectively. 1317 

1318 
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 1325 
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 1331 

 1332 
Fig. 3. Typical evolution of droplet interfacial morphology for the three different spreading 1333 
regimes. (a) CD regime (We = 4, θeqi = 90° and Oh = 0.0026). (b) IC regime (We = 110, θeqi = 1334 
90° and Oh = 0.0026). (c) IV regime (We = 110, θeqi = 90° and Oh = 0.5246). In these cases, 1335 
Ω = 1/10 for generality. 1336 
 1337 
 1338 
 1339 
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  1364 
Fig. 4. Typical evolution of the non-dimensional spreading extent, β*, for the three different 1365 
spreading regimes. All collision conditions for each regime are the same as Fig.3. The inset 1366 
depicts the schematic for measuring β*. The spreading times (the time that a droplet attains 1367 
95 % of the maximum value of β*) are also marked by the triangles. 1368 
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 1383 
Fig. 5. Benchmark tests. (a) Evolution of the non-dimensional spreading extent, β*, for a 1384 
droplet spreading on a small spherical target at low We (We = 0.9, θeqi = 85°, Oh = 0.0026 1385 
and Ω = 0.83). The insets compare the interfacial shapes between the experiment [2] and the 1386 
current simulation for 3 different time instants (ta* = 0.24, 0.47, and 0.71). Reproduced with 1387 
permission from S. Mitra et al., “Interactions in droplet and particle system of near unity size 1388 
ratio,” Chem. Eng. Sci. 170, 154–175 (2017). Copyright 2017 Elsevier, Ltd. (b) Evolution of 1389 
the non-dimensional film thickness, h*, for a droplet spreading on a small spherical target at 1390 
high We (We = 155.5, θeqi = 97°, Oh = 0.0026 and Ω = 1.7) simulated by using 4 different 1391 
grid resolutions (8, 16, 32 and 64 CPR). The insets compare the interfacial shapes between 1392 
the experiment [71] and the current simulation for 4 different time instants (ta* = 0.30, 0.60, 1393 
1.05 and 1.95), whereas the other inset in the lower-left corner depicts the schematic for 1394 
measuring h. Reproduced with permission from S. A. Banitabaei and A. Amirfazli, “Droplet 1395 
impact onto a solid sphere: Effect of wettability and impact velocity,” Phys. Fluids 29, 1396 
062111 (2017). Copyright 2017 AIP Publishing LLC. 1397 
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 1399 
 1400 

Fig. 6. Benchmark tests. (a) Non-dimensional advective spreading time, τa, at low Oh (Oh = 1401 
0.0026). The existing experimental result [18] is marked by black squares. (b) τa at high Oh 1402 
(Oh = 0.62). The existing results from the numerical simulation [21] and the empirical 1403 
correlation [19] are marked by black squares and red triangles, respectively. 1404 
 1405 
 1406 
 1407 
 1408 
 1409 
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  1410 
 1411 
Fig. 7. Effect of the impact parameters on τc for the CD regime. (a) Effect of We (We = 2–10, 1412 
θeqi = 90° and Oh = 0.0026). (b) Effect of θeqi (We = 2, θeqi = 20°–160° and Oh = 0.0026). (c) 1413 
Effect of Oh (We = 2, θeqi = 90° and Oh = 0.0013–0.7869). (d) Effect of Oh on the non-1414 
dimensional spreading velocity, Vs*. (e) Effect of Oh on the non-dimensional maximum 1415 
spreading extent, β*max. For (d) and (e), all collision conditions are the same as Fig.7(c). 1416 
 1417 
 1418 
 1419 
 1420 
 1421 

 1422 
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 1423 
 1424 
 1425 

 1426 
Fig. 8. A total of 600 τc data (We = 1–110, θeqi = 20°–160° and Oh = 0.0013–0.7869). The 1427 
proposed prediction model, i.e., Eq.(6) for the CD regime is indicated by the black solid line. 1428 
The green dashed line depicts the threshold for the CD regime. 1429 
 1430 
 1431 
 1432 
 1433 
 1434 
 1435 
 1436 
 1437 
 1438 
 1439 
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 1440 
 1441 
Fig. 9. Effect of the impact parameters on τc for the IC regime. (a) Effect of We (We = 20–1442 
110, θeqi = 125° and Oh = 0.0026). (b) Effect of We on the interfacial evolution of a droplet 1443 
and its lamella deformation (We = 20 and 110, θeqi = 20° and Oh = 0.0026). (c) Effect of θeqi 1444 
(We = 90, θeqi = 20°–160° and Oh = 0.0026). (d) Effect of Oh (We = 70, θeqi = 90° and Oh = 1445 
0.0013–0.0525). 1446 
 1447 
 1448 
 1449 
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 1451 
 1452 
 1453 
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 1454 
Fig. 10. A total of 150 τc data (We = 4–110, θeqi = 20°–160° and Oh = 0.0013–0.0052). The 1455 
proposed prediction model, i.e., Eq.(7), for the IC regime is indicated by the black solid line. 1456 
The green dashed line depicts the threshold for the IC regime. 1457 
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 1474 
 1475 
 1476 



 

61 

 

 1477 
Fig. 11. Effect of the impact parameters on τv for the IV regime. (a) Effect of We (We = 30–1478 
110, θeqi = 20° and Oh = 0.5246). (c) Effect of θeqi (We = 70, θeqi = 20°–160° and Oh = 1479 
0.5246). (d) Effect of Oh (We = 70, θeqi = 90° and Oh = 0.0525–0.7869). 1480 
 1481 
 1482 
 1483 
 1484 
 1485 
 1486 
 1487 
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 1491 
 1492 
Fig. 12. A total of 250 τc data (We = 4–110, θeqi = 20°–160° and Oh = 0.0525–0.7869). The 1493 
proposed prediction model, i.e., Eq.(8), for the IV regime is indicated by the black solid line. 1494 
The green dashed line depicts the threshold for the IV regime. 1495 
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 1513 
 1514 

Fig. 13. (a) Effect of Ω on τc for the CD regime (We = 4, θeqi = 90°, and Oh = 0.0026). (b) 1515 
Effect of Ω on τc for the IC regime (We = 50, θeqi = 90° and Oh = 0.0026). (c) Effect of Ω on 1516 
τv for the IV regime (We = 50, θeqi = 90° and Oh = 0.5246). (d) Schematics of the initial 1517 
apparent contact angles (on the left side) and the lamella characteristics (on the right side). 1518 
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 1520 
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 1526 

 1527 
Fig. 14. Refined regime-map of the droplet spreading mechanism. Three different spreading 1528 
regimes, i.e., CD, IC, and IV regimes with the transition area are depicted. The physical 1529 
mechanism driving the spreading process, the characteristic time scale, the effects from 4 1530 
impact parameters (We, θeqi, Oh, and Ω) and the prediction models are also presented for each 1531 
regime. 1532 
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 1559 
Fig. 15. Schematic diagram of the multilayer perceptron (MLP) used in the current study. 1560 
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 1592 
 1593 
Fig. 16. Comparison of the spreading time, τa, between predicted data by using the data-1594 
driven (MLP) model and true (measured) data obtained by our simulations. The deviation 1595 
range of ± 15% is marked by the two dashed-black lines. 1596 
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 1617 
Fig. 17. Validation comparisons between our simulation results and existing experimental 1618 
results. (a) Comparison with Mao et al.’s [25] semi-empirical model for droplet impact with a 1619 
flat surface (30 ≤ We ≤ 90, 0.0013 ≤ Oh ≤ 0.7869). (b) Comparison with Clanet et al.’s [16] 1620 
empirical scaling law for droplet impact with a flat surface (30 ≤ We ≤ 110, Oh = 0.0026). (c) 1621 
comparisons with the experimental data of Mitra et al. (red squares; We = 0.9, Ω = 0.83, θeqi = 1622 
85°, Oh = 0.0024) [2], Liu et al. (blue circles; We = 19.2, Ω = 0.15, θeqi = 93°, Oh = 0.0022) 1623 
[38], and Khurana et al. (black crosses; We = 35.3, Ω = 0.60, θeqi = 85°, Oh = 0.0022) [39] for 1624 
droplet impact with a spherical target. Reproduced with permission from I. Yoon and S. Shin 1625 
[40], “Maximal spreading of droplet during collision on particle: effects of liquid viscosity 1626 
and surface curvature,” Phys. Fluids 33, 083310 (2021). Copyright 2021 AIP Publishing 1627 
LLC. 1628 



 

68 

 

 1629 
 1630 
 1631 
 1632 
 1633 
 1634 
 1635 
 1636 
 1637 
 1638 
 1639 
 1640 
 1641 
 1642 
 1643 

 1644 
Fig. 18. Training errors (MSE) vs. training epochs for training and validation datasets. The 1645 
training is terminated at 3300 training epochs where the MSE for the validation dataset (see 1646 
black solid line) is sufficiently converged. The error for the validation dataset is 4.62 × 104. 1647 
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